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ABSTRACT
Anti-SARS-CoV-2 monoclonal antibodies and vaccines have shown improvement in lowering viral burden 
and hospitalization. However, emerging SARS-CoV-2 variants contain neutralizing antibody-escape muta
tions. Therefore, several reports have suggested the administration of recombinant angiotensin-convert
ing enzyme 2 (rACE2) as a soluble receptor trap to block SARS-CoV-2 infection and limit viral escape 
potential. Several strategies have been implemented to enhance the efficacy of rACE2 as a therapeutic 
agent. Fc fusions have been used to improve pharmacokinetics and boost the affinity and avidity of ACE2 
decoys for the virus spike protein. Furthermore, the intrinsic catalytic activity of ACE2 can be eliminated by 
introducing point mutations on the catalytic site of ACE2 to obtain an exclusive antiviral activity. This 
review summarizes different evolution platforms that have been used to enhance ACE2-Fc (i.e., immu
noadhesins) as potential therapeutics for the current pandemic or future outbreaks of SARS-associated 
betacoronaviruses.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV- 
2) has been identified as the seventh coronavirus that is known 
to cause human respiratory disease.1 This novel virus, which 
belongs to the genus betacoronavirus, has a single-stranded 
positive-sense RNA genome. It is the causative agent of the 
coronavirus disease 19 (COVID-19) that emerged in China and 
swiftly spread to the rest of the world starting in late 2019.2 

According to the World Health Organization, COVID-19 has 
affected nearly every healthcare system in the world, and infec
tion with the virus has led to millions of deaths.

The 30-kb SARS-CoV-2 genome encodes four main struc
tural proteins: the spike (S) glycoprotein, membrane (M) pro
tein, an envelope (E) protein and a nucleocapsid (N) protein.3 

The S protein on the surface of the virus is known to play the 
most important roles in viral attachment, fusion and entry. 
Therefore, S protein has been exhaustively studied as a key 
target for vaccine and therapeutic development.4

The entry of SARS-CoV-2 into the host cells is mediated by 
the binding of the S protein to the host cellular membrane- 
bound angiotensin-converting enzyme 2 (ACE2) receptors.5–8 

The S protein on the surface of the virus is composed of S1, 
which is responsible for binding, and S2, which is responsible 
for membrane fusion.9 The S1 subunit contains an N-terminal 
domain (NTD) and a receptor-binding domain (RBD) at the 
C-terminal that contains the receptor-binding motif (RBM). 
However, the S2 subunit contains a fusion peptide (FP), heptad 
repeat 1 (HR1) and 2 (HR2) domains, a transmembrane (TM) 
and a cytoplasmic (CP) domain (Figure 1). Upon binding the 
RBD on the S1 to the peptidase domain (PD) of ACE2, the FP 

on the S2 site is inserted into the cell membrane to promote 
fusion with the viral membrane.5,10 This process is primed by 
several host transmembrane protease serine proteases, includ
ing TMPRSS2 and TMPRSS4, to cleave S1 and S2 subunits.
11–13

Given the important role of RBD in initiating the invasion 
of SARS-CoV-2 into host cells, it is reasonable to define the 
RBD as the most promising target for the development of virus 
attachment inhibitors, neutralizing antibodies and vaccines. 
Therefore, several studies have suggested the administration 
of human recombinant ACE2 (rACE2) protein to block the 
RBD, and thereby prevent COVID-19.

Recombinant human ACE2

Human ACE2 is a monocarboxylic peptidase that is widely 
expressed in several organs, including the brain, heart, lung, 
gut, kidneys and testis,14 and circulates in the plasma as a 
soluble form.15,16 Physiologically, ACE2 converts angiotensin 
II into angiotensin 1–7, to counterbalance induction of the 
renin-angiotensin system (RAS) and thereby regulates hyper
tension, sodium-water retention and protects multiple organs, 
including the heart, kidneys and lung.17 Therefore, rACE2 can 
be used to alleviate angiotensin II–induced diseases.

APN01 (alunacedase alfa, GSK-258688; Apeiron Biologics), 
a human soluble rACE2,18–20 was evaluated in a Phase 2 clin
ical trial as a treatment for SARS-CoV-2 infection 
(NCT04335136).21,22 Due to its catalytic activity, APN01 is 
able to regulate the RAS to minimize organ injuries and 
improve the symptoms in patients with severe COVID-19.22,23
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Figure 1. SARS-CoV-2 genome and the encoded S protein. A. Schematic representation of the single-stranded positive-sense RNA (+ ssRNA) genome of SARS-CoV-2 (27– 
32kb in length). Different domains are shown by different colors. ORF, open reading frame. The spike (s) protein consists of secretion signal (SS); N-terminal domain 
(NTD); receptor-binding domain (RBD); subdomain 1(SD1); subdomain 2 (SD2); protease cleavage site (S1/S2); heptad repeat 1 (HR1); central helix (CH); connector 
domain. (CD); heptad repeat (HR); transmembrane domain. (TM); and cytoplasmic tail (CT). B. The crystallographic primary structure of the S protein.

Figure 2. Soluble recombinant human ACE2-Fc protein as a decoy receptor to SARS-CoV-2. Recombinant human ACE2-Fc protein generated by fusing the C-terminus of 
the human ACE2 extracellular domain to a human IgG Fc region could work as a potential SARS-CoV-2 inhibitor.
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The ACE2 cell receptor is a common entry gateway of 
several human coronaviruses, including SARS-CoV-1, 
HCoV-NL63 and SARS-CoV-2, wherein the viral spike pro
teins are used for receptor binding.9,24,25 Therefore, rACE2 has 
been evaluated as a potential antiviral therapy in which the 
protein acts as a decoy to facilitate immune clearance of such 
viruses.19,20,26,27 SARS-CoV-2 is an RNA virus that is expected 
to have a high mutation rate,28 which might consequently 
enable the virus to acquire resistance against vaccines and 
antibodies.29–34 Thus, using ACE2 as a decoy receptor for 
SARS-CoV-2 is particularly attractive as it aims to combat 
the interactions between SARS-CoV-2 S protein and cellular 
ACE2 receptor (Figure 2). Moreover, ACE2 has the ability to 
neutralize emerging SARS-CoV-2 variants of concern that 
harbor antibody-escape mutations, as has been observed for 
vaccine escape mutations.33,35

Several studies performed deep mutagenesis analysis to iden
tify critical amino acid changes in ACE2 that could increase 
affinity for SARS-CoV-2 S protein. For example, the engineered 
decoy receptor ACE22.v2.4, showed high affinities to broadly 
diverse SARS-CoV-2 S proteins from humans and bats, despite 
the fact that the ACE2-binding surface region have high diver
sity. These results suggest that resistance to such engineered 
decoy receptors will most probably be rare and that they might 
be active against future emerging outbreaks of SARS-related 
betacoronaviruses.36,37

Other computational, site-directed mutagenesis and glycosi
dase treatment studies investigated S protein N-glycosylation 
involved in RBD-ACE2 interaction to engineer an ACE2 decoy 
receptor with enhanced S protein binding affinity and improved 
virus neutralization. Recent studies indicated that S N-glycans 
attached to N343, N165, N234, N90 and N322 positions of ACE2 
play important role in determining spike binding, facilitating 
RBD opening and stabilizing RBD-ACE2 interaction.38–41

As with any therapeutic, there are strengths and limitations 
associated with the rACE2-based treatment. For example, supple
mentation of exogenous rACE2 might be a double-edged sword in 
COVID-19 patients with underline cardiovascular disorders. It has 
been reported that there are a close association between increased 
levels of circulating soluble ACE2 (sACE2) and cardiovascular 
diseases, which are known to be COVID-19 risk factors.42,43 The 
elevated levels of sACE2 would initiate the formation of high 
numbers of circulating SARS-CoV2–sACE2 complex, which 
might be responsible for vascular occlusions, autoimmune inflam
mation, and organ ischemia. Therefore, further laboratory and 
clinical research are needed to assess the use of rACE2 to treat 
COVID-19 patients with cardiovascular diseases.

Additionally, pharmacological studies showed that rACE2 as 
a decoy receptor exhibits a short half-life in both human and 
mice and is limited by its fast clearance.18 Moreover, there have 
been opinions that rACE2 may unintentionally upregulate 
endogenous ACE2 expression, alter the balance of ACE2 hor
monal substrates and worsen COVID-19 recovery.44,45 To over
come this, it has been suggested that fusion of enzymatically 
inactivated ACE2 to the Fc region of human immunoglobulin G 
offers superior pharmacokinetic and pharmacological benefits 
compared to rACE2-based therapy. Thus, this review is focused 
on different strategies used to engineer human rACE2 as Fc 
fusion proteins (i.e., immunoadhesins) to trap SARS-CoV-2.

ACE2-Fc immunoadhesin as a decoy receptor

ACE2-Fc immunoadhesins, as antibody-like molecules, offer 
substantial advantages over other traditional antiviral treat
ments. The effector functions of the Fc domain allow the 
recruitment of several phagocytic immune cells, including den
dritic cells, macrophages and natural killer cells, and facilitate 
the activation of the host antiviral immune response against the 
virus.46,47 Additionally, fusing ACE2 with Fc would improve the 
recombinant protein half-life, binding affinity, long-acting time, 
serum stability, antiviral specificity, neutralization efficacy and 
transport into the lung.48–51 For example, neonatal Fc receptors 
(FcRn) are widely expressed by a variety of cell types, including 
endothelium and pulmonary epithelial cells, and thus these cells 
are capable of transporting IgG and Fc fusion molecules into the 
respiratory tract through the mucosal barriers.52–54

Immunoadhesin-based drugs have been widely used in mod
ern biopharmaceuticals. Around 13 immunoadhesins have been 
approved in the United States or Europe and are currently 
marketed as treatments for different disease conditions, includ
ing systemic lupus erythematosus, multiple sclerosis and rheu
matoid arthritis, and many more are in different phases of 
clinical trials.55–58 However, no antiviral immunoadhesins 
have been approved, though at least one has entered clinical 
trials for human immunodeficiency virus (HIV) treatment.59 

While HIV is not kinetically and clinically similar to the 
SARS-CoV-2, previous research on HIV suggests that decoy 
receptor could be a potential therapeutic strategy against 
SARS-CoV-2.

Recent research showed that making a cocktail therapeutic 
by mixing neutralizing antibodies that do not bind to the RBD 
with RBD-targeting antibodies and engineered ACE2-Fc 
would generate synergistic inhibitory effect against viral 
infections.60 Furthermore, it has been found that a ACE2-Fc 
fusion protein induced a broad neutralization capacity against 
many SARS-CoV-2 variants, including D614G, B.1.1.7 
(Alpha), B.1.351 (Beta), B.1.617.1 (Kappa) and B.1.617.2 
(Delta).61 Thus, engineering immunoadhesins as receptor 
traps and stockpiling them would be critical for a fast, pre
emptive approach against emerging and reemerging betacor
onaviruses to help control future outbreaks.

Inactivating ACE2 intrinsic catalytic activity

ACE2 at optimum concentration can lower virus infectivity in 
vitro, in a similar pattern as neutralizing antibodies.21,62–64 

Moreover, it has an intrinsic catalytic activity that regulates 
cardiovascular functions and fluid balance.65 However, the role 
of ACE2 receptors for viral entry is not directly linked with 
their enzymatic and nonenzymatic actions. Thus, it is critical to 
introduce individual point mutations on the catalytic site of 
ACE2 to inactivate the unnecessary carboxypeptidase activity, 
and to achieve an exclusive antiviral effect.

The ACE2 metallopeptidase activity requires a divalent 
cation such as Zn2+, wherein the zinc ion binding site is buried 
in the catalytic cleft within the proximal lobe, which is close to 
the viral binding site on ACE2. Three proximal lobe residues, 
His374, His378 and Glu402, which control the Zn+2 binding 
with their side chains, are the apparent candidates to be 
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mutagenized to generate enzymatically inactive ACE2 mutants. 
For example, Lei et al. constructed an ACE2 immunoadhesin 
by fusing the extracellular domain of a modified version of the 
human rACE2 (1–740) to the Fc region of the human immu
noglobulin IgG1.63 The modified ACE2-Fc variant includes 
two specific mutations for histidine residues 374 and 378 to 
asparagine (H374N and H378N) to reduce the intrinsic ACE2 
catalytic activity. The fusion protein has shown high binding 
affinity toward the RBDs of SARS-CoV-1 (170 nM) and SARS- 
CoV-2 (11 nM), which was determined with BIAcore-binding 
assay. The ACE2-Fc receptor trap was also able to neutralize 
and inhibit S protein-mediated fusion of both SARS-CoV-1 
and SARS-CoV-2, despite the H374N and H378N mutation, 
suggesting that fusing recombinant sACE2 to the Fc region of 
the human IgG1 can remarkably improve the neutralization 
potency and pharmacokinetics of the receptor traps.63,66

Although mutations at the Zn+2 ion binding sites H374 and 
H378 can produce enzymatically inactive mutants, mutations 
within zinc-binding pocket may cause protein instability 
because the divalent cation is essential for metallopeptidase 
protein structure and stability.67–69 Therefore, mutations 
within the ACE2 substrate-binding pocket are less likely to 
cause construct instability or affect the binding affinity. A 
study performed by Liu et al. investigated individual point 
mutations using alanine within the catalytic site of ACE2 to 
inactivate the unnecessary carboxypeptidase activity and to 
achieve stable and effective version of the receptor trap.62 

They were able to engineer enzymatically inactive ACE2-Fc 
immunoadhesin variants that can block and neutralize the 
virus without the potential adverse side effects from its catalytic 
activities. Six other residues located in the proximal and distal 
lobe (Glu145, Arg273, His345, Pro346, Asp368 and His505) 
were also mutagenized to produce enzymatically inactive 
ACE2 mutants because their side chains formed direct inter
actions with hormonal substrates.62 Among all enzymatically 
inactive ACE2-Fc variants, the Arg273Ala mutant, which is a 
substrate-binding residue, showed complete inhibition of the 
peptidase activity and is expected to maintain protein stability 
and binding affinity to the viral RBD. There are, however, 
compelling arguments that ACE2 catalytic activity can help 
alleviate COVID-19 symptoms through blocking receptor- 
binding sites on the S protein to neutralize SARS-CoV-2 infec
tion or promoting angiotensin II breakdown and angiotensin- 
1-7 production.22

Engineering ACE2-Fc immunoadhesin through guided 
evolution platforms

The main focus of engineering ACE2 as receptor traps is to 
enhance their binding affinity, avidity, and specificity, as well as 
pharmacokinetic and pharmacological efficacy.36,47,63,70 Wild- 
type ACE2 is not an optimal anti-SARS-CoV-2 biotherapeutic 
due to its modest affinity toward the virus RBD.71–73 Therefore, 
it is essential to engineer ACE2 to have a binding affinity (KD) 
in the low- to sub-nanomolar range, which is comparable to 
SARS-CoV-2 S protein-specific monoclonal antibodies.74–78

The crystal structure of the SARS-CoV-2/human ACE2 
complex revealed that the interacting segments of ACE2 
include the residues S19 to A614,79 which indicates the 

amino acid side mutations that are crucial for enhancing the 
ACE2–RBD interaction. As a result, different directed evolu
tion approaches were performed to enhance ACE2 properties 
as receptor traps such as using artificial intelligent (AI), muta
genesis and display technologies. For instance, Glasgow et al. 
described a novel approach to generate numerous affinity 
matured and enzymatically inactive recombinant ACE2 immu
noadhesins that act as receptor traps to block and prevent 
SARS-CoV-2 entry into host cells.66 In their two-phase step
wise approach, AI was first used to engineer ACE2 variants by 
introducing specific amino acid changes that have resulted in 
several-folds tighter binding to the RBD compared to the wild- 
type ACE2. Secondly, they used the re-engineered receptor 
traps as templates for affinity maturation using yeast surface 
display, which enabled the isolation of variants with binding 
affinities that have several folds higher to the RBD compared to 
the original templates. A human ACE2 that comprises residues 
18 to 614 extracellular domain [ACE2(614)] was used as a 
template for the computational affinity optimization strategy.66 

A computationally guided selection followed by affinity 
maturation using yeast surface display were used to generate 
variant 313 [K31F, N33D, H34S, E35Q ACE2(614)], which was 
one of the best clones in terms of binding affinity and neutra
lization potency. The computational design methods based on 
AI bypass the bias that can arise from using experimental 
affinity maturation platforms alone, and remarkably accelerate 
the overall process. Yeast was used as a eukaryotic display 
system due to its effective surface display and its ability to 
produce glycosylated proteins.80

The ACE2 ectodomain (18 to 740) contains an enzymatic 
domain (18–615) and a collectrin-like domain (CLD). 
Interestingly, Glasgow et al. also observed a significant 
enhancement for the ACE2-Fc decoy receptors affinity, avidity, 
and stability by including the natural ACE2 CLD [ACE2(740)- 
Fc]. This is consistent with another study that showed that 
ACE2(740)-Fc is more effective in blocking viral infection 
compared to ACE2(614)-Fc.81 Also, to avoid the off-target 
effects that accompanied ACE2 catalytic enzyme activity with
out affecting the binding affinity toward RBD and ACE2(740)- 
Fc scaffold, they inactivated the peptidase activity by including 
an H345L mutation, which is important for substrate binding.
82 Noteworthy, replacing the leucine with alanine for His345 
residue did not inhibit the ACE2-Fc catalytic activity toward 
angiotensin II, but, on the contrary, it enhanced the construct 
activity toward the substrate compared to the wild-type.83,84 

Further investigations are required for better understanding of 
ACE2 mechanism and substrate specificity.

The computationally designed, affinity maturation, and 
enzymatic inactive variant 313 [K31F, N33D, H34S, E35Q, 
H345L ACE2(740)-Fc] was able to bind the RBD of SARS- 
CoV-2 a hundred times higher than wild-type ACE2-Fc and 
neutralize pseudoviruses and authentic SARS-CoV-2 virus 
with half-maximal inhibitory concentrations (IC50) of less 
than 100 ng/mL.

Higuchi et al. demonstrated another strategy to enhance the 
binding affinity of ACE2 to the SARS-CoV-2 S RBD. They 
performed a mammalian cell (HEK-293 T)-based guided evo
lution using surface display of mutagenized library in associa
tion with fluorescence-activated cell sorting (FACS).85 

e2057832-4 M. A. ALFALEH ET AL.



Screening system based on mammalian cells were used instead 
of yeast display to isolate ACE2 variants with proper posttran
slational modifications patterns and favorable biophysical and 
biological attributes.86,87

The viral S protein interface is found in the protease 
domain, which is located in the top-middle segment of the 
ACE2 ectodomain. Thus, Higuchi et al. mutagenized the pro
tease domain using error-prone PCR. They generated small 
plasmid library (~105 mutants), which were transformed into 
competent cells and packaged into lentivirus before being 
expressed in human HEK-293 T cells. The library was then 
screened for 3 cycles and only the highest binding cells to 
SARS-CoV-2 RBD-GFP were collected by FACS. Mutant 
3N39v2 (A25V, K31N, E35K, L79F) showed binding affinity 
at sub-nanomolar levels to SARS-CoV-2 RBD (KD ∼0.64 nM) 
due to its slow dissociation rate. This is because 3N39v2 satu
rate all three RBDs on the S protein trimer complex, while 
wild-type ACE2 binds to S protein mainly as 1:1.85,88 3N39v2 
has also demonstrated potent neutralization of SARS-CoV-1 
and SARS-CoV-2 pseudoviruses and authentic SARS-CoV-2 
virus. In a COVID-19 hamster model, the 3N39v2 fusion 
protein has showed efficacy in mitigating lung abnormalities, 
viral RNA copies and cytokine expression, which are associated 
with COVID-19 severity.

Engineering ACE2-Fc immunoadhesin using mutations 
based on host-ortholog receptors

The binding domain of the viral cellular receptor may be used 
to render immunoadhesins. However, zoonotic viruses can 
bind to their animal-derived ortholog cellular receptors with 
higher affinities than human cell-surface receptors resulting 
from natural evolution.89 Therefore, it was proposed that 
immunoadhesins built with mutations based on host-ortholog 
receptors can provide stronger antiviral therapeutics.

SARS-CoV-2 has a genome that is close to bat-derived 
SARS-like coronaviruses, which make them a probable origin 
of SARS-CoV-2.90 Since ACE2 orthologs from different species 
may serve as SARS-CoV-2 entry receptors, these species may 
have served as intermediate reservoir hosts before virus spread
ing to humans.90 For SARS-CoV-2, the human-ACE2 receptor 
has been shown to be a suboptimal receptor.36 As a result, it 
was proposed that human-ACE2 can be re-designed to have a 
higher binding affinity for SARS-CoV-2 in order to establish an 
efficient immunotherapy that can effectively block and prevent 
virus infection.

According to Cohen-Dvashi et al., sequence alignment of 
many ACE2 orthologues derived from mammals revealed 
many non-conserved residues of the RBD-recognition site on 
ACE2 receptor,91 suggesting that there are several potential 
sequence mutations in ACE2 that can be implemented to 
enhance the binding affinity to SARS-CoV-2. Cohen-Dvashi 
et al., therefore, subjected tens of orthologous ACE2 genes with 
at least 80% similarity to human-ACE2 to Rosetta atomistic 
modeling calculations to find beneficial ACE2 mutations that 
could maximize construct stability and binding affinity to the 
virus RBD. They generated potent, enzymatic inactivated, affi
nity-matured human ACE2-Fc immunoadhesin variant with 
eight incorporated mutations (T27L, D30E, Q42R, E75R, L79Y, 

N330F, T92R and E375L). For example, T92R mutation 
enhanced the affinity to SARS-CoV-2 RBD because of the 
elimination of N-linked glycan site, which imposes steric con
straints for the binding to the RBD, while the arginine can form 
polar interactions with proximate glutamine. The modified 
ACE2-Fc variant demonstrated superior IC50 and KD values 
compared to the unmodified ACE2-Fc.

In another report, Mou et al. tested HEK-293 T cells expres
sing several ACE2 orthologs for their ability to bind to the 
recombinant SARS-CoV-2 RBD.92 The study showed that 
human, pangolin, and horseshoe-bat ACE2 orthologs bind to 
SARS2-CoV-2 RBD more efficiently compared to other organ
isms. Bats have been suggested to be the species of origin of 
SARS-CoV-2 since the virus genome has more than 95% simi
larity with other bat coronaviruses,25 while pangolin have been 
suggested to be the intermediate host of SARS-CoV-2 rather 
than a long-term reservoir.93 Mou et al. also suggested that 
SARS-CoV-2 S protein is not completely adapted to human 
ACE2,92 and, therefore, mutations derived from pangolin and 
horseshoe-bat ACE2 orthologs were implemented to augment 
binding affinity and neutralization potency of human ACE2-Fc 
to SARS-CoV-2. Their report showed that the five bat-derived 
mutations (Q24E, T27K, H34S, N49E and N90D) enhanced 
ACE2-Fc binding affinity toward SARS-CoV-2 RBD 
(5.454 nM) compared to the wild-type ACE2-Fc (11.64 nM). 
Furthermore, the capacity of the modified ACE2-Fc variant to 
neutralize SARS-CoV-2 pseudo- and live viruses was signifi
cantly more potent than wild-type ACE2-Fc.

It is well documented that SARS-CoV-2 uses the ACE2 
receptor as a gateway to infect host cells.94 However, it is not 
confirmed until now if domestic animals have a role in SARS- 
CoV-2 transmission.95–97 Nonetheless, since wild animals such 
as bats have been shown to play an essential part in the 
transmission of notorious coronaviruses,81 it is vital to study 
the virus’s distributions among different hosts. Thus, the capa
city of SARS-CoV-2 to bind to ACE2 animal orthologs was 
performed to assist identifying potential animal hosts. 
Accordingly, Le et al. evaluated 16 ACE2 orthologs to deter
mine if they support SARS-CoV-2 entry by using recombinant 
RBD-IgG, pseudovirures and live virus.81 The purified SARS- 
CoV2 RBD-IgG was able to bind to human ACE2 and ACE2 
orthologs from a variety of domestic mammals, including 
camels, horses, cats, and rabbits, suggesting that these animals 
can be infected and might act as intermediate hosts for SARS- 
CoV2 viruses. Moreover, they tested the neutralization effi
ciency of different forms of ACE2-IgG against SARS-CoV-2 
pseudovirures and live virus.81 ACE2(615)-IgG and ACE2 
(740)-IgG variants were designed to inactivate ACE2s’ intrinsic 
enzymatic activity and enhance the immunoadhesins affinity 
toward the SARS-CoV-2 RBD. These mutations were based on 
adding hydrophobic residues (Y83W, H34Y and M82K) or 
enhancing the salt-bridge interactions (D30E). The ACE2 
(740)-IgG variants were substantially more potent than ACE2 
(615)-IgG variants. Additionally, compared to all other ACE2- 
IgG variants, ACE2(740)-D30E-IgG mutant had the best neu
tralizing activity against SARS-CoV-2. Furthermore, they engi
neered a more potent ACE2(740)-DE30-IgG version that has 
four sACE2 domains in a single molecule instead of two. This 
quadruple ACE2(740)-DE30-IgG showed more than several- 
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fold improvement in IC50 compared to the original dimer 
version in pseudovirus neutralization assay. Additionally, 
ACE2(740)-DE30-IgG with antibody-like configuration 
showed more potent neutralization of live virus infection at 
0.16 μg/ml compared to bivalent ACE2(740)-DE30-IgG, which 
makes it a powerful entry inhibitor against SARS-CoV-2 virus.

Limitation of the ACE2-Fc immunoadhesin

One potential limitation of the ACE2-Fc immunoadhesin strat
egy is that it could inadvertently activate the immune system. 
ACE2 is secreted in all human tissues, including the heart, 
kidney, and gastrointestinal tissues. Therefore, the elevation 
of circulating extracellular ACE2 domain for a prolonged 
time via Fc domain extended half-life could have unknown 
long-term clinical outcomes.

Another potential concern is that the presence of Fc might 
increase complement and cytokine responses, which might 
exacerbate the inflammation, worsen the patient’s condition, 
leading to infection advancement.98–100 Although the constant 
heavy-chain regions of the IgG isoforms have similar amino acid 
sequences, they exert different levels of effector functions. IgG1- 
and IgG3-Fc are known for strong complement-dependent cyto
toxicity (CDC), antibody-dependent cellular phagocytosis 
(ADCP) and antibody-dependent cell-mediated cytotoxicity 
(ADCC), whereas, IgG4-Fc has lower Fc-mediated antibody 
effector functions.101,102 Therefore, Svilenov et al. engineered 
IgG4-Fc-based ACE2(732)-Fc fusion constructs to avoid Fc- 
mediated cytotoxic side effects.103 Nonetheless, the importance 
and the potential roles of Fc-associated effector functions in 
virus elimination should be further studied, as they could con
tribute to ACE2-Fc inhibitory effects against SARS-CoV-2.

Moreover, naturally occurring IgG4 antibodies are less 
stable than IgG1 versions, which makes them less valuable as 
biopharmaceutical products.104–107 Therefore, Svilenov et al. 
incorporated the immunoglobulin Fc region of an IgG4 isotype 
with an S228P sequence mutation in the hinge region to mini
mize Fab arm exchange and increase the stability of the ACE2- 
IgG4-Fc fusion protein.108 The ACE2(732)-IgG4-FcS228P con
struct was successfully expressed and purified with high bind
ing affinity (KD ~4 nM) to immobilized SARS-CoV-2 RBD and 
potent antiviral activity at nano- to picomolar levels.

Ferrari et al. demonstrated a catalytically inactive ACE2 
(740)-H374N:H378N-Fc decoy receptor with abrogated FcγR 
interaction to reduce the risk of antibody-dependent 
enhancement.109 They engineered an Fc L234A/L235A/ 
P329G mutant in the CH2 domain (ACE2(740)-H374N: 
H378N-FcLALA-PG), which showed complete abrogation of 
human FcγR engagement while preserving the FcRn interac
tion to provide extended half-life. The generated construct 
displayed a potent neutralization activity in vitro against four 
SARS-CoV-2 variants, including D614G, B.1.1.7, B.1.351 and 
P.1. Additionally, administration of ACE2(740)-H374N: 
H378N-FcLALA-PG in a SARS-CoV-2 hamster model showed 
significant reduction in viral RNA copy as well as lung damage.

Recombinant ACE2-Fc is expected to have an acceptable 
safety profile based on APN01 clinical trials, wherein no serious 
undesirable reactions were reported.22,110 However, similar to 
monoclonal antibodies, patients receiving ACE2-Fc 

immunoadhesins might produce anti-drug antibodies, which 
would negatively affect the pharmacokinetic, safety and efficacy 
of the therapeutic molecule.111,112 While acquiring immunologi
cal cross-reactivity against endogenous ACE2 after receiving 
recombinant ACE2-Fc would have a long-term devastating effect 
on patients, clinicians can use well-evaluated methods to deline
ate and reduce any undesirable immunological reactions of 
therapeutic biologics during the course of ACE2-Fc treatment.113

Conclusion

ACE2-Fc immunoadhesins offer considerable advantages over 
other therapeutics that aim to neutralize SARS-related betacor
onaviruses. Here, we discussed different optimization strategies 
that helped generate several modified ACE2-Fc versions as 
promising anti-SARS-CoV-2 candidates (summarized in 
Table 1). Beyond coronaviruses, ACE2-Fc-based therapeutics 
could be used as a quick therapeutic option for future viral 
outbreaks that use the ACE2 receptor for entry without risk of 
virus mutational escape. Moreover, engineered ACE2-Fc as an 
antibody-like biomolecule would have the potential to be used 
as a prophylactic agent for those who are at high risk of 
COVID-19, such as healthcare workforces especially in the 
absence of an effective vaccine against new variants.
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