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Abstract

In mammals, the center of the circadian clock is located in the suprachiasmatic nucleus

(SCN) of the hypothalamus. Many studies have suggested that there are multiple regions

generating different circadian periods within the SCN, but the exact localization of the

regions has not been elucidated. In this study, using a transgenic rat carrying a destabilized

luciferase reporter gene driven by a regulatory element of Per2 gene (Per2::dLuc), we inves-

tigated the regional variation of period lengths in horizontal slices of the SCN. We revealed a

distinct caudal medial region (short period region, SPR) and a rostro-lateral region (long

period region, LPR) that generate circadian rhythms with periods shorter than and longer

than 24 hours, respectively. We also found that the core region of the SCN marked by

dense VIP (vasoactive intestinal peptide) mRNA-expressing neurons covered a part of

LPR, and that the shell region of the SCN contains both SPR and the rest of the LPR. Fur-

thermore, we observed how synchronization is achieved between regions generating dis-

tinct circadian periods in the SCN. We found that the longer circadian rhythm of the rostral

region appears to entrain the circadian rhythm in the caudal region. Our findings clarify the

localization of regionality of circadian periods and the mechanism by which the integrated

circadian rhythm is formed in the SCN.

Introduction

The center of the mammalian circadian clock is located in the suprachiasmatic nucleus (SCN)

of the hypothalamus, which consists of a bilateral pair of SCN across the third ventricle and

contains approximately 10,000 cells on each side [1]. A mutual positive/negative feedback loop

is formed by the regular expression of multiple clock genes: Per1, Per2, Cry1, Cry2, Bmal1,

Clock, and their protein products [1, 2]. The clock gene expression rhythm within the SCN is

robust, having a circadian rhythm of approximately 24 hours [2]. To maintain the integrated

circadian rhythm as a single functional unit, the circadian rhythms in the oscillating neurons

in the SCN must be synchronized.
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Functionally the SCN is divided into two regions [3]. The ventrolateral core region receives

direct projection from the retina, while the dorsomedial shell region does not [3, 4]. The core

region is composed of photo-responsive retinorecipient neurons that deliver photic informa-

tion to the shell [3, 5]. After an abrupt shift of the light/dark cycle (LD cycle), the locomotor

activity of rodents shows a slow shift in locomotor activity that is observed as jet lag [6]. We

previously found a slow shift of the circadian rhythm in the shell after an abrupt shift of the LD

cycle, and supposed that the slow shift causes jet lag [3].

The SCN is a heterogeneous structure comprising many types of neurons [1, 4, 7, 8]. Most

SCN neurons are GABAergic, which is an inhibitory neurotransmitter [1, 4, 9]. Many of these

GABAergic neurons co-express neuropeptides such as vasoactive intestinal peptide (VIP), gas-

trin releasing polypeptide (GRP), and arginine vasopressin AVP) [1, 10]. AVP is expressed pri-

marily in the shell of the SCN, while VIP and GRP are expressed in the core. VIP has been

demonstrated to be particularly important for the maintenance and entrainment of cellular

clocks in individual SCN neurons [11–14]. In addition, AVP-expressing neurons are densely

expressed in the shell and have been shown to extend jet lag [15, 16]. Other neurotransmitters

such as GABA and GRP may play additional roles for the maintenance of the circadian rhythm

in the SCN [17–20].

Previous studies have suggested that each neuron in the SCN has a different cell-autono-

mous circadian rhythm [21, 22], and that there are regional period differences [21, 23–26].

Noguchi et al. [25, 26] dissected the SCN into dorsal-ventral and rostral-caudal coordination,

and found differences in circadian period within the SCN. Koinuma et al. [21] revealed that

there is a small region in the dorsomedial part of the ex-vivo coronal slices of the SCN, show-

ing a shorter circadian period (short period region, SPR) than the rest of the SCN (long period

region, LPR) and also revealed that a phase wave propagates from SPR to LPR. However, the

localizations of these regions generating the various circadian rhythms within the SCN and

how they are synchronized with each other has not been fully elucidated.

In this study, we investigated differences of circadian period in the rat SCN by monitoring

the bioluminescence of coronal and horizontal slices. We observed and analyzed the regional

period differences in the SCN, rostral-caudal coordination, and the relationship between the

direction of the phase wave propagation and the period regionality. Furthermore, by dissecting

the SCN slice into fragments, we investigated which region of the SCN determines the circa-

dian period of the whole SCN and how the circadian rhythms are integrated within the SCN.

Materials and methods

Animals

Male transgenic rats of Wistar background carrying a bioluminescence reporter of Period2
(Per2) expression were used. In these rats, the rat Per2 promoter region was fused to a destabi-

lized luciferase (dLuc) reporter gene [27]. The rats were bred and raised in our animal facility

in Kindai University Faculty of Medicine under LD cycle with lights on/off at 7:00/19:00 or

19:00/7:00. Light intensity during the light phase was approximately 400 lux. Room tempera-

ture was 22 ˚C. The rats were fed commercial chow and tap water ad libitum. All the rats were

two to three months old at the time of the experiments. All procedure was performed under

isoflurane anesthesia, and all efforts were made to minimize suffering.

The experiments were conducted in accordance with the Kindai University Animal Experi-

ment Regulations and the NIH Guidelines for the Care and Use of Laboratory Animals. All

animal experimental procedures were approved by the Institutional Animal Experimentation

Committee of Kindai University School of Medicine (Permission number: KAME-30-036).
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Slice preparation for ex-vivo cultures

Under deep anesthesia, an animal was decapitated between ZT0 and ZT12 (ZT, zeitgeber

time), and the brain was harvested in ice-cold Hanks’ balanced salt solution (pH 7.4, Sigma,

USA). Coronal and horizontal brain slices were prepared by a Microslicer (Dosaka, Japan) at

thicknesses of 200 μm and 150 μm, respectively. The region containing the SCN was dissected

from the slices and placed on a culture insert (ORG50; Millipore, Germany) in 35-mm culture

dishes with 1.3 mL of culture medium, DMEM (12100046, Gibco, USA) containing D-lucif-

erin K salt (0.1 mM for PMT recording, 0.2 mM for imaging; DOJINDO, Japan) and supple-

mented with NaHCO3 (2.7 mM; Nacalai tesque, Japan), HEPES (10 mM; DOJINDO, Japan),

kanamycin (20 mg/L; Gibco, Thermo Fisher Scientific, USA), insulin (5 μg/mL; Sigma, USA),

putrescine (100 nM; Sigma, USA), apo-transferrin (100 mg/mL; Sigma, USA), progesterone

(20 nM; Sigma, USA), and sodium selenite (30 nM; Gibco, USA) [28, 29].

In situ hybridization

Digoxigenin-labeled rVip (nucleotides 119–808; accession number X02341) cRNA probes

were synthesized according to the manufacturer’s protocol (Roche Diagnostics Japan, Japan).

Horizontal brain slices (150 μm) were prepared as described above, fixed by immersing in 4%

paraformaldehyde solution overnight, and processed using the free floating in situ hybridiza-

tion method as described in our previous studies [6, 30]. In the present study, using this in situ

hybridization technique, we detected the core region by the localization of Vip mRNA-con-

taining neurons in horizontal SCN slices.

Bioluminescence recording of coronal slices by PMT

Bioluminescence from cultured coronal slices of 200 μm thickness was measured using a pho-

tomultiplier tube (PMT, Kronos; ATTO, Japan) for 1 in every 10 min at 37 ˚C. The measure-

ments were started immediately after the slice preparation and continued for 7–14 days. The

data between 12 and 132 hours in culture were used for analysis.

Bioluminescence recording of horizontal slices by EMCCD camera

Horizontal slices of 150 μm thickness were cultured under the same conditions except that the

concentration of D-luciferin K salt was 0.2 mM. Per2::dLuc luminescence was recorded by one

of three imaging systems: Multiversa, (ATTO, Tokyo, Japan) with an EMCCD camera (iXon

897, Andor, Belfast, UK; Exposure: 59 min., Em gain value: 500, Binning: 1×1) cooled at -90

˚C; LUMINOVIEW (LV200, OLYMPUS, Japan) with an EMCCD camera (C9100-23B, Hama-

matsu Photonics, Japan; Exposure: 29–59 min., Sensitivity gain: 150–200 (exposure 29 min.),

100–150 (exposure 59 min.), Gain: 1) cooled at -80 ˚C; or Cellgraph with an EMCCD camera

(AB-3000, Atto, Japan; Exposure: 59 min., Electron Multiplier Gain: 300, Pre-Amplifier Gain:

1.0) cooled at -70 ˚C. Bioluminescence was recorded every 30 or 60 min. The measurement

was started immediately after slice preparation and continued for 7 to 10 days. After the mea-

surement, an integrated image of 24 to 120 hours was created using Image J, and the outline of

the SCN was obtained from this image.

Analysis of bioluminescence data to reveal the period and phase of the

circadian rhythm

We set ROIs (ROI, regions of interest) dividing the SCN horizontal slices into several regions

depending on the experiment. The average value of bioluminescence inside each ROIs was

measured. The SCN horizontal slice was further divided into small square grids (grid size;
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32 μm × 32 μm). The raw data from PMT and cooled CCD camera were detrended by sub-

tracting the 24-hour moving average [31, 32] and smoothed by taking a 5-point moving aver-

age [33]. The detrended and smoothed data from 24 hours to 120 hours after the beginning of

recording were fitted to a mathematically generated damped cosine curve [21] {y = a + b•exp

(—c•t) •cos 2π[(t + d) / e], t: time, a: mesor, b, c, d: constants, e: period} using Excel Solver

(Microsoft, USA). We calculated the period and phase of the circadian bioluminescence

rhythm from each grid via the fitted curve. Grids with correlations <0.6 between detrended

bioluminescence data and fitted curve were excluded from the analysis. Origin (OriginLab,

USA) was used to visualize the circadian period from each grid.

Statistical analysis

Repeated measures one-way ANOVA with post-hoc Bonferroni test was used to analyze the

period length measured by PMT in coronal slices. To analyze the effect of forskolin (FK, ade-

nylate cyclase activator), we conducted repeated measures two-way ANOVA with post-hoc

Bonferroni test, and multivariate comparison with post-hoc Tukey test. To analyze the effect

of separation by a scalpel, we conducted repeated measures two-way ANOVA with post-hoc

Bonferroni test.

Results

Phase mapping of circadian oscillations in horizontal slices of rat SCN

As shown in Fig 1A, horizontal SCN slices of 150 μm thickness were prepared (n = 4). In a

slice, to examine how a phase-advanced or phase-delayed region relates to the core and the

shell regions in the SCN, we investigated the localization of Vip-mRNA expressing neurons as

a marker of the SCN core by using in situ hybridization [6] (Fig 1B). Then we examined the

Per2::dLuc bioluminescence rhythm focusing on the difference along the rostro-caudal axis

within the rat SCN, using a different individual from the one presented above. The phase wave

of bioluminescence propagated from caudal to rostral and from medial to lateral in the SCN

(Fig 1C, S1 Movie). The bioluminescence rhythm in the caudal area and in the medial area

were the most advanced (Fig 1D and 1E, red) and those of the rostral and lateral areas were the

most delayed (Fig 1D and 1E, blue). To examine this phase distribution within the SCN in

more detail, we divided the SCN into small grids and analyzed them separately (Fig 1F). The

phase was advanced in the medial-caudal area relative to the lateral-rostral area of the SCN.

Comparing the phase map in the SCN horizontal slice (Fig 1F) with the localization of Vip
mRNA expressing neurons (Fig 1B), Vip-expressing regions appeared to correspond to the

regions with delayed phase within the SCN. In contrast, the shell included regions with both

advanced and delayed phase.

Circadian period analysis on consecutive coronal slices of SCN

We next investigated the difference in circadian period using consecutive coronal sections

containing the SCN. Six consecutive 200 μm coronal slices were prepared and were set into

Kronos for examination of the Per2::dLuc circadian bioluminescence rhythm (n = 6). Among

them, clear circadian rhythms were detected from three or four SCN slices per animal. The cir-

cadian rhythm showing the largest amplitude was selected (Middle) along with the adjacent

rostral (Rostral) and caudal sections (Caudal) (Fig 2A, S1 Fig). The mean values of the period

length of the Rostral, Middle, and Caudal were 23.8 ± 0.2, 23.8 ± 0.1, and 22.4 ± 0.2 hours,

respectively (Mean ± SE, Fig 2B). The circadian period of Caudal was significantly shorter

than those of the other two sections (Fig 2B), while no significant difference was detected
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Fig 1. Schema of the SCN slices and Per2::dLuc bioluminescence rhythm in the SCN. (A) A schematic diagram of the sagittal section of the SCN

(modified from Nagano et al., 2019). The outline of the SCN is denoted by a dashed line (considered as the shell region of the SCN), and the outline of

the VIP region (considered as the core region of the SCN) by a dashed line. The green rectangle (�) in the picture indicates the location of the horizontal

slice excision for the present study. (B) Representative horizontal section of the SCN showing the rVip-expressing neurons by in situ hybridization. The

outline of the core region was identified by rVip-expressing neurons. Black dashed line: outline of the SCN, White dashed line: core region of the SCN,

Scale bar: 250 μm. (C) Representative bioluminescence images of a horizontal slice of the rat SCN. White line indicates the outline of the SCN. The

beginning of the first light period in the former light-dark cycle before decapitation was described as (projected) ZT0. Scale bar: 500 μm. Data shown in

C-F are from a single slice. (D) three ROIs were set on a unilateral SCN with the same rostro-caudal width and same medial-lateral width. (E) The

average of the bioluminescence intensity of each ROI was plotted against time. The phase in the caudal ROI (red) are advanced compared to those of

the middle (yellow) and rostral (blue) fragments (upper panel). The phases in the medial ROIs (red) are advanced compared to those of the middle

(yellow) and lateral (blue) fragments (lower panel). (F) Phase map of 1st acrophase (after the first pZT0) of the SCN. This figure indicates that the phase

wave propagates from the green region to the brown region. The phase was advanced in caudal and medial relative to the rostral and lateral, indicating

that the phase wave propagates from the caudal side to the rostral side, and from the medial side to the lateral side. Grid size: 32 μm.

https://doi.org/10.1371/journal.pone.0276372.g001
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Fig 2. Per2::dLuc bioluminescence rhythm in coronal slices of the SCN measured by PMT. (A) Representative Per2::dLuc bioluminescence rhythm

from consecutive slices of a single individual animal (Rostral, Middle, and Caudal). Left and right panels show raw data and detrended data,

respectively. (B) Circadian periods from Rostral, Middle, and Caudal (Mean ± SE). The periods of each slice are superimposed. Period data from the

same individuals are connected by lines. Repeated measures one-way ANOVA with Post-hoc Bonferroni test. ���: p< 0.001 vs Rostral and Middle, N.

S.: not significant.

https://doi.org/10.1371/journal.pone.0276372.g002
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between Rostral and Middle (p = 1.0) (one-way ANOVA, F(2,4) = 23, p = 0.0018; post-hoc

Bonferroni test, caudal vs rostral, p = 0.0055; caudal vs middle, p = 0.0039; rostral vs middle,

p = 1.0). These findings suggest that the caudal region of the SCN contains oscillators with

shorter circadian periods than those in the middle and rostral regions.

Effect of forskolin on circadian period in horizontal slice

To confirm the regional differences of circadian period, we disrupted the intracellular syn-

chronization using forskolin (FK). Previously we found that FK disrupts the intercellular syn-

chronization in the SCN [21, 34]. Horizontal slices of 150 μm thickness were cultured in

medium containing 10 μM FK (n = 6) or vehicle (DMSO). One to three horizontal slices were

placed on a single culture insert, and bioluminescence was recorded by one of the EMCCD

cameras. We set regions of interest (ROI) on the rostral half and caudal half of the unilateral

SCN (Fig 3A). and designated them as Rostral area and Caudal area, respectively (Fig 3A). In

FK treated horizontal slices, we found the circadian period of the Caudal area to be signifi-

cantly shorter than that of the Rostral area (Fig 3B, S2 Movie). In contrast, the periods of the

two areas were comparable in vehicle-treated cultures (Repeated measures two-way ANOVA,

Rostral area vs Caudal area; F(1,10) = 8.2, p = 0.017, Interaction; F(1,10) = 7.5, p = 0.021. Post-

hoc Bonferroni test; Rostral area vs Caudal area, Vehicle; p = 1.0, FK; p = 0.0016). Further, we

divided the SCN bioluminescence images into grids (64 × 64 μm) for detailed analyses (Fig

3C). In the vehicle-treated cultures, the phase differences among the acrophases of the circa-

dian rhythm in each grid were maintained from day 1 to day 5 (Fig 3C, upper panel). In con-

trast, in FK-treated cultures the phase difference among grids gradually increased (Fig 3C,

lower panel). This difference is quantitatively shown in Fig 3D, which compares acrophase SD

(standard deviation) within the SCN slices for each day in culture. The SDs of the 2nd–5th acro-

phases of the Caudal area were significantly larger than those of the Rostral area (Multivariate

comparison, Caudal vs Rostral; F(1,117) = 14, p = 0.0043, Peak 1st–5th; F(1,117) = 72,

p< 0.001, Interaction; F(4,117) = 8.7, p< 0.001. Post-hoc Tukey test; Caudal vs Rostral; 1st,

p = 0.1823; 2nd, p< 0.001; 3rd, p< 0.001; 4th, p< 0.001; 5th, p< 0.001, Vehicle vs FK; 1st,

p = 0.9160; 2nd, p = 0.0296; 3rd, p< 0.001; 4th, p< 0.001; 5th, p< 0.001). This finding sug-

gested that FK administration caused desynchrony among circadian rhythms in the SCN. We

divided the SCN into smaller grids (32×32 μm) for further detailed analyses and visualized cir-

cadian period as a map. In FK-treated slices, we found the caudal region showed periods

shorter than 24 hours (Fig 3E, S2B Fig). This region showing shorter periods (designated as

short period region; SPR) occupied the caudal tip of the SCN and continued to the medial nar-

row area. In contrast, the circadian periods of other areas in the SCN were longer than 24

hours (designated as long period region; LPR).

Effect of rostro-caudal separation on circadian period

Knowing the localization of SPR and LPR, we investigated which region is dominant when

they are synchronized. Horizontal SCN slices with a thickness of 150 was also divided into ros-

tral and caudal fragments by scalpel (n = 7, Fig 4A). All fragments were placed on one culture

insert and bioluminescence was recorded by EMCCD cameras. We set ROIs on the edges of

the caudal, rostral and intact SCN, designating them Rostral, Caudal, and Intact, respectively,

and the circadian periods of the bioluminescence from each ROI was measured. The circadian

periods of Caudal were significantly shorter than those of Rostral (Fig 4B–4D) and Intact

(Repeated measures one-way ANOVA, Rostral vs Caudal; F(2,12) = 12, p = 0.0016, Post-hoc

Bonferroni test; Intact vs Rostral, p = 1.0; Intact vs Caudal, p = 0.0042; Rostral vs Caudal,

p = 0.0036). Simultaneously, we prepared SCN slices without dividing by scalpel, and
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Fig 3. Effect of forskolin on Per2::dLuc bioluminescence rhythm. (A) Representative bioluminescence image of the SCN (left) and bioluminescence

rhythm (right) of vehicle (upper panel) or FK-treated slices (lower panel). The average bioluminescence intensities of rostral (blue) and caudal (red)

areas are plotted against time. Gray bars show the periods for curve fitting. The difference in period length between rostral and caudal areas increased in

FK-treated slices. (B) Period lengths of the circadian rhythm in the rostral and caudal areas in the vehicle (n = 6) and FK-treated (n = 6) groups. The

mean values of the bioluminescence periods of the rostral and caudal areas of the vehicle group were 24.0 ± 0.06 hours, 23.9 ± 0.1 hours, and in the FK-

treated group, 24.1 ± 0.3 hours and 22.7 ± 0.5 hours, respectively (Mean ± SE). Repeated measures two-way ANOVA with post hoc Bonferroni test

showed no significant difference between rostral and caudal areas of Vehicle group, but showed a significant difference between rostral and caudal areas

of FK-treated group (�: p< 0.05, N.S.: not significant). (C) Small grids were used to divide the unilateral SCN, and bioluminescence data from all grids

were plotted against time. With the vehicle, the period lengths were almost identical. In FK-treated slices, the circadian rhythms showed desynchrony

compared with vehicle-treated slices. Gray bar: time used for curve fitting. Grid size: 64 μm. (D) The standard deviation of acrophase in each (1st–5th)

cycle within a single SCN slice (mean ± SE). Acrophase was calculated by the fitted curve obtained from the bioluminescence of each grid. According to

multivariate comparison and post-hoc Tukey test, there were significant differences between the rostral area and caudal area in phase variation of the

2nd–5th cycles (��: p< 0.01, ���: p< 0.001). (E) The period lengths of the circadian bioluminescence rhythms from grids were calculated by curve

fitting. The period lengths of the vehicle-treated slice were similar, whereas the period lengths of the FK-treated slices showed shorter circadian rhythms

in the caudal to medial grids than those in other grids. Med: medial, Lat: lateral. Grid size: 32 μm.

https://doi.org/10.1371/journal.pone.0276372.g003
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compared the circadian period with the intact side of the SCN dissected by scalpel (S3A Fig).

We found that midline dissection of the SCN had no significant effect on the period length in

horizontal SCN slices (S3B Fig).

Discussion

In this study, by disrupting the synchrony among oscillating neurons, we found a region

located mainly in the caudal area of the SCN showing circadian periods much shorter than 24

hours (SPR) in a horizontal slice culture of the SCN (Figs 2, 3 and S2 Fig). The direction of cir-

cadian phase wave propagation in the rat SCN detected by bioluminescence was from the SPR

to other areas, which suggested that the SPR initiates the phase wave at the first step (Fig 1).

Further, we dissected the SCN into rostral and caudal fragments by scalpel and found that the

circadian period in the caudal fragment was much shorter than those in the rostral and intact

SCN slices, which suggested that the circadian period of the rat SCN is determined by LPR

rather than by SPR (Fig 4).

The localization of SPR in horizontal slices observed in the present study seems to be con-

sistent with our previous study using coronal slice cultures [21]. In the previous study, we

specified a narrow medial region of the SCN with a shorter Per2 expression period (SPR) and

found that the phase wave propagated from SPR to LPR [21]. In the present experiment, we

also observed that the phase wave of Per2 expression in SCN horizontal slices propagated from

caudal to rostral and from medial to lateral (Fig 1C–1F), that is, from SPR to LPR. The narrow

SPR at the middle of the SCN in the horizontal slice shown by FK treatment (Fig 3E) was

Fig 4. Effect of rostro-caudal separation on Per2::dLuc bioluminescence rhythm. (A) Schematic diagram of the dissected SCN. ROIs were set by

outlines of Caudal, Rostral and Intact, and the circadian period of the bioluminescence from each ROI was measured. (B) One representative Per2::dLuc

bioluminescence rhythm from three ROIs of a single slice. Gray bar indicates the period for curve fitting. (C) Circadian period of each ROI (n = 7). The

period lengths were 23.5 ± 0.2, 24.6 ± 0.2, 24.6 ± 0.1, (Mean ± SE) in Caudal, Rostral and Intact, respectively. Repeated measures one-way ANOVA with

post-hoc Bonferroni test: ��p< 0.01, N.S. = not significant. (D) Representative bioluminescence images of the SCN dissected by scalpel. White lines

represent the outlines of Caudal, Rostral and Intact. White arrowheads indicate the peak phases of each fragment. Scale bar: 500 μm.

https://doi.org/10.1371/journal.pone.0276372.g004
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consistent with the morphological analysis of SPR in coronal sections in our previous study

[21]. In addition, the direction of phase wave propagation was consistent between studies in

that the wave started at the SPR and ended at the LPR. It is highly probable that the SPR

observed in our previous study is identical to the SPR shown by the horizontal SCN slice analy-

sis in the present study.

What mechanism binds the regions with distinct circadian periods? VIP and AVP are pep-

tides that have been thoroughly investigated as substances synchronizing the oscillating neu-

rons in the SCN [16, 35–37]. VIP is richly expressed among the neurons in the core of the

SCN, and its receptor VPAC2 is mainly localized in the shell region of the SCN [15, 16].

VPAC2 gene deficient mice show desynchrony among oscillating neurons in the SCN [38]. In

contrast, AVP-expressing neurons are mainly localized in the shell [25] and work to synchro-

nize the oscillating neurons in the shell [26]. When dissected by scalpel, the caudal fragments

contained the shell region and the rostral fragment contained both shell and core regions as

shown in the in situ hybridization study showing the localization of VIP neurons as a core

region marker (Fig 1B). AVP is abundantly expressed in the shell region of the SCN and con-

tributes to maintaining the synchrony and phase difference among oscillating neurons in the

SCN [15, 16]. Considering our present findings that there are regions with distinct intrinsic

circadian periods within the SCN, synchronization of circadian oscillators by VIP and AVP

contributes substantially to the circadian period of the SCN. On the other hand, Shinohara

et al. [23] revealed that in rat suprachiasmatic nucleus slice cultures treated with antimitotic

drugs that decreased the number of glial cells, the release of arginine vasopressin and vasoac-

tive intestinal polypeptide showed different circadian periods. The finding suggests that the

glial cells are also involved in the synchrony of oscillating neurons in the SCN.

Differences in the circadian periods between VIP- and AVP-neurons might be involved in

the regional differences in circadian period. Noguchi et al. [25, 26] reported that AVP cells

have intrinsically short circadian periods and are entrained by VIP cells. These studies suggest

that AVP- and VIP-expressing neurons have distinct circadian periods [23, 25, 26, 36]. In the

present study, we divided the horizontal SCN slice into rostral and caudal fragments. As

shown by the in-situ hybridization study (Fig 1B), most of the Vip-expressing neurons were

contained in the rostral fragment. Therefore, it is possible that the shortening of the circadian

period of the caudal fragment is due to the removal of the VIP-expressing neurons. However,

this hypothesis that VIP neurons and AVP neurons respectively generate long and short circa-

dian rhythms seems to be inconsistent with our present and previous findings [21] that the

shell region contains both SPR and LPR. AVP are rich in the shell region, so the entire shell

region would generate short circadian rhythms. However, this contradiction may be explained

by the uneven localization of AVP-expressing neurons in the shell. AVP-expressing neurons

are dense in the medial region and sparse in the lateral region of the shell [39, 40]. If AVP-neu-

rons generate shorter circadian periods, it is possible that partial region of the shell containing

dense AVP-neurons generates short circadian periods compared with those in other shell

regions.

The SPR has similar characteristics to the morning oscillator (MO) in that it is localized in

the caudal region and in that the phase wave propagation starts there. Many studies have sug-

gested the existence of a distinct morning oscillator (MO) and evening oscillator (EO) within

the SCN, as the activity rhythms of rodents are separated into two components under certain

LD conditions [41–43]. Jagota et al. [44] measured electrophysiological activity in horizontal

SCN slices of hamsters under varying LD cycles and found two distinct peaks, possibly repre-

senting the MO and EO. In more recent studies, a bioluminescence reporter has been used to

investigate the localization of EO and MO in the SCN. Inagaki et al. [28] showed two groups of

oscillators coupled to the onset and end of activity (indicating EO and MO) in the mouse
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SCN. Another study by Yoshikawa et al. [45] mapped the localization of the two oscillators on

the horizontal SCN slices in which the MO is located in the caudal tip of the SCN. In the pres-

ent study, we found a region with a short circadian period in the caudal region of the SCN,

and this region seemed to initiate the phase wave propagation. The finding is consistent with

the properties of the MO reported previously [45]. Therefore, the present study suggested that

SPR observed in the present study might be identical with the MO shown in other studies [43,

45].

In the present study, the vehicle group also showed differences in the circadian periods

within the SCN (S2B Fig). The region that showed the short circadian period was mainly

located in the caudal region where the SPR is, indicating that there was desynchrony even with-

out FK. It is possible that the fragments of the SCN lost by preparing horizontal slices might be

also necessary for the synchrony of oscillating neurons in the horizontal slices of the SCN. As

shown in Fig 1A, the SCN slice culture did not contain the entire SCN. The lost fragment of

SCN was essential for keeping the entire SCN synchronized. In addition, the retinohypothala-

mic tract, a neural projection from the retina to SCN, was also lost in this slice culture. It is pos-

sible that this loss also contributed to the desynchrony with vehicle treatment. Such structural

disruptions and loss of components might be a limitation of slice culture experiments.

In conclusion, we analyzed the regional circadian period difference in the rat SCN and

found that the phase wave propagates from the SPR to LPR. Further, we found that the circa-

dian period of the caudal region is entrained by the rostral region of the SCN, which consti-

tutes the overall integrated period of the whole SCN. The localization of the SPR and the

direction of the phase wave propagation suggested that the SPR in the caudal region of the

SCN may be identical to the MO of the two-oscillator model. The relationships between the

SPR/LPR and MO/EO should be investigated further.

Supporting information

S1 Fig. Per2::dLuc bioluminescence rhythm by PMT from consecutive cultured coronal

SCN slices. A representative of the six specimens is shown in Fig 2A. Data from five other

SCNs are shown. The gray lines and black dotted lines indicate the detrended wave forms and

fitted curves, respectively.

(TIF)

S2 Fig. Effect of FK on Per2::dLuc bioluminescence rhythm. (A) Time series of biolumines-

cence images from SCN horizontal slices treated with vehicle (DMSO, upper panel) and for-

skolin (FK, lower panel). The numbers below the pictures indicate projected ZT (ZT, zeitgeber

time). Scale bar: 500 μm. (B) Grid analysis of circadian periods of Per2::dLuc bioluminescence

rhythms. Grid size: 32 μm.

(TIF)

S3 Fig. Effect of separating right and left SCN in a horizontal slice. (A) ROIs were set on the

SCN with and without dissection. Mean bioluminescence rhythm from each ROIs were mea-

sured. The periods of bioluminescence rhythms from the SCN without dissection (left (a) and

right (b), left picture, Dissection(-), n = 5) and from unilateral SCN with dissection along the

midline but without rostro-caudal dissection ((c), right picture, Dissection(+), n = 7). Dashed

lines in the right picture indicate the dissection lines. (B) Statistical analysis between Dissec-

tion(-) and Dissection(+) groups. Bioluminescence period was 24.8 ± 0.14, 24.9 ± 0.16 hours

for Dissection(-) group (Mean ± SE, Left and Right respectively), and 24.6 ± 0.13 hours for

Dissection(+) group (Intact). No significant difference was found by repeated measures one-

way ANOVA with a post hoc Bonferroni test between right and left SCN without dissection (a
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and b) and with dissection (c) (repeated measures one-way ANOVA; F(2,8) = 1.4, p = 0.31:

post-hoc Bonferroni test; a vs. b, p = 1.0, a vs. c, p = 1.0, b vs. c, p = 0.42).

(TIF)

S1 Movie. Bioluminescence imaging of a horizontal SCN slice without any treatment. The

number in the lower right corner indicates the elapsed time from the start of the measure-

ment.

(AVI)

S2 Movie. Bioluminescence imaging of a horizontal SCN slice with FK treatment. The

number in the lower right corner indicates the elapsed time from the start of the measure-

ment.

(AVI)
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