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ypoglycemia, a frequent occurrence during mod-
ern intensive insulin therapy, remains the major
limiting factor in achieving optimal glucose
control in type 1 diabetic patients as well as in
patients with long-standing type 2 diabetes. This has been
a challenge for clinicians and investigators since several
large population-based studies such as the Diabetes Con-
trol and Complications Trial and UK Prospective Diabetes
Study established the long-term benefits of tight glycemic
control many years ago (1,2). More recently, studies of
intensive glucose control in patients with diabetes of sev-
eral years duration have—to the surprise to many—been
either terminated because of increased mortality in the
intensive control arm or because worse outcomes were
revealed in regard to the clinical end points (3,4). In a
parallel development, we have gone, over the course of
10 years, from embracing stringent inpatient glucose con-
trol via insulin infusion protocols in the intensive care set-
ting (5) to realizing that not everybody may benefit equally
from such an intervention, since the increased incidence of
profound hypoglycemia is the limiting factor (6). In fact,
a recent systematic review of 21 trials of intensive insulin
therapy by Kansagara et al. (7) found a sixfold higher risk
of severe hypoglycemic events in patients undergoing
such therapy. Faced with a clinical dilemma of such pro-
portion, it appears that we may need to readdress our hy-
potheses, and we need to conduct mechanistic studies that
allow us to identify therapies that are effective but minimize
the exposure of patients to the heightened risk of hypo-
glycemia. Understanding the regulation of glucose me-
tabolism in the brain and how it responds to hypoglycemia
in this context is of particular relevance because of the
brain’s exquisite dependence on glucose as an energy
substrate and its integrative function in whole body fuel
homeostasis (8).
The brain poses particular challenges because, due to
limited glucose transport activity in the blood brain bar-
rier and high rates of cellular glucose metabolism, the
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concentrations of glucose in human brain interstitial fluid
are only about a fifth of those in plasma, making the brain
highly vulnerable to a drop in glucose supply (9). Magnetic
resonance spectroscopy (MRS), which allows monitoring of
glucose and other substrate metabolism in vivo offers the
unique opportunity to study glucose metabolism behind the
blood brain barrier in real time. Using the stable '*C isotope
as a tracer, labeled glucose or other substrates are infused
and label appearance in the metabolite pools of glutamate
and glutamine can be observed over time. Fitting of these
data with a mathematical model of metabolism allows cal-
culation of substrate-specific metabolism as well as com-
partmentation of metabolism between the two major brain
cell types, neurons and glia (Fig. 1).

To test whether moderate hypoglycemia can reduce hu-
man brain energy production, van de Ven et al. (10) used
13C MRS to study glucose metabolism in healthy control
subjects during euglycemia and hypoglycemia using a
hyperinsulinemic clamp to maintain stable glycemia. Eight
subjects served as their own controls and were studied at
a glucose level of 5 mM and at 3 mM, thereby reducing the
confounding influence of interindividual variability. In-
terestingly, the authors were not able to detect a differ-
ence between tricarboxylic acid (TCA) cycle activity under
euglycemic and hypoglycemic conditions. They suggest that
oxidative brain metabolism was not impaired in a way
that would have resulted in decreased production of ATP
further downstream, in seeming contradiction with results
showing impaired cortical function in control subjects at
similar levels of hypoglycemia (11,12).

There are several potential explanations for the para-
doxical results of van de Ven et al. (10), including the brain
region observed and a switch of cerebral metabolism to
alternate substrates. An important point to keep in mind is
that most current MRS studies are focused on the brain
tissue most adjacent to the nuclear magnetic resonance
(NMR) coil, the occipital cortex. Because we know from
animal studies and human positron emission tomography
studies (13) that metabolic activity can vary substantially
from region to region and change when local activity is
stimulated (14), we must ask ourselves how the current
observations can be applied from the occipital cortex to
other areas of the brain. Several human studies using
functional magnetic resonance imaging, which uses blood
oxygen tension differences as a surrogate of regional ac-
tivation, support the notion that changes in the activation
patterns of the brain under acute hypoglycemia do occur
(15,16). It is therefore likely that with the advent of more
localized NMR spectroscopy we will be able to further
delineate regional differences of metabolism.

We must also take into consideration that energy sub-
strates other than glucose may increase their contribution
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FIG. 1. Two-compartment model of brain metabolic fluxes along with pathways that have been proposed to be upregulated in intensively treated
type 1 diabetes. Both astrocytes and neurons are dependent on glucose as a metabolic substrate, but neurons to a higher degree than astrocytes—
particularly under hypoglycemia. Storage of glycogen allows astrocytes to provide neurons with an energy reserve that can be quickly mobilized
and transferred during times of intense activity as well as during hypoglycemia; whether its levels are increased in type 1 diabetes still remains
unclear (17). Monocarboxylic acid transporters (MCTs) along the blood brain barrier allow uptake of acetate, lactate, and ketone bodies and may
be upregulated in type 1 diabetes (18,24) allowing increased alternate fuel consumption during hypoglycemia (indicated by +). Glucose trans-
porters (GLUT) may be upregulated in a similar fashion in type 1 diabetes (20).

to TCA cycle activity, which in the brain is composed of
separate and cooperative glial and neuronal compart-
ments. For a schematic representation of these changes,
see Fig. 1. Astrocytes (a form of glial cell predominant in
the cerebral cortex) have emerged as playing a poten-
tially important role by temporarily supplying neurons
with fuel derived from stored glycogen, which could pro-
vide extra substrate during a hypoglycemic period (17). A
reduction of astrocytic glucose metabolism to spare glu-
cose for the neuron is also possible, and changes in the
balance between neuronal and astrocyte glucose oxida-
tion in animal models during hypoglycemia have been
reported by our group (18). An alternative possibility is
that there was an increase in the metabolism of lactate
derived from the circulation, which increased by 50%
under hypoglycemia. It has been reported that an infusion
of lactate given to subjects during a comparable clamp
study was able to alleviate cognitive dysfunction (19). We
note that based on MRS measurements of glucose trans-
port activity (20,21), the reduction in net glucose trans-
port at 3 mmol/LL plasma glucose levels would reduce
glucose uptake on the order of 5-10%. Although van de
Ven et al. indirectly calculate an up to 5% contribution of
lactate, direct measurement of lactate metabolism by *C
MRS (22) as well as arteriovenous difference methods
(23) suggest that at the lactate levels achieved in the
hypoglycemia portion of the study by van de Ven et al. the
contribution of lactate oxidation is most likely greater
and can support close to 10% of neuronal metabolic needs.

A more comprehensive understanding of the adapta-
tions of brain fuel metabolism to acute and recurrent hy-
poglycemia will likely serve as the foundation for the
development of more specific therapeutic interventions
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that avert the negative impact of neuroglycopenia in patients
receiving insulin therapy.
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