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Integral representations for the solution of linear
elliptic partial differential equations (PDEs) can be
obtained using Green’s theorem. However, these
representations involve both the Dirichlet and the
Neumann values on the boundary, and for a
well-posed boundary-value problem (BVPs) one of
these functions is unknown. A new transform method
for solving BVPs for linear and integrable nonlinear
PDEs usually referred to as the unified transform (or
the Fokas transform) was introduced by the second
author in the late Nineties. For linear elliptic PDEs,
this method can be considered as the analogue of
Green’s function approach but now it is formulated
in the complex Fourier plane instead of the physical
plane. It employs two global relations also formulated
in the Fourier plane which couple the Dirichlet and
the Neumann boundary values. These relations can be
used to characterize the unknown boundary values in
terms of the given boundary data, yielding an elegant
approach for determining the Dirichlet to Neumann
map. The numerical implementation of the unified
transform can be considered as the counterpart in the
Fourier plane of the well-known boundary integral
method which is formulated in the physical plane. For
this implementation, one must choose (i) a suitable
basis for expanding the unknown functions and (ii) an
appropriate set of complex values, which we refer
to as collocation points, at which to evaluate the
global relations. Here, by employing a variety of

2015 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2014.0747&domain=pdf&date_stamp=2015-02-11
mailto:ph442@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20140747

...................................................

examples we present simple guidelines of how the above choices can be made. Furthermore,
we provide concrete rules for choosing the collocation points so that the condition number of
the matrix of the associated linear system remains low.

1. Introduction
A new method for analysing boundary-value problems (BVP) for linear and for integrable
nonlinear partial differential equations (PDEs) was introduced by the second author in the
late Nineties [1–3]. This method, which is usually referred to as the unified transform (or
the Fokas transform), has been applied to a variety of linear elliptic PDEs formulated in the
interior of a polygon. Important results in this direction include the following: (i) for the
Laplace, modified Helmholtz and Helmholtz equations, it is possible to express the solution
in terms of integrals in the complex λ-plane (complex Fourier plane). These integrals contain
certain integral transforms of the Dirichlet and of the Neumann values on the boundary of
the polygon. Hence, these integral formulae provide the analogue of the classical Green’s
representations, but now the formulation takes place in the complex Fourier plane instead of
the physical plane. (ii) The above transforms of the Dirichlet and of the Neumann boundary
values are related via two simple algebraic equations called global relations. These relations
provide a characterization of the generalized Dirichlet to Neumann map. (iii) By employing the
integral representation and global relations mentioned in (i) and (ii), respectively, it has been
possible to obtain exact solutions for a variety of problems for which apparently the usual
approaches fail, see e.g. [4,5]. (iv) Ashton [6,7] has developed a rigorous approach for deriving
well posedness results for linear elliptic PDEs using the new formalism. This includes the
analysis of BVPs with distributional data and with corner singularities [8]. (v) The new method
can be applied to linear PDEs with nonlinear boundary conditions, see e.g. [9–11]. (vi) The
first steps have been taken towards extending the unified transform to three dimensions,
see e.g. [9,12].

The analysis of the global relations yields a novel numerical technique for the numerical
solution of the generalized Dirichlet to Neumann map, i.e. for the determination of the unknown
boundary values in terms of the prescribed boundary data [13–21]. Substantial progress in
this direction was made by Fornberg and co-worker [14,15]. The global relations couple the
finite Fourier transform of the given boundary data with the finite Fourier transform of the
unknown boundary values. For the determination of these boundary values one has to (a)
choose appropriate basis functions and (b) suitable collocation points in the Fourier plane. For
the numerical computation of the finite Fourier transforms of the basis functions, Fornberg
and co-worker have used Legendre polynomials, and have employed the fact that the finite
Fourier transform of the Legendre polynomials can be expressed in terms of the modified Bessel
function of order half integer. In the above-mentioned papers, the authors have also used the
so-called Halton nodes for collocation points, and have used the crucial observation that the
conditioning of the associated linear system improves if the linear system is overdetermined. Here,
following Fornberg and co-worker, we also use Legendre polynomials and also overdetermine
the relevant system. However, motivated by the results of [21], we introduce a new choice
of collocation points. In this way, we are able to improve dramatically the relevant condition
number. For example, for a particular BVP considered in [15], the condition number improves
from approximately 1016 to 4.9.

There exist several different numerical methods available for solving linear elliptic PDEs,
which include finite-difference methods, finite-element methods, boundary-integral equations
and the method of particular solutions. The main novelty of the method developed in this paper,
compared with standard methods, is that it is a boundary-based discretization that does not
involve the computation of singular integrals (as opposed to the discretizations of boundary
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integral equations). Similar ideas have been proposed before in the literature, and the relationship
of the method here to these earlier approaches is discussed in detail in §6.

This paper is organized as follows: in §2, we review the concept of global relations and obtain
these relations for the Laplace, modified Helmholtz and Helmholtz equations in the interior of a
polygonal domain. In §3, we approximate the known and unknown boundary values in terms of
Legendre polynomials, and derive the approximate global relations. In §4, we discuss a convenient
choice for collocation points for the particular case of a convex polygon. In §5, we present several
numerical calculations comparing the unified transform solution with an exact solution or a
numerical solution obtained via the finite-element method. Finally, in §6, we discuss further these
results.

2. Global relations
For completeness, we first recall the global relations for the Laplace, modified Helmholtz and
Helmholtz equations. Solutions of the Laplace equation in the closed domain Ω ⊂ R

2,

uxx + uyy = 0, (x, y) ∈ Ω , (2.1)

satisfies Green’s second identity
∮
∂Ω

(
u

∂v

∂N − v
∂u
∂N

)
ds = 0, (2.2)

where ∂Ω denotes the boundary of the domain Ω , v is a solution of the Laplace equation, and
∂/∂N denotes the derivative along the outward normal direction of the boundary. Letting

z = x + iy, z̄ = x − iy, (2.3)

noting that v = e−iλz, λ ∈ C, is a particular solution of the Laplace equation, and using the identity

∂v

∂N ds = i
(

∂v

∂ z̄
dz̄ + ∂v

∂z
dz
)

, (2.4)

equation (2.2) yields the global relation
∮
∂Ω

e−iλz
[

∂u
∂N + λu

dz
ds

]
ds = 0, λ ∈ C. (2.5)

For the modified Helmholtz equation

uxx + uyy − k2u = 0, (x, y) ∈ Ω , (2.6)

where k > 0 is the wavenumber, we choose the particular solution v = e(ik/2)(z̄/λ−λz), λ ∈ C \ {0},
and then equation (2.2) yields the global relation

∮
∂Ω

e(ik/2)[z̄/λ−λz]
[

∂u
∂N + ku

2

(
λ

dz
ds

+ 1
λ

dz̄
ds

)]
ds = 0. (2.7)

For the Helmholtz equation

uxx + uyy + k2u = 0, (x, y) ∈ Ω , (2.8)

we choose the particular solution v = e(−ik/2)[λz+z̄/λ], λ ∈ C \ {0}, and then equation (2.2) yields the
global relation ∮

∂Ω

e(−ik/2)[λz+z̄/λ]
[

∂u
∂N + ku

2

(
λ

dz
ds

− 1
λ

dz̄
ds

)]
ds = 0. (2.9)

For the Laplace, modified Helmholtz and Helmholtz equations with u real, a second global
relation can be obtained from the global equations (2.5), (2.6), and (2.9) via Schwartz conjugation,
i.e. by taking the complex conjugate of these equations and then replacing λ̄ with λ.
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(a) A polygonal domain
In what follows, we consider the particular case where Ω is the interior of a polygon with n sides
and corners {zj}n

1 . The jth side of this polygon, which is the side between the edges zj and zj+1, can
be parametrized by the expression

z = mj + thj, t ∈ [−1, 1], (2.10)

where mj and hj are defined by

mj = zj + zj+1

2
, hj = zj+1 − zj

2
. (2.11)

Using the above parametrization in equation (2.5) and employing ds = |h| dt, we find that the
global relation for the Laplace equation in a polygonal domain becomes

n∑
j=1

e−imjλ

∫ 1

−1
e−iλhjt

[
|hj|

∂uj

∂N + λhjuj

]
dt = 0, λ ∈ C. (2.12)

Typical boundary conditions for the jth side are given below:

Dirichlet: uj = gj, (2.13)

Neumann:
∂uj

∂N = gj (2.14)

and Robin:
∂uj

∂N + γjuj = gj. (2.15)

In the above equations, gj is a given function and γj is a given constant. If any of the above
boundary conditions is prescribed on each side of the polygon, it follows that the global relation
(2.12) involves n unknown functions. For the particular case that a Dirichlet boundary condition
is prescribed on every side, it is rigorously shown in [6,7], that equation (2.12) together with the
Schwartz conjugate of (2.12) uniquely determine the unknown values {∂uj/∂N }n

1 .
In what follows, we present a simple procedure for computing numerically the n unknown

boundary values for the Laplace, modified Helmholtz and Helmholtz equations in the case that
any of the boundary conditions (2.13)–(2.15) is prescribed on the jth side of the polygon. We
emphasize that it is possible to prescribe different types of boundary conditions on different sides.

3. The approximate global relation
We expand the functions {uj}n

1 and {∂uj/∂N }n
1 in terms of N ∈ Z

+ basis functions denoted by
{Sl(t)}N−1

0 :

uj(t) ≈
N−1∑
l=0

aj
lSl(t),

∂uj

∂N ≈
N−1∑
l=0

bj
lSl(t), j = 1, . . . , n, t ∈ [−1, 1], (3.1)

where aj
l and bj

l are constants. Equations (2.13)–(2.15) imply that for each j there exists a linear

relation between aj
l and bj

l.
Let Ŝl(λ) denote the Fourier transform of Sl(t), i.e.

Ŝl(λ) =
∫ 1

−1
e−iλtSl(t) dt, λ ∈ C. (3.2)

Substituting the expressions (3.1) into the global relation (2.12) and using equation (3.2), we find
the following approximate global relation for the Laplace equation:

n∑
s=1

N−1∑
l=0

e−imsλ[|hs|bs
l + as

l λhs]Ŝl(−iλhs) = 0, λ ∈ C. (3.3)
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Similarly the approximate global relation for the modified Helmholtz equation is given by

n∑
s=1

N∑
l=0

e(ik/2)[m̄s/λ−λms]

[
bs

l |hs| + as
l

k
2

(
λhs + h̄s

λ

)]
Ŝl

[
ik
2

(
h̄s

λ
− λhs

)]
= 0,

λ ∈ C \ {0}. (3.4)

Finally, the approximate global relation for Helmholtz equation is given by

n∑
s=1

N∑
l=0

e(−ik/2)[m̄s/λ+λms]

[
bs

l |hs| + as
l

k
2

(
λhs − h̄s

λ

)]
Ŝl

[
− ik

2

(
h̄s

λ
+ λhs

)]
= 0,

λ ∈ C \ {0}. (3.5)

Recalling that equation (2.12) implies a linear relation between aj
l and bj

l, it follows that equation
(3.3) together with its Schwartz conjugate are two equations with nN unknown constants.
However, it is crucial to observe that λ is an arbitrary complex number. Thus by evaluating
equation (3.3) and its Schwartz conjugate at the M points {λr}M1 where M≥ nN/2, we can
determine the unknown constants. Similar considerations are valid for the modified Helmholtz
and Helmholtz equations.

(a) The choice of the basis functions
Following Fornberg and co-worker [15], we let Sl(t) = Pl(t), where Pl(t) denotes the Legendre
polynomials of order l. It is well known that the Fourier transform of Pl(t) can be expressed
in terms of the spherical Bessel function Jl [22], which in turn can be expressed in terms of the
modified Bessel function Il+1/2. Also, an analytical expression for the Fourier transform of Pl(t) is
given in [23]. Thus, the expressions Ŝl which appear in (3.3)–(3.5) can be computed by

∫ 1

−1
e−iλtPl(t) dt = Jl(λ) =

√
2πλ

λ
Il+1/2(λ) = 2

l∑
k=0

(l + k)!
(l − k)!k!

[
(−1)l+k eiλ − e−iλ

(2iλ)k+1

]
. (3.6)

4. Collocation points
In order to motivate a convenient choice for the collocation points, we concentrate on the
particular side with index p. The global relation (2.12) can be written in the form

∫ 1

−1
e−ihpλtFp(λ, t) dt +

n∑
j=1,j�=p

eiλ(mp−mj)
∫ 1

−1
e−ihjλtFj(λ, t) dt, p = 1, . . . , n, (4.1)

where Fj(λ, t) is given by

Fj(λ, t) = |hj|
∂uj

∂N + λhjuj. (4.2)

Thus, for the particular side with index p, a natural choice for λ is hpλ = real number. However,
it is also desirable to choose this real number in such a way that

R[iλ(mp − mj) − ihjλt] < 0, j = 1, . . . , n, j �= p, t ∈ [−1, 1]. (4.3)

This condition guarantees that as λ → ∞, the contribution from the other sides tends to zero. It is
shown in [21] that for a convex polygon the condition (4.3) can indeed be satisfied provided that
the above number is negative. Thus, for the side p we choose λ by

λp = − h̄pf̃

|hp|2
, f̃ > 0 or λp = −h̄pf , f > 0, p = 1, . . . , n, (4.4)

where f̃ is an arbitrary positive constant, and h̄p denotes the complex conjugate of hp.
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Figure 1. An octagon (typical polygon). The nodes are labelled counter clockwise. (Online version in colour.)

Similarly for the modified Helmholtz equation, the analogue of the first of equations (4.4) is
the equation

kλp = −f̃ h̄p

⎡
⎢⎣1 +

√
1 + [k|hp|/f̃ ]2

|hp|2

⎤
⎥⎦ , f̃ > 0, p = 1, . . . , n, (4.5)

which can also be written in the form of the second of equations (4.4). For the Helmholtz equation,
the analogue of equation (4.5) is the equation

kλp = −f̃ h̄p

⎡
⎢⎣1 +

√
1 − [k|hp|/f̃ ]2

|hp|2

⎤
⎥⎦ , f̃ > 0, p = 1, . . . , n. (4.6)

Thus, this can be written in the form of the second of equations (4.4) provided that f̃ > k|hp|. On
the other hand, if k|hp| > f̃ , then

kλp = f̃ h̄p

⎡
⎢⎣−1 ± i

√
−1 + [k|hp|/f̃ ]2

|hp|2

⎤
⎥⎦ , f̃ > 0, p = 1, . . . , n. (4.7)

The above analysis shows that for a convex polygon an appropriate choice of the collocation
points associated with the side p is λ = −h̄pf , f > 0. We find it convenient to write f in the form
below. Thus, associated with the side p we choose the following M collocation points

λp,r = −h̄p
R
M

r, R > 0, M ∈ Z
+, r = 1, . . . , M. (4.8)

In this way we choose nM collocation points, and hence by evaluating the two global relations
at these points we obtain 2nM equations for nN unknowns. Hence, M must satisfy the constraint
M ≥ N/2. Clearly, M specifies the ‘overdeterminedness’ of the linear system (the larger the M
the larger the overdeterminedness). On the other hand, the parameter R/M defines the distance
between two consecutive collocation points.
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Figure 2. The trapezoidal geometry. (Online version in colour.)
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N

(b)

(c)

(a)

M = 0.5nN, R = 2M
M = nN, R = 2M
M = 2nN, R = 2M

Figure 3. The condition numberK for the octagon geometry. The blue solid line isM= nN/2, R= 2M; the red solid linewith
dots is M= nN, R= 2M and the solid black line with dots is M= 2nN, R= 2M. For the modified Helmholtz and Helmholtz
equations k = √

10. N, number of basis functions on each side. (a) Condition number for Laplace equation; (b) condition
number for modified Helmholtz equation and (c) condition number for Helmholtz equation.

The error of approximating the Dirichlet and Neumann boundary values with the expressions
(3.1) depends on N, whereas the condition number K of the relevant linear system depends on
the quadruple (R, n, N, M). By scrutinizing a variety of numerical experiments, we have found the
following necessary conditions for low K:

M ≥ Nn,
R
M

≥ 2. (4.9)
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Figure 4. The solution and the corresponding absolute error on the first side (a typical side) of the octagon geometry
for the modified Helmholtz equation. Subplot (a) shows the solution, where the blue solid line with dots is the analytical
solution. The red dashed line with the circle is the unified transform solution. Subplot (b) shows the absolute error i.e.
|uA1 (t) − uUT1 (t)|. The wavenumber is k = 2

√
26. The parameters associated with the unified transform solution are n=

8, N = 20, M= 160 and R= 320. The condition number of the systemmatrix isK = 10.0315.

5. Numerical results
In this section, we present the results of a parametric study of the key parameters in the unified
transform, namely (R, n, N, M). Our chosen convex domains are the octagon shown in figure 1
and the trapezoid shown in figure 2. We compare the solution obtained via the unified transform
with an analytical solution and the solution computed via the finite-element method.

(a) The octagon geometry
For the octagon geometry shown in figure 1, we compare an analytical solution to the solution
computed via the above approach. We denote the analytic solution by uA(x, y) and the solution
obtained via the unified transform by uUT(x, y).

We choose the same analytical solution as the one used in [15]. The parametrization error for
this particular solution has been studied in some detail by [15]. The condition number K versus
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Figure 5. The condition number K for the trapezoidal geometry. The blue solid line is M= nN/2, R= 2M; the red solid
line with dots is M= nN, R= 2M and the solid black line with dots is M= 2nN, R= 2M. For the modified Helmholtz
and Helmholtz equations k = √

10. N, number of basis functions on each side. (a) Condition number for Laplace equation;
(b) condition number for modified Helmholtz equation and (c) condition number for Helmholtz equation.

the number of basis functions N on each side of the octagon for different choices of (M, R) is
shown in figure 3. In the case of the Helmholtz and modified Helmholtz equations, we have
fixed the wave number at k = √

10. It can be observed in all three cases, namely the Laplace, the
modified Helmholtz and the Helmholtz equations, the choice of M = nN, R/M = 2 results in a low
condition number.

The comparison of the analytical solution and the solution obtained via the unified transform
method for one side of the octagon is shown in figure 4. It can be observed that the unified
transform provides an accurate solution. Furthermore, the choice of M = nN, R/M = 2 results in
the low condition number of K= 10.0315.

(b) The trapezoidal geometry
We now consider a case for which we cannot obtain an analytical solution. Consider the
trapezoidal domain shown in figure 2. We choose a Robin boundary condition on side 1 and
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Figure 6. The solution us(t) (s= 1, . . . , 4) on each side of the trapezoid for the modified Helmholtz equation. On the plots
in the first column, the solid blue line with dots is the solution using the unified transform, whereas the red line with circles is
the solution using the finite-element method. The figures on the second column show the corresponding absolute difference.
The parameters associated with the unified transform are N= 10, M= 4N, R= 2M,

√
k = 10. Using these parameters the

condition number of the systemmatrix isK = 10.9499.

homogeneous Neumann boundary condition on the remaining sides:

∂u1

∂N + u1 = 1;
∂uj

∂N + uj = 0, j = 2, 3, 4. (5.1)

The results of the parametric study for the trapezoid is shown in figure 5. The results reconfirm
the parametric study of the octagon and reveal that the choice M = nN, R/M = 2 ensures a low
condition number.
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To validate the unified transform solution, we compare it with the solution obtained using
the finite-element method [24]. We have used linear finite elements and the finite-element mesh
of the trapezoidal geometry involves a total of 1954 nodes, 3715 triangles and the boundary has
191 edges. This comparison is shown in figure 6. The results show an excellent agreement between
the finite element method and the unified transform.

6. Conclusion
The so-called global relations play a crucial role in the construction of analytical solutions for both
evolution and elliptic PDEs. For the Laplace, modified Helmholtz and Helmholtz equations, the
global relations are equations (2.5), (2.7) and (2.9), respectively, as well as the equations obtained
from these equations by taking the complex conjugate and then replacing λ̄ by λ. By employing
the fact that λ is arbitrary, the global relations provide an elegant characterization of the Dirichlet
to Neumann map.

It has been realized since the work of [16] that the global relations can be solved numerically.
In this direction, different numerical techniques have been derived by several authors, see
e.g. [13–21]. Here, following Fornberg and co-worker, we use the Legendre basis and also
overdetermine the relevant system; furthermore motivated by the results of [21], we introduce a
simple choice of ‘collocation’ points, see equation (4.8). This choice involves the positive number R
and the positive integer M; M is a measure of overdeterminancy and R/M is the distance between
two consecutive points.

We provide strong numerical evidence that if M and R satisfy the constraints given by equation
(4.9) then the condition number of the associated system is of order 1. For example, for the
trapezoidal domain analysed in [14,15] the condition number reduces from O(108) to 4.7.

We next discuss the relation of the method presented in this paper with two other methods for
solving linear elliptic PDEs in the literature which are also based on the relation (2.2):

(i) The null field method for the solution of the Helmholtz equation in the exterior of a bounded
obstacle (originally introduced by Waterman in [25,26]) and (ii) a method for the solution of
the Helmholtz equation above a periodic rough surface introduced by DeSanto [27] and further
developed by DeSanto and co-workers [28–31]. The advantage of these two methods, as well as
of the method described in this paper, is that they are boundary-based discretizations that do
not involve the computation of singular integrals (as opposed to the discretizations of boundary
integral equations). Relations between these methods are discussed in detail in [32, §10] and
[33, §4]. In the null-field method, u in (2.2) is the solution of the Helmholtz equation in the
exterior of a bounded obstacle, and v is one of a countable family of separable solutions of
the Helmholtz equation in polar coordinates that satisfies the appropriate radiation condition
(see, e.g. [34, §7.5]). The main difference between the null-field method and the method in this
paper are the following: (i) the former method is used for an exterior of an obstacle, whereas the
current method is used for the interior of a polygon and (ii) in the null-field method the unknown
boundary value is expanded in a global basis (i.e. one in which the support of the basis functions
is the whole of ∂Ω), whereas the method in this paper uses local bases (where each basis function
is supported only on one side of the polygon). Regarding the method of DeSanto, u in (2.2) is
the solution of the Helmholtz equation above a periodic rough surface, and v is chosen to be one
of a countable family of separable solutions of the Helmholtz equation in Cartesian coordinates
(so-called generalized plane waves) that satisfies the appropriate radiation condition. This method
has been implemented with a variety of different bases chosen to express the unknown boundary
value. Indeed, the authors of [30] proposed two different bases for the unknown boundary value
to be expanded in: a local basis consisting of piecewise-constant basis functions, and a global
basis consisting of the traces of the functions v in (2.2), and the authors of [31] proposed a variant
of the second basis, where the complex-conjugates of the functions v, instead of the functions
themselves, are used. An important point to note is that in both the null-field method and the
method of DeSanto there is no flexibility in the choice of v, and thus there is no analogue of the
question of how to choose λ in the global relations.
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