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Abstract

Substantial immunological changes occur throughout pregnancy to promote tolerization of the 

mother to the fetus and allow fetal growth. However, additional local and systemic immunological 

adaptations also occur, allowing the maternal immune system to continue to protect the dyad 

against pathogens both during pregnancy and after birth through lactation. This fine balance 

of tolerance and immunity, along with physiological and hormonal changes, contribute to 

increased susceptibility to particular infections in pregnancy, including more severe coronavirus 

disease 2019 (COVID-19). Whether these changes also make pregnant women less responsive to 

vaccination or induce altered immune responses to vaccination remains incompletely understood. 

To holistically define potential changes in vaccine response during pregnancy and lactation, we 

deeply profiled the humoral vaccine response in a group of pregnant and lactating women and 

non-pregnant age-matched controls. Vaccine-specific titers were comparable between pregnant 

women, lactating women, and non-pregnant controls. However, Fc receptor (FcR)-binding and 

antibody effector functions were induced with delayed kinetics in both pregnant and lactating 

women compared to non-pregnant women after the first vaccine dose, which normalized after 

the second dose. Antibody boosting resulted in high FcR-binding titers in breastmilk. These data 

suggest that pregnancy promotes resistance to generating highly inflammatory antibodies and 

indicates that there is a critical need to follow prime-boost timelines in this vulnerable population 

to ensure full immunity is attained.

One Sentence Summary:

Pregnant and lactating women develop distinct antibody Fc profiles in response to the 

mRNA-1273 and BNT162b2 vaccines compared to non-pregnant women.

Introduction:

Pregnant women experience both increased disease severity and morbidity upon severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (1, 2). However, pregnant and 

lactating women were left out of initial coronavirus disease 2019 (COVID-19) vaccine trials 

due to heightened safety concerns (3–6). Given that pregnant women are vulnerable to 

severe COVID-19, it is important to understand the immunological response to vaccination 

in pregnant and lactating women. Understanding how pregnancy and lactation affect 

responses to vaccination and antibody transfer to infants offers critical opportunities to guide 

recommendations for this population.

Pregnant and lactating women are routinely encouraged to receive vaccines against influenza 

and pertussis (7, 8). Mounting data point to dampened vaccine-induced antibody responses 

in pregnant women marked by a lower fold increase in antibody titers, lower neutralizing 

antibody responses, and reduced T cell immune responses compared to non-pregnant 

women (9). Given the substantial morbidity associated with influenza infection in pregnant 

women annually, influenza vaccination is recommended throughout gestation (10), whereas 
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pertussis vaccination is recommended in the late second and early third trimester to facilitate 

maximal antibody transfer and protect the developing neonate (11–13). However, because 

most women have been exposed or previously immunized against these pathogens, these 

vaccines largely boost immunity, rather than prime a de novo immune response. Thus, 

whether the same principles for antibody transfer will apply to additional vaccine platforms 

used against SARS-CoV-2, as well as to a new antigen (SARS-CoV-2 spike protein), 

remains unclear. Moreover, whether vaccine-induced immune profiles will vary across 

pregnancy and lactation, impacting antibody transit across the placenta or into breastmilk, 

is not known. This understanding could provide crucial insights to guide the optimal 

administration of the vaccine to women and their infants.

The first two vaccines that were approved for emergency use authorization (EUA) by the 

Food and Drug Administration (FDA) use mRNA to induce an immune response against the 

SARS-CoV-2 spike protein. Linked to highly effective protection against severe COVID-19 

disease in non-pregnant populations (14, 15), both mRNA platforms clearly lead to the 

induction of robust immunity in men and non-pregnant women across age groups (16, 17). 

Moreover, emerging data suggest that mRNA vaccines also induce comparable antibody 

titers and neutralization in pregnant and lactating women, linked to transfer of antibodies 

to neonates (18, 19). The development of multiple vaccine platforms, coupled with the 

availability of high-dimensional antibody profiling technologies, enables the unprecedented 

opportunity to dissect the de novo mRNA vaccine-induced immune response in this 

vulnerable population.

In addition to the role of antibodies in binding and neutralization, antibodies contribute 

to protection against COVID-19 disease through their ability to recruit the innate immune 

response with their Fc-domain (20, 21). The Fc-functions of the humoral immune response 

play a critical role in resolution of COVID-19 (22), are associated with protection from 

infection following vaccination (23), play a critical role in antibody transfer across the 

placenta (24–27) and may also influence transfer into breastmilk (28). Although previous 

studies have shown that mRNA vaccines are immunogenic in pregnant and lactating women 

(29, 30), no studies have characterized the Fc-profile of mRNA vaccine-induced antibodies 

in pregnant and lactating women. To define qualitative features of the vaccine-induced 

humoral immune response across pregnancy and early life, we comprehensively profiled 

the humoral immune response following mRNA vaccination in pregnant, lactating, or non-

pregnant women who received either the BNT162b2 or mRNA-1273 vaccines. Our data 

point to differences in vaccine-induced antibody profiles among pregnant, lactating, and 

non-pregnant women that influence the abundance and quality of antibodies to neonates, 

arguing for a need to understand how timing of vaccine administration in pregnancy impacts 

both maternal immune response and antibody transfer to neonates.

Results

Vaccination induces distinct antibody responses in pregnant, lactating, and non-pregnant 
women.

Two mRNA vaccines were the first EUA-approved vaccines, showing about 95% protection 

against severe COVID-19 (14, 31–33). Emerging data have begun to illustrate the robust 
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immunogenicity of these vaccines in pregnant and lactating women, in the absence of 

enhanced reactogenicity (18). However, whether the overall humoral immune profile 

diverges in pregnant or lactating women and if these profiles impact transfer to neonates 

remains incompletely understood. Therefore, we characterized the SARS-CoV-2 humoral 

immune response in a cohort of 84 pregnant, 31 lactating and 16 non-pregnant age-matched 

controls vaccinated with BNT162b2 or mRNA-1273 and whose antibody isotype response 

was previously studied in our lab (29). Individuals were sampled after first vaccination 

(post-prime, at the time of second dose) or after second vaccination (post-boost, 2–5.5 weeks 

following 2nd dose) (Table 1). A subset of individuals was sampled after both time points.

To visualize the differences in the Fc-profiles across the three populations, we performed 

unsupervised principal component analysis (PCA). At the post-prime timepoint (3 to 4 

weeks post first immunization), clear differences were noted between serum antibody 

responses of pregnant/lactating women and non-pregnant women (Fig. 1A and fig. S1A). 

Most differences observed in samples collected after the first vaccine dose related to 

lower antibody titers (principal component 1, PC1) and FcR-binding capacity (principal 

component 2, PC2) among pregnant and lactating women compared with non-pregnant 

women. In samples collected 2 to 5.5 weeks after boost vaccination (post-boost), there was 

a decrease in the separation between pregnant or lactating and non-pregnant women (Fig. 

1B and fig. S1B). Although some differences persisted, differences were nearly exclusively 

linked to enhanced FcR-binding in non-pregnant women.

To further understand the difference in individual antibody features in pregnant, lactating, 

and non-pregnant women, we plotted the mean percentile rank of each spike protein-specific 

feature measured at the post-prime and post-boost timepoints (Fig. 1C and D). At the 

post-prime timepoint, non-pregnant women had higher IgG subclass responses, higher 

antibody functions and higher FcR-binding compared to pregnant and lactating women 

(Fig. 1C). At this time point, pregnant and lactating women had similar antibody responses. 

Interestingly, in samples collected after boost vaccination, lactating women boosted their 

antibody response more effectively than pregnant women, marked by higher IgG titers (Fig. 

1D). In addition, lactating women displayed higher natural killer (NK) cell activity than 

pregnant women, based on the percent of CD107a+ cells, a degranulation marker, and the 

percent of Macrophage inflammatory protein (MIP)-1β+ cells, a chemokine that is produced 

by activated NK cells. This suggests that lactating women make qualitatively different 

responses to the second dose of vaccine compared to pregnant individuals (Fig. 1D). After 

receiving a booster vaccine dose, the vaccine response in lactating women was similar to 

that of non-pregnant women, although lactating women had lower FcR-binding compared to 

non-pregnant women.

Next, to specifically capture the differences in the quality of the vaccine-induced humoral 

immune response across the participants, isotype, FcR-binding, and Fc-effector profiles were 

compared in a univariate manner across the groups. Previously, our group has shown that 

there were no differences noted in IgG1, IgA, and IgM antibody production across the 

groups (29). In contrast, we observed that FcR-binding antibodies across all FcRs were 

higher in non-pregnant compared to pregnant and lactating women post-prime vaccination 

(Fig. 1E and fig. S1C). However, in samples collected post-boost vaccination, both pregnant 
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and lactating women raised FcR-binding antibodies, although all FcR-binding antibodies 

remained lower in pregnant women compared to non-pregnant, whereas FcγR2b-binding 

antibodies remained lower in lactating women after a second vaccine dose (Fig. 1E). All 

three populations induced similar antibody-dependent cellular phagocytosis (ADCP) and 

did not increase ADCP function post-boost vaccination. In contrast antibody-dependent 

neutrophil phagocytosis (ADNP) activity was increased in pregnant and lactating women 

after boosting (Fig. 1F and fig. S1D). The ability of antibodies to drive NK cell activation 

was distinct across the groups, and lactating women induced higher NK cell activating 

antibodies (based on CD107a+ expression) after receiving a booster vaccine compared to 

pregnant women and non-pregnant women (Fig. 1F). Antibodies isolated from lactating 

women also induced a greater percentage of MIP-1β+ NK cells than antibodies from 

pregnant women (Fig. 1F). These higher FcR-binding profiles in non-pregnant and lactating 

women were linked to enhanced coordination in the humoral immune responses compared to 

pregnant women, the latter showing sparser coordination in the vaccine induced humoral 

immune response (Fig. 1G). Overall, these data point to deficiencies in the ability of 

pregnant women to generate functional, but not total, antibodies with boosting compared 

to lactating women. Further, these data suggest that pregnant and lactating women show 

potential early alterations in vaccine-induced immune responses that improve after a booster 

vaccine.

Antibody profiles differ between maternal serum and cord blood.

Previous studies focused on pertussis vaccination have pointed to the selective and active 

transfer of highly functional antibodies across the placenta, marked by the specific selective 

transfer of FcγR3a binding antibodies (25). However, more recent studies of SARS-CoV-2 

infection in pregnancy have noted compromised transfer with infection in the third trimester, 

linked to reduced antibody transfer (transfer ratio < 1) but maintaining a selection bias 

based on binding to FcγR3a (27). To begin to understand the overall profiles of antibodies 

that are transferred from pregnant individuals to infants, we profiled the humoral immune 

responses across 8 maternal:umbilical cord blood dyads. The median days from prime to 

delivery in these 8 women was 37 days (25.75–41.5). Overall, higher titer of antibodies 

were observed in maternal blood compared to cord blood (Fig. 2A). Variable patterns of 

transfer of IgG titer, FcR-binding and antibody function were observed from the mother 

to the cord (Fig. 2B and C). Despite the recency of vaccination, equivalent, IgG1 spike 

protein-specific titers were transferred across the placenta to the infant (Fig. 2B). Despite 

previous observations of augmented NK cell activating antibody transfer following vaccines 

that boost previously established immunity, such as to pertussis and influenza (25), stable 

phagocytic antibodies but decreased NK-cell activating antibodies (P = 0.039, %CD107a+) 

were transferred to infants (Fig. 2C). Conversely, no loss of transfer of NK cell activating 

antibodies was noted for influenza hemagglutinin (HA)-specific antibodies in the same 

mother:cord pairs (fig. S2A and B) suggesting that reduced transfer of spike protein-specific 

antibodies may not be attributable to vaccine-induced changes in placental activity. Instead, 

decreased spike protein-specific transfer could be linked to time from vaccination (fig. S2C 

and D), suggesting that vaccination proximal to the time of birth may simply not permit the 

effective transfer of the most functional antibody subpopulations.
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We next aimed to determine whether placenta transfer was strictly governed by total 

amounts of antibody or based on specific characteristics of the vaccine-induced humoral 

immune response. Thus, we performed a multilevel partial least squares discriminant 

analysis (mPLSDA) to determine the spike protein-specific antibody features that transferred 

preferentially across the cord (Fig. 2D). This supervised dimensionality-reduction method 

aims to identify the minimal matched-features that best discriminate between mother and 

cord samples. Given the highly correlated nature of the humoral immune response, the least 

absolute shrinkage and selection operator (LASSO) first aims to conservatively reduce the 

number of features to the minimal number of features able to most effectively discriminate 

between the maternal:cord samples to prevent overfitting. Fc-profiles in maternal and cord 

blood were completely distinct, with expected higher overall titers of antibodies in maternal 

blood, as the vaccine was only administered in these dyads in the third trimester. However, 

despite the lower titers of antibodies in the cord, receptor binding domain-specific FcγR3a 

binding was enriched in the cord (Fig. 2D, right). Thus, similar to the previously observed 

transfer sieve, even at low antibody-transfer rates, the placenta selects for FcγR3a-binding, 

functionally enhanced vaccine-induced antibodies.

Optimal vaccine-induced antibody transfer to the breastmilk requires boosting

Beyond placental transfer, antibody transfer can continue to occur after birth through 

breastmilk. Vaccine immunity changes over time in immunized lactating women, but 

how this influences antibody transfer to the infant is incompletely understood. Using an 

unsupervised PCA of the post-prime and post-boost vaccine-induced immune responses, 

we observed a slightly expanded antibody functional and FcR-binding response in the 

serum of lactating women after receiving a booster vaccine dose (Fig. 3A and fig. 

S3), suggesting a functional maturation of the humoral immune response with boosting. 

Similarly, in breastmilk, boosting resulted in increased transfer of FcR-binding antibodies 

and functional antibodies (Fig. 3B and fig. S3, S4A). To gain specific insights into 

the antibody subpopulations that are transferred most efficiently across the blood and 

breastmilk, we next plotted the mean percentile rank of each spike protein-specific antibody 

feature at post-prime and post-boost (Fig. 3C and D). The polar plots highlight the 

preferential boosting of FcR-binding IgG responses in the serum after a booster vaccine 

dose, with a prominent expansion of IgG and FcR binding, with no obvious impact to 

IgA and IgM responses (Fig. 3C). Moreover, the same transfer profile was noted in the 

breastmilk (Fig. 3D), with a high transfer of IgG antibodies with FcR-binding capabilities 

2 to 5.5 weeks post booster vaccination. To further understand the sieve of antibodies from 

serum to breastmilk upon vaccination, we plotted the transfer ratio (breastmilk median 

fluorescence intensity (MFI):serum MFI) of isotypes and FcRs against the SARS-CoV-2 

spike protein at the post-prime timepoint (Fig. 3E) and at the post-boost timepoint (Fig. 

3F and fig. S4B). At both post-prime and post-boost, IgA was the most preferentially 

transferred of any isotype. Interestingly, IgG2 was transferred more highly to breastmilk 

than any other IgG subclass at the post-prime timepoint, but at the post-boost timepoint, 

IgG3 was the most highly transferred subclass. Moreover, at the post-prime timepoint, there 

was a preferential transfer of antibodies that could bind FcγR3a, whereas antibodies that 

could bind FcγR2b, the inhibitory FcR, had the lowest transfer ratio. At the post-boost 

timepoint, however, there were no differences in the transfer of FcR-binding antibodies, 
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pointing to robust transfer of all FcR-binding antibodies to breastmilk after vaccine boost. 

In addition, we analyzed the transfer ratio of antibody functions at the post-prime and post-

boost timepoints. Whereas ADCP and ADNP were transferred at equivalent ratios at the 

post-prime timepoint (Fig. 3G), antibodies able to drive ADCP were transferred at a higher 

ratio than those able to activate ADNP after boost (Fig. 3H), likely reflecting the enhanced 

ADNP activity in the serum of lactating women after boost. In addition, NK-cell activating 

antibodies had a low transfer ratio at the post-boost timepoint (fig. S4C), suggesting a sieve 

at the mammary gland, preventing the transfer of highly inflammatory antibodies through 

breastmilk. This analysis revealed enhanced functional antibodies in breastmilk following 

the boost, accompanied by decreased IgM and IgA induction post-boost. Collectively, these 

data emphasize that, although the breast clearly enriches IgM and IgA delivery to the 

breastmilk (34, 35),vaccination appears to augment highly functional IgG transit to the milk 

that are likely key to antiviral immunity across viral pathogens (35).

mRNA-1273 and BNT162b2 vaccination induce differential antibody responses in pregnant 
and lactating women.

Although both mRNA-1273 and BNT162b2 exploit mRNA-based technologies, differences 

in mRNA dosage, lipid carriers, and vaccine dosing regimens may alter the quality 

of the humoral immune response across the vaccines. Thus, we compared immune 

responses across all women dosed with these mRNA vaccines. To do this, a partial least 

squares discriminant analysis (PLSDA) was performed, aimed at determining whether 

the vaccine-induced humoral profiles induced by these vaccines differ and to define 

the specific humoral features that diverge across the vaccines. Although no differences 

were noted across the vaccine-induced immune responses in samples collected post-prime 

vaccination (fig. S5A), separation was observable in the vaccine-induced antibody profiles in 

samples collected post-boost vaccination (Fig. 4A). Notably,mRNA-1273-vaccinated women 

exhibited enriched neutrophil activating antibodies (ADNP), higher titers of vaccine-specific 

IgA, IgG2, IgG3, and NK cell activating antibodies (CD107a+) compared to BNT162b2 

vaccinated women (Fig. 4A, fig. S5B to D). Conversely, women receiving BNT162b2 

exhibited a slight enrichment of IgG1 and FcγR3A-binding (Fig. 4A) humoral immune 

responses. To further dissect these differences at the post-boost timepoint, women were split 

into groups by their pregnancy and lactation status. Although differences in receptor binding 

domain (RBD)-specific IgA1 titers were noted across all groups, differences in ADNP were 

only amplified in pregnant women (Fig. 4B).

Moreover, to further understand the functional basis for these differences, we examined the 

functional coordination of the humoral immune response induced by each vaccine across 

the three populations of women (Fig. 4C). We observed that mRNA-1273 vaccination 

resulted in a more focused coordination in the humoral immune response, centered around a 

high IgG1/IgG3 response with robust FcR-binding and functional coordination. Conversely, 

women receiving BNT162b2 generated a broader coordinated immune response including 

IgG2 and IgM responses and the exclusion of monocyte phagocytosis (ADCP), potentially 

suggesting a more diffuse overall humoral immune coordination profile. These serum 

differences translated to differences in antibodies transferred in breastmilk (Fig. 4D), 

with enhanced FcR-binding antibody and functional IgG3 antibody transfer to breastmilk 
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observed in mRNA-1273-immunized lactating women. Whether these differences are 

attributable to dose, lipids, or timing of vaccination remains unclear, but provide clues 

that mRNA platforms may be selectively deployed to enhance protection in neonates once 

precise mechanistic correlates of immunity are defined.

Discussion

Both EUA-approved COVID-19 mRNA vaccines have been shown to be safe and highly 

immunogenic in non-pregnant populations (14, 15), and emerging data suggest that the 

vaccines are immunogenic and similarly reactogenic in pregnant and lactating women (18). 

However, pregnancy and lactation represent distinct immunological states (36, 37), that 

have been previously associated with reduced immunogenicity (9). Whether this unique 

immune state is associated with the evolution of distinct humoral immune profiles upon 

vaccination remains incompletely understood. Using systems serology, we observed changes 

in the magnitude, kinetics, and quality of functional profiles of vaccine-induced antibodies. 

We additionally found differences in the overall antibody profile across women receiving 

mRNA-1273 and BNT162b2. These findings collectively point to an extended window of 

vulnerability in pregnancy and lactation following vaccination, requiring timely boosting 

to achieve fully functional matured antibodies to protect the pregnant individual and their 

offspring.

Pregnancy represents a delicate immunological balance which has been associated with 

enhanced vulnerabilities to infection in pregnant women who experience more severe 

influenza infection and SARS-CoV-2 infection (38, 39). This vulnerability has been linked 

to dampened, rather than blocked, pro-inflammatory immunity, with reduced responsiveness 

to vaccination (9). Beyond quantitative measures of pregnancy-associated changes, less is 

known about the qualitative functional changes in the vaccine-induced humoral response 

during pregnancy. Here, we observed a delay in the evolution of FcR-binding and functional 

antibody responses in pregnant and lactating women after initial vaccination against a 

de novo pathogen. Conversely, we observed higher functional antibodies for NK cell 

activity and neutrophil phagocytosis in lactating women compared to both pregnant and non-

pregnant women upon boost. These data point to distinct response profiles across each of 

these immunological states, raising the possibility that vaccines may drive different antibody 

functional profiles, programmed evolutionarily to maximize protection for the mother-baby 

dyad in that unique immune state. Given the low responsiveness to vaccination after prime, 

these data also highlight the critical importance to adhere to vaccination boosting among 

this population to optimize immunity in pregnant and lactating women. In addition, the 

pregnant women in this study were immunized across all trimesters of pregnancy. Given 

the immunological changes that occur throughout the course of pregnancy (40, 41), further 

studies should aim to understand how the overall kinetics (post-prime and post-boost), 

quality, and magnitude of immune responsiveness to vaccination varies over gestation.

Vaccination during pregnancy increases the passive protection transferred to newborns, 

who are at increased risk for severe disease upon infection due to their immature immune 

system. Although few newborns have been infected with SARS-CoV-2, those who have 

been infected have more severe outcomes than older children (42–44). In the case of natural 
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infection, poor placental transfer of antibodies has been observed in women infected in 

the third trimester, particularly pronounced in mothers carrying a male fetus, but these 

transfer ratios increase to an expected transfer ratio above 1 in women infected earlier in 

pregnancy (45–47). Likewise, women in our study that gave birth were all immunized in 

the third trimester and had transfer ratios below one, likely reflective of the proximity of 

vaccination to delivery. In accordance with this, a previous study has shown that the transfer 

of SARS-CoV-2-specific IgG across the placenta increased with time from vaccination (19) 

and mirrors previous data observed in infection (27, 46, 48). As more women vaccinated in 

the second trimester and earlier go on to deliver, it will be important to determine whether 

the COVID-19 vaccines, which induce immune responses to a pathogen previously never 

seen by their immune systems, may require administration even earlier in pregnancy than 

vaccines that evoke recall responses to offer optimal immunity to the neonate. In addition to 

antibodies transferred through the placenta, antibodies transferred through breastmilk have 

been shown to play a role in the protection against respiratory infections during early life 

(49–51). Interestingly, breastmilk antibodies are highly dependent on the second dose of 

the vaccine to boost the transfer of functional, FcR-binding antibodies. Previous work has 

shown that IgG antibodies in breastmilk may provide protection against viral infection in 

early life (52–54). Defining the mechanism driving breastmilk transfer of IgG antibodies 

could lay the foundation for designing next generation vaccines able to provide global 

protection for infants following birth.

Despite the delayed kinetics and functional antibody responses in pregnant versus non-

pregnant women, pregnant and lactating women generated distinct immune responses when 

they were vaccinated with mRNA-1273 as compared to BNT162b2. These differential 

profiles were accompanied by a more restrictive, coordinated humoral immune response 

in women vaccinated with mRNA-1273 as compared to women who received BNT162b2. 

Whether this is related to differences in the dose, the lipid carriers, or the dosing window 

(4 versus 3 weeks) remains unclear. The extra week prior to boosting may provide the time 

needed for the humoral immune response to mature, resulting in more functional antibody 

profiles. Whether the functional advantage described here in mRNA-1273-generated 

humoral immune profile results in improved clinical protection against COVID-19 remains 

to be determined. Critically, optimal dosing and intervals may vary across populations 

and should be based on empirical data, strongly arguing for the importance of research 

in pregnancy and lactation to protect this vulnerable population who are often neglected 

during vaccine development. Given the differences observed in real-world efficacy across 

the mRNA-1273 and BNT162b2 vaccines, demonstrating 76% and 42% efficacy against the 

Delta variant of concern (55), the impact of the different Fc-profiles observed here may help 

explain this observation and provide critical insight on correlates of immunity for pregnant 

and non-pregnant populations.

There are several limitations to this study. First, since these sample were collected during 

the first months after the EUA for both vaccines, this study only included healthcare workers 

from a single city, preventing the ability to dissect differences in vaccine response across 

multiple demographics. Additionally, only women that were vaccinated in the third trimester 

gave birth in time to study cord blood, limiting our ability to understand opportunities 

to leverage transfer differences across COVID-19 vaccines across gestation. A further 
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limitation is that some of the maternal blood samples were not collected at the time 

of delivery; thus observed differences between maternal and cord blood samples may 

be influenced in part by timing since vaccination. Moreover, although there was some 

variability in post-boost sampling across the individuals, the average time since boost to 

collection was similar across pregnant, lactating and non-pregnant women, offering an 

opportunity to compare profiles across the groups. This difference in the timing of collection 

of samples after booster vaccination could account for some observed differences between 

the three populations across the vaccines. A subset of the population were only collected at 

either the post-prime or post-boost timepoints, due to concerns in the frequency of hospital 

visits among some pregnant women. Thus, both an unmatched analysis was performed 

for the larger group and a matched analysis was performed in women that participated in 

both visits, both showing the same differences across Fc-receptor binding and Fc-functions, 

providing the first insights on the impact of pregnancy on shaping Fc-effector function, and 

the ability of distinct mRNA vaccines to shape antibody quality. Yet, future studies able to 

sample larger numbers of pregnant women vaccinated across the trimesters and following 

birth will offer an unparalleled opportunity to dissect the unique immunology of pregnancy 

and define additional strategies to develop vaccines aimed at specifically leveraging the 

unique biology of pregnancy and lactation with the goal to fully protect pregnant women 

against COVID-19 and other respiratory pathogens in the future.

Overall, our data have demonstrated that although antibody titers are similar, pregnant and 

lactating women respond to vaccination in qualitatively and kinetically distinct manners 

compared to non-pregnant women. Although this study largely profiled responses in women 

vaccinated later in pregnancy, these data point to the importance of profiling women 

receiving COVID-19 vaccines throughout pregnancy to begin to understand how distinct 

platforms, vaccines, populations, and timing affect the quality and quantity of immunity 

induced across the mother:fetal dyad. Collectively, these data highlight to the importance 

of defining the immunology of pregnancy to develop evidence-based recommendations for 

vaccine recommendations and to help inspire the development of vaccines and therapeutics 

that may act more effectively for this unique population where optimal immunological 

responses are necessary to protect both mother and fetus.

Materials and Methods:

Study Design

The goal of this study was to determine if pregnant and lactating women induce different 

antibody Fc profiles compared to non-pregnant women and to measure the transfer of 

vaccine-induced antibodies to neonates. Women at two tertiary care centers were approached 

for enrollment in an institutional review board (IRB)-approved (protocol #2020P003538) 

COVID-19 pregnancy and lactation biorepository study between December 17, 2020 and 

February 23, 2021. Eligible women were: (n=84 pregnant; (n=31) lactating; or (n= 16) 

non-pregnant and of reproductive age (18–45); greater than or equal to 18 years old, able to 

provide informed consent, and receiving the COVID-19 vaccine. Eligible study participants 

were identified by practitioners at the participating hospitals or were self-referred. A study 

questionnaire was administered to assess pregnancy and lactation status, history of prior 
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SARS-CoV-2 infection, timing of COVID-19 vaccine doses, type of COVID-19 vaccine 

received (BNT162b2 Pfizer/BioNTech (n= 65) or mRNA-1273 Moderna/NIH (n= 66)).

Blood and breastmilk from lactating women were collected at the post-prime timepoint 

(at the time of second vaccine dose, 3 to 4 weeks post initial vaccination), the post-boost 

timepoint (2 to 5.5 weeks following the second vaccine dose), and at delivery (for pregnant 

participants who delivered during the study timeframe). Due to collection constraints, some 

individuals only contributed samples at the post-prime or post-boost timepoint, but not both. 

Umbilical cord blood was also collected at delivery for pregnant participants. The post-boost 

timepoint reflects full antibody complement, achieved one week after Pfizer/BioNTech 

BNT162b2 vaccination and two weeks after Moderna/NIH mRNA-1273 vaccination. Blood 

was collected by venipuncture (or from the umbilical vein following delivery for cord blood) 

into serum separator and EDTA tubes. Blood was centrifuged at 1000g for 10 minutes at 

room temperature. Serum and plasma were aliquoted into cryogenic vials and stored at 

−80°C.

For systems serology analysis, two replicates were performed for every experiment, and 

the data represents an average of the replicates. Experimenters were kept blinded during 

experimentation and only unblinded after all experiments were concluded. Samples for 

which individuals had previously tested positive for SARS-CoV-2 were excluded from 

analysis. For functional assays, samples were excluded due to sample volume constraints.

Antigens

SARS-CoV-2 antigens used for functional and Luminex based assays included SARS-CoV-2 

RBD (Sino Biological), SARS-CoV-2 spike protein (LakePharma) and SARS-CoV-2 N 

(Aalto Bio Reagents). Additional antigens included a mix of HA A/Michigan/45/2015 

(H1N1), HA A/Singapore/ INFIMH-16–0019/2016 (H3N2), and HA B/Phuket/3073/2013 

(Immunetech). Antigen was biotinylated using Sulfo-NHS-LC-LC biotin (Thermo Fisher 

Scientific) and desalted using Zeba Columns (Thermo Fisher Scientific).

Primary Cells

Human neutrophils and NK cells were isolated from fresh peripheral blood. Peripheral 

blood was collected by the Massachusetts General Hospital (MGH) Blood Bank or by the 

Ragon Institute from healthy volunteers. All volunteers were over 18 years of age and gave 

signed consent. Samples were deidentified before use. The study was approved by the MGH 

Institutional Review Board. Human neutrophils were maintained in R10 media (RPMI-1640 

(Sigma Aldrich) media supplemented with 10% fetal bovine serum (FBS) (Sigma Aldrich), 

5% penicillin/streptomycin (Corning, 50 μg/mL), 5% L-glutamine (Corning, 4 mM), 5% 

HEPES buffer (pH 7.2) (Corning, 50 mM)) and grown at 37ºC, 5% CO2 for the duration of 

the assay. Human NK cells were rested overnight in R10 media supplemented with 2 ng/mL 

interleukin (IL)-15 at 37ºC, 5%CO2 and maintained in R10 media for the duration of the 

assay.
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Antibody-dependent cellular phagocytosis

THP-1 cells (American Type Culture Collection, ATCC) were used in phagocytic assays 

were grown in RPMI-1640 (Sigma Aldrich) media supplemented with 10% fetal bovine 

serum (FBS) (Sigma Aldrich), 5% penicillin/streptomycin (Corning, 50 μg/mL), 5% 

L-glutamine (Corning, 4mM), 5% HEPES buffer (pH 7.2) (Corning, 50 mM) and 

0.5% 2-Mercaptoethanol (Gibco, 275 μM). Cells were maintained at a concentration of 

2.5×105 cells/ml. Antibody-dependent cellular phagocytosis was measured using a flow 

cytometry-based phagocytic assay (56). Briefly, 1.0 μm, yellow-green fluorescent (505/515) 

FluoSpheres NeutrAvidin (Thermo Fisher Scientific) were coated with biotinylated spike 

protein or HA, incubated with serum samples diluted 1:100, and breastmilk diluted at 

1:10. The ability of samples to drive uptake of antigen-coated beads by THP-1 cells after 

overnight incubation was assessed by flow cytometry using the iQue (Intellicyt). Phagocytic 

scores were calculated as follows: (% yellow-green+ cells x yellow-green MFI)/100. A pool 

of serum samples collected from SARS-CoV-2 infected patients was used as a positive 

control, and a pool of serum samples from non-infected patients or 1x phosphate-buffered 

saline (PBS) alone was used as a negative control. Samples were run in duplicate. Data 

reported is an average of all data points collected.

Antibody-dependent neutrophil phagocytosis

Antibody-dependent neutrophil phagocytosis was measured by a flow cytometry-based 

assay (57). Briefly, serum samples were diluted 1:100, and breastmilk was diluted at 

1:10. Samples were then allowed to form immune complexes with 1.0 μm yellow-green 

fluorescent (505/515 nm) FluoSpheres NeutrAvidin (Thermo Fisher Scientific) beads coated 

with biotinylated antigen spike protein or HA antigens. White blood cells were isolated 

from whole blood using ACK Lysing Buffer (Thermo Fisher Scientific) to lyse red blood 

cells at room temperature (1:10). After lysis, remaining cells were counted and resuspended 

at 2.5×105 cells/ml in RPMI-1640 (Sigma Aldrich) media supplemented with 10% fetal 

bovine serum (FBS) (Sigma Aldrich), 5% penicillin/streptomycin (Corning, 50 μg/mL), 

5% L-glutamine (Corning, 4 mM), and 5% HEPES buffer (pH 7.2) (Corning, 50 mM). 

Cells were then incubated with bead and antibody mixture for 1 hour at 37ºC and then 

stained with Pacific Blue-conjugated anti-CD66b (BioLegend, clone: UCH71, 2 μg/mL) 

in PBS for 15 minutes at room temperature in the dark. Finally, cells were fixed in 4% 

paraformaldehyde (PFA) and phagocytosis of beads by CD66b+ cells was measured by 

flow cytometry using the iQue (Intellicyt). A pool of serum samples collected from SARS-

CoV-2 infected patients was used as a positive control, and a pool of serum samples from 

non-infected patients or 1xPBS alone was used as a negative control. Samples were run in 

duplicate. Data reported is an average of data points collected from two donors.

Antibody-dependent NK cell degranulation

Antibody-dependent NK cell degranulation was measured as described previously (58). 

Briefly, 96-well enzyme-linked immunosorbent assay (ELISA) plates were coated with 2 

g/ml spike protein or HA protein and incubated at 37ºC for 2 hours and blocked with 

5% bovine serum albumin (BSA) at 4ºC overnight. NK cells were isolated from whole 

blood from healthy donors (as mentioned above) by negative selection using RosetteSep 
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(STEMCELL Technologies) then separated using a ficoll gradient. NK cells were rested 

overnight in RPMI-1640 (Sigma Aldrich) media supplemented with 10% fetal bovine serum 

(FBS) (Sigma Aldrich), 5% penicillin/streptomycin (Corning, 50 μg/mL), 5% L-glutamine 

(Corning, 4 mM), and 5% HEPES buffer (pH 7.2) (Corning, 50 mM) media supplemented 

with 2 ng/mL IL-15. Serum samples were diluted 1:50 and breastmilk at 1:5. After 

blocking, samples were incubated with antigen-coated plates for 2 hours at 37°C to allow 

immune complexes to form. After the 2 hour immune complex incubation, NK cells were 

mixed with anti-CD107a–phycoerythrin (PE)–Cy5 (BD Biosciences, lot # 0149826, 1:1000 

dilution), brefeldin A (10 μg/ml) (Sigma-Aldrich), and GolgiStop (BD Biosciences), and 

added to antigen/antibody-coated plates for 5 hours at 37°C. The cells were stained for 

surface markers for 15 minutes at room temperature in PBS with anti-CD3 Pacific Blue 

(BD Biosciences, clone G10F5, 375 ng/mL)), anti-CD16 allophycocyanin (APC)-Cy5 (BD 

Biosciences, clone 3G8, 1:10000 dilution), and anti-CD56 PE-Cy7 (BD Biosciences, clone 

B159, 1:10000 dilution) and fixed with PermA (Life Technologies) for 15 minutes at room 

temperature. NK cells were then permeabilized with Perm B (Life Tech) and stained with 

anti-MIP-1β PE (BD Biosciences, 4 μg/mL) for 15 minutes at room temperature. The cells 

were then analyzed by flow cytometry on the iQue (Intellicyt). NK cells were gates as 

CD3−, CD16+, CD56+ cells and NK cell activity was determined as the percent of NK cells 

positive for CD107a or MIP-1β. Antibody-dependent NK cell activation (ADNKA) was 

only performed on post-boost samples and cord blood.

Luminex

Serum samples were run in a customized Luminex assay to quantify the relative 

concentration of antigen-specific antibody isotype and subclass profiles. Carboxylated 

magplex-microspheres (Luminex) were coupled to antigens SARS-CoV-2 RBD (Sino 

Biological), SARS-CoV-2 S (Lake Pharma), SARS-CoV-2 N (Aalto Bio Reagents). SARS-

CoV-2 S1 (Sino Biological), SARS-CoV-2 S2 (Sino Biological), pertussis pertactin (List 

Reagents) and a mix of HA A/Michigan/45/2015 (H1N1), HA A/Singapore/ INFIMH-16–

0019/2016 (H3N2), B/Phuket/3073/2013 (Immunetech), using covalent NHS-ester linkages 

by EDC and NHS (Thermo Fisher Scientific) as described previously (59). To form 

immune complexes, appropriately diluted serum (1:100 for IgG2/3, 1:500 for IgG1, and 

1:1000 for all other FcRs) and breastmilk (1:5 for all detectors), was added to the antigen-

coupled microspheres, and plates were incubated overnight at 4ºC, shaking at 700 rpm. 

The following day, plates were washed with 0.1% BSA 0.02% Tween-20. PE-coupled 

mouse anti-human detection antibodies (Southern Biotech) were used to detect antigen-

specific antibody binding. For the detection of FcR binding, Avi-Tagged FcRs (Duke 

Human Vaccine Institute) were biotinylated using BirA500 kit (Avidity) per manufacturer’s 

instructions. Biotinylated FcRs were tagged with PE and added to immune complexes. 

Fluorescence was acquired using an Intellicyt iQue, and relative antigen-specific antibody 

titer and FcR binding is reported as Median Fluorescence Intensity (MFI).

Statistical analysis

For univariate data analysis, statistics were calculated using GraphPad Prism version 8.0. 

For functional assays, univariate analysis was performed comparing the three groups of 

women within each timepoint and between timepoints for each group. For antibody isotype 
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titers and FcR-binding, data was log10-transformed prior to plotting and statistical analysis. 

Significance was determined by a one-way ANOVA with followed by posthoc Tukey’s 

multiple comparison test. P-values were then corrected for multiple comparisons using the 

Bejamini-Hochberg procedure. Breastmilk data was dilution corrected before transfer ratio 

analysis. For comparisons between mother and either cord or breastmilk, Wilcoxon-matched 

pairs signed rank test was performed. To determine transfer ratios the cord serum or 

breastmilk value was divided by the respective mother’s value for each assay.

Multivariate analyses were performed in R (version 4.0.0) and Python (version 3.9.1). The 

data was centered and scaled. For principal component analysis (PCA), an unsupervised 

dimensionality reduction technique, and classification models, data was log10-transformed 

prior to centering and scaling. For classification models, LASSO feature selection 

(60) was performed to identify significant features using the “select_lasso” function in 

systemseRology R package (v1.0) (https://github.com/LoosC/systemsseRology). LASSO 

aims to minimize sum of the residual sum of squares and the absolute value of the 

regression coefficients with a tuning parameter. The tuning parameter for LASSO was 

defined using 5-fold cross-validation. LASSO selection was performed 100 times, and only 

features that were chosen in 80% of the repetitions were used to build the downstream 

models. Partial least squares discriminant analysis (PLSDA) was performed using the 

LASSO-selected features. Multi-level partial least squares discriminant analysis (mPLSDA) 

(61) was performed for classification of maternal and cord samples.

Specifically, PLSDA builds a latent variable that linearly combines features that provide the 

maximum variance between the outcome, generating a model with the lowest mean squared 

error (MSE). mPLSDA corrects for the paired profile of the maternal and cord serology data 

by subtracting the effects of matched maternal and cord features to focus on the difference 

within matched dyads. Model performance was evaluated by five-fold cross-validation. To 

evaluate model robustness, control models with permuted classifier labels or with random 

features were built 50 times. These control models were then cross-validated 10 times to 

determine model accuracy. P values were calculated as the probability that the true value 

was within the control distributions. For correlation networks, antibody features that had 

Bonferroni-adjusted p-values < 0.05 and a spearman |r|>0.75 were visualized within the 

networks.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Vaccination induces enhanced FcR-binding in non-pregnant women.
A and B. A principal component analysis (PCA) was built using LASSO-selected antibody 

features at 3 to 4 weeks post prime vaccination (A) or 2 to 5.5 weeks post boost vaccination 

(B). The dot plots show the scores of each individual, with each dot representing an 

individual. The ellipses represent the 95% confidence interval for each group. The bar plots 

show the loadings of the LASSO-selected features along principal component 1 (PC1).

C and D. The polar plots show the mean percentile rank for each feature for post-prime (C) 

and post-boost (D) samples. Features were ranked separately for each time point.
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E. The violin plots show the FcγR-binding for non-pregnant, pregnant, and lactating women 

at post-prime (1) (non-pregnant n = 13, pregnant n = 64, lactating n = 28) and post-boost 

(2) (non-pregnant n = 14, pregnant n = 36, lactating n = 13). The filled dots show the 

titer for women who received mRNA-1273, and outlines show the titer for women who 

received BNT162b2. MFI, median fluorescence intensity. Data are presented as median ± 

IQR. Significance was determined by a one-way ANOVA followed by posthoc Tukey’s 

multiple comparison test. P-values were then corrected for multiple comparisons using the 

Bejamini-Hochberg procedure, * p <0.05, ** p < 0.01,*** p < 0.001, **** p < 0.0001, ns, 

not significant.

F. The violin plots show the antibody functions for non-pregnant, pregnant, and lactating 

women at post-prime (1) (non-pregnant n = 13, pregnant n = 64, lactating n = 28) and 

post-boost (2) (non-pregnant n = 14, pregnant n = 36, lactating n = 13). The filled dots show 

the titer for women who received mRNA-1273, and outlines show the titer for women who 

received BNT162b2 vaccine. Phago indicates phagocytosis. Data are presented as median 

± IQR. Significance was determined by a one-way ANOVA followed by posthoc Tukey’s 

multiple comparison test. P-values were then corrected for multiple comparisons using the 

Bejamini-Hochberg procedure, * p <0.05, ** p < 0.01,*** p < 0.001, **** p < 0.0001, ns, 

not significant.

G. The chord diagrams connect the features that have a spearman correlation > 0.75 and 

Bonferroni-corrected p-value < 0.05 for non-pregnant, pregnant, and lactating women. 

Red indicates antibody isotype, purple indicates FcR-binding and blue indicates antibody 

function.
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Figure 2. Vaccination results in the transfer of FcR-binding antibodies into the cord blood.
A. The heatmap shows the difference in median z-score between maternal plasma and 

cord blood (n = 8 for both maternal and cord) for each SARS-CoV-2-specific feature. 

Orange indicates the feature was elevated in maternal plasma, and teal indicates that 

the features was elevated in cord blood. Gray boxes indicate that the experiment was 

not performed. Significance was measured by a Mann-Whitney U test and p-values were 

Benjamini-Hochberg adjusted. No significant differences were observed.
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B. The dot plots show the IgG1, IgG3, FcγR2a-binding and FcγR3a-binding titer against 

spike protein for maternal (M) and cord (C) blood. Lines connect maternal:cord dyads (n = 

8). Significance was determined by Wilcoxon-matched pairs signed rank test.

C. The dot plots show the ADCP, ADNP and ADNKA (CD107a+ or MIP-1β+) functional 

titers against spike protein for maternal (M) and cord (C) blood. Lines connect maternal:cord 

dyads (n= 8). * p <0.05.

D. A multilevel partial least-squares discriminant analysis (mPLSDA) was built using 

maternal or cord LASSO-selected SARS-CoV-2-specific features. The dot plot (left) shows 

the scores of each sample, with the ellipses representing the 95% confidence interval for 

each group (n = 8 for both groups). The bar plot (right) shows the loadings of each 

LASSO-selected feature for the mPLSDA. The color of the bar indicates in which group the 

feature is enriched.
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Figure 3. Second dose of vaccination is required for boost in functional antibody response in 
serum and breastmilk of lactating women.
A. A PCA was built on LASSO-selected SARS-CoV-2-specific features from samples 

collected post-prime vaccination (n = 28) (purple) and from samples collected post-boost 

vaccination (n = 13) (blue) in lactating women. The ellipses represent the 95% confidence 

interval for each group. The heatmaps show the contribution of each feature along each 

principal component (PC). The color of the heatmap indicates in which group each feature is 

enriched. Blue indicates that all features were enriched post-boost.
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B. A PCA was built on LASSO-selected SARS-CoV-2-specific features in breastmilk 

samples collected post-prime vaccination (purple) or post-boost vaccination (blue), using 

timepoint as the outcome variable. The ellipses represent the 95% confidence interval for 

each timepoint. The heatmap shows the contribution of each feature to the corresponding 

PC.

C. The polar plots show the mean percentile rank for each feature for post-prime or post-

boost samples in the serum of lactating women.

D. The polar plots show the mean percentile rank for each feature for post-prime or post-

boost samples in breastmilk.

E. The dot plot shows the transfer ratio of breastmilk:serum for each isotype (left) and FcR 

(right) measured 3 to four weeks post-prime vaccination. Horizontal dotted lines indicate 

a transfer ratio of 1. Horizontal bars indicate median. Significance was determined by a 

one-way ANOVA followed by Tukey’s multiple comparison correction. * p <0.05, ** p < 

0.01, *** p < 0.001, **** p < 0.0001.

F. The dot plot shows the transfer ratio of breastmilk:serum for each isotype (left) and FcR 

(right) measured 2 to 5.5 weeks post-boost vaccination. Horizontal dotted lines indicate 

a transfer ratio of 1. Horizontal bars indicate median. Significance was determined by a 

one-way ANOVA followed by Tukey’s multiple comparison correction. ** p < 0.01,*** p < 

0.001.

G. The dot plots show the transfer ratio of breastmilk:serum between ADCP and ADNP 

measured post-prime vaccination. The horizontal dotted line indicates a transfer ratio of 1. 

Horizontal bars indicate median. Significance was determined by Wilcoxon-matched pairs 

signed rank test. No significant difference was observed.

H. The dot plots show the transfer ratio of breastmilk:serum between ADCP and ADNP 

measured post-boost vaccination. The horizontal dotted line indicates a transfer ratio of 1. 

Horizontal bars indicate median. Significance was determined by Wilcoxon-matched pairs 

signed rank test. p < 0.001.
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Figure 4. The antibody response elicited by mRNA-1273 and BNT162b2 vaccination differ in 
pregnant and lactating women.
A. A LASSO-PLSDA model was built on post-boost vaccination data from all groups. 

Samples were collected 2 to 5.5 weeks post booster administration. The dot plot (left) shows 

the scores for each sample, with each dot representing a sample. The ellipses represent the 

95% confidence interval for each group. The bar plot (right) shows the loadings of each 

LASSO-selected feature, where the color marks the group enrichment.

B. The violin plots show differences in the top LASSO-selected features from (A) in non-

pregnant (n = 8 for BNT162b2, n = 6 for mRNA-1273), pregnant (n = 17 for BNT162b2, n 
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= 19 for mRNA-1273), and lactating (n = 5 for BNT162b2, n = 8 for mRNA-1273) women 

given either mRNA-1273 (M, filled dots) or BNT162b2 (P, outline dots). All data in the 

violin plots is from samples collected 2 to 5.5 weeks post second vaccine dose. Significance 

was determined by a one-way ANOVA followed by posthoc Šidák’s multiple comparison 

test. P-values were then corrected for multiple comparisons using the Bejamini-Hochberg 

procedure, * p <0.05, ** p < 0.01,*** p < 0.001.

C. The heatmaps show the spearman correlation between features for women who received 

the mRNA-1273 (top) or BNT162b2 (bottom). For isotypes and FcγR-binding, the features 

are ordered as spike protein, S2, S1, and RBD. For functional data, only functional activity 

against spike protein was measured.

D. A LASSO-PLSDA model was built on post-booster vaccine breastmilk data. The dot 

plot (left) shows the scores for each sample, with each dot representing a sample (n = 6 for 

BNT162b2, n = 6 for mRNA-1273). The ellipses represent the 95% confidence interval for 

each group. The bar plot (right) shows the loadings of each LASSO-selected feature, where 

the color marks the group enrichment.
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Table 1.
Cohort Demographic Information.

SD, standard deviation; n, number of participants; IQR, interquartile range.

Characteristic Nonpregnant Pregnant Lactating

Age, mean (SD) 38.4 (8.3) 34.1 (3.3) 34.6 (2.6)

Sample n, post-prime 13 64 28

Sample n, post-boost 14 36 13

Matched n (both post-prime and post-boost) 12 29 11

Vaccine type post-prime

BNT162b2 6 32 15

mRNA-1273 7 32 13

Vaccine type post-boost

BNT162b2 8 17 5

mRNA-1273 6 19 8

Days from dose 1 to post-prime collection, median (IQR) 28 (27–29) 28 (22–29.5) 28 (23–30)

Days from dose 1 to post-prime collection, median (IQR), BNT162b2 25.5 (23.25–27.75) 22 (21–24.75) 22.5 (21–26.5)

Days from dose 1 to post-prime collection, median (IQR), mRNA-1273 29 (28–29.25) 29 (28–31) 30 (28–34.5)

Days from dose 1 to post-boost collection, median (IQR) 49 (47.25–51.5) 49.5 (43.75–56.25) 49 (43–49.5)

Days from dose 1 to post-boost collection, median (IQR), BNT162b2 51 (49–55) 57 (50–58) 55 (50–59)

Days from dose 1 to post-boost collection, median (IQR), mRNA-1273 45.5 (44–47.75) 47.5 (43.25–49.75) 44 (43–49)

Days from dose 2 to post-boost collection, median (IQR) 26 (19–30.25) 20 (15–31.75) 21 (14–29)

Days from dose 2 to post-boost collection, median (IQR), BNT162b2 29.5 (27.5–33.5) 34 (14.75–37) 34 (29–34)

Days from dose 2 to post-boost collection, median (IQR), mRNA-1273 17.5 (14.5–19) 17 (15–21) 14.5 (14–18)

Gestational Age at post-prime, median (IQR) - 23.2 (16.3–32.1) -
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