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Abstract: Transmissible gastroenteritis virus (TGEV) is the etiologic agent of transmissible
gastroenteritis in pigs, and the N-terminal domain of TGEV spike protein is generally recognized as
both the virulence determinant and enteric tropism determinant. Here, we assembled a full-length
infectious cDNA clone of TGEV in a bacterial artificial chromosome. Using a novel approach, the
clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9
(Cas9) systems efficiently and rapidly rescued another recombinant virus with a 224-amino-acid
deletion in the N-terminal domain of the TGEV Spike gene (S_NTD224), which is analogous to
the N-terminal domain of porcine respiratory coronavirus. S_NTD224 notably affected the TGEV
growth kinetics in PK-15 cells but was not essential for recombinant virus survival. In animal
experiments with 13 two-day-old piglets, the TGEV recombinant viruses with/without S_NTD224
deletion induced obvious clinical signs and mortality. Together, our results directly demonstrated that
S_NTD224 of TGEV mildly influenced TGEV virulence but was not the enteric tropism determinant
and provide new insights for the development of a new attenuated vaccine against TGEV. Importantly,
the optimized reverse genetics platform used in this study will simplify the construction of mutant
infectious clones and help accelerate progress in coronavirus research.

Keywords: transmissible gastroenteritis virus; spike gene; enteric tropism; reverse genetics;
CRISPR/Cas9

1. Introduction

Coronaviruses (CoVs) are single-stranded, positive-sense RNA viruses closely related to animal
and human health [1–3]. CoVs belong to the Coronaviridae family, which consists of the Alpha-, Beta-,
Gamma-and Deltacoronavirus genera [4]. Since 2003, CoVs, including severe acute respiratory syndrome
CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and porcine epidemic diarrhea
virus (PEDV), have swept across the world and caused considerable global economic losses [5–9]. As
the largest RNA genome viruses, CoVs have at least six typical overlapping open reading frames
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(ORFs), which encode polyprotein 1a (pp1a), polyprotein 1ab (pp1ab), spike (S) glycoprotein, envelope
(E) protein, matrix (M) protein, and nucleoprotein (N) [10,11].

Transmissible gastroenteritis virus (TGEV), one of the representative CoVs of the Alphacoronavirus
genus, is the etiologic agent of transmissible gastroenteritis (TGE) in pigs [12]. TGEV is widespread
in the pork industry, causes high mortality in neonatal pigs, and is generally thought to share a
common ancestor with porcine respiratory coronavirus (PRCV) [13]. Both TGEV and PRCV have a
common cell receptor, aminopeptidase N (APN), but a coreceptor (Neu5Gc) of TGEV is recognized to
confer enteric tropism to TGEV [14–17]. In addition, TGEV always causes severe diarrhea, whereas
PRCV usually causes mild or no clinical signs [18]. Compared with TGEV Spike gene, large deletions
(200–230 aa) were found in the N-terminal domain of PRCV Spike gene [19]. The N-terminal domain
of the S-glycoprotein is considered to be responsible for the different clinical signs of TGEV and
PRCV and is generally recognized as not only the virulence determinant but also an enteric tropism
determinant [13,20]. Previous research has shown that PRCVs are likely derived from an N-terminal
amino-acid deletion of the TGEV Spike protein [15,21], but direct evidence obtained from reverse
genetics is still needed to confirm this hypothesis.

Since the first successful construction of TGEV infectious clones, the various reverse genetic
systems that have been developed have made a considerable contribution to CoV research, particularly
research in MERS, SARS, TGEV, and PEDV [22–27]. Among the various reverse genetics methods
for CoVs, transfection of the full-length infectious cDNA clone and cotransfection of the full-length
RNA and N gene transcripts are the most commonly adopted methods for the rescue of recombinant
viruses [25,26,28–30]. However, these methods usually require the manipulation of several cDNA
fragments or plasmids for the construction of a new mutant CoV [31]. Although targeted RNA
recombination or the Red-mediated recombination strategy might partly accelerate or simplify the
process of constructing an infectious recombinant virus, the selection of the correct positive clone
is also a time-consuming process [32–35]. In fact, the limitations of the various currently available
traditional reverse genetics methods for CoV genome manipulation, such as ligation with several
cDNA fragments in vitro, targeted RNA recombination, division of toxic gene sequence propagation
in bacteria, or recombinant vaccinia virus vectors, have severely hampered the speed and efficiency of
developing CoV reverse genetics techniques [23,36–38].

CRISPR/Cas systems, which constitute a recent new gene editing technology developed from the
RNA-mediated adaptive defense systems evolved by bacteria and archaea, have been applied to a wide
variety of organisms for the in vivo editing of large genomes [39–41]. Furthermore, some studies have
investigated the in vitro editing of DNA fragments or plasmids [42–44]. In general, the CRISPR/Cas
system from Streptococcus pyogenes, namely, the SpyCas9 protein with a mature single-guide RNA
(sgRNA), is used for in vitro DNA cleavage [42]. However, the in vitro editing of RNA virus genomes,
particularly viruses with large RNA genomes, such as CoVs, using this method has not been reported.

In this study, we successfully constructed a TGEV infectious clone and utilized the molecular
scissors of the CRISPR/Cas9 system to rescue another TGEV mutant with S_NTD224 deletion [45].
Through animal experiments involving challenge with two types of rescued recombinant TGEV viruses,
we elucidated that TGEV S_NTD224 was not the determinant in viral enteric tropism and pathogenesis.

2. Materials and Methods

2.1. Cells and Viruses

PK-15 cells were cultured in Dulbecco’s modified Eagle’s medium (Gibco, Waltham, MA, USA)
supplemented with 10% fetal bovine serum at 37 ◦C with 5% CO2. TGEV strain WH-1 (GenBank
accession number HQ462571) was propagated at 37 ◦C in a 5% CO2 incubator in Dulbecco’s modified
Eagle’s medium (Gibco, Waltham, MA, USA) supplemented with 2% fetal bovine serum (Gibco,
Waltham, MA, USA). All the experiments using live viruses were performed under biosafety level
(BSL) 2 conditions.
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2.2. Amplification of TGEV cDNAs and Sequence Analysis

Total RNA was extracted from virus-infected cultures using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA), and cDNA was reverse transcribed with reverse transcriptase (Takara, AMV, Kusatsu,
Japan) using random primers (Takara, Kusatsu, Japan, 6 mer). All the fragments were amplified by
polymerase chain reaction (PCR) with Phanta Super Fidelity DNA polymerase (Vazyme, Nanjing,
Jiangsu, China).

The natural complete genome of TGEV WH-1 was determined by sequencing (GenScript, Nanjing,
China) the overlapping PCR products cloned into the corresponding vectors in triplicate. Compared
with the parental TGEV WH-1 from NCBI (Bethesda, MD, USA), several site mutations, including
T6299C, G11123T, G25943C, C26094T, and C26336G, were observed, and these mutations were
maintained during the cloning of the TGEV full-length genome. A point mutation, A4553T, was
introduced by overlap extension PCR to remove the natural Van91I site and maintained as the rescue
marker. As described in previous research, the EGFP gene was inserted into the TGEV genome [46,47]
to replace the original sequence positioned from 24,826 to 28,580.

2.3. Construction of the TGEV Subclones

The virus genome was divided into six continuous fragments (A to F), and each fragment was
amplified from the total cDNA using specific primers (available upon request). Fragments A, B, D,
and E were cloned into the pMD18-T vector (Takara, Kusatsu, Japan). Fragment A was cloned with the
SacI and Van91I sites, and fragment E was cloned with the Van91I and KasI sites. Notably, fragment
A was cloned to contain a SacI site (GAGCTCGTTTAGTGAACCGT) [48] located in the 5′ terminal
of the TGEV genome sequence. Fragments B and D were cloned with Van91I sites. Fragment C was
cloned into a BAC plasmid (kindly provided by Prof. Cao Gang) that was modified from pBeloBAC11
to include a Van91 site [36]. Fragment F was also cloned into the BAC plasmid with SacI and KasI sites
introduced at the 5′ and 3′ termini of the TGEV genome, respectively. As the final recipient BAC vector,
subclone F also contained the synthesized essential element sequences, such as the CMV promoter,
the poly(A) tail sequence (25A), the HDV RZ sequence (hepatitis delta virus self-cleaving ribozyme
sequence, Rz), and the bovine growth hormone (BGH) transcription terminal signal (GenScript,
Nanjing, China) [49].

2.4. Assembly of Full-length TGEV Infectious Clone

After the six subclones were sequenced in their corresponding vectors, subclones A and E were
first digested with SacI and KasI, respectively, and then treated with calf intestinal alkaline phosphatase
(CIAP, Scientific). All the subclones were then digested with Van91I except subclone F, which was
digested with SacI and KasI. Subsequently, all the digested products were purified with a gel extraction
kit (Omega, Norcross, GA, USA), and fragments A to F were ligated for more than 2 h at 16 ◦C and
transformed into chemically competent DH10B cells (Biomed, Beijing, China). After determination
of all the fragments by bacterial PCR, the positive clones were further determined by restriction
fragment length polymorphism with KpnI, and the correct clone was designated pTGEV-GFP BAC
after sequencing (GenScript, Nanjing, China).

2.5. Rescue of the TGEV-GFP Infectious Clone in PK-15 Cells

PK-15 cells were seeded in a six-well plate and incubated for 12 h, and the recovery of TGEV-GFP
or TGEV-GFP-∆S_NTD was then performed by transfecting 5 µg of the corresponding BAC into PK-15
cells with 8 µL of Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). At 48 h post-transfection, the
collected virus progenies were purified once by fluorescent plaques. Subsequently, the purified virus
clone was amplified and stored until use at −80 ◦C.
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2.6. sgRNA Generation and Evaluation of Its Transcript Integrity and Quantity

For the design of a sgRNA to mediate cleavage of the targeted site, a constant reverse primer
(ssDNA-R) and two forward primers (ssDNAa-F and ssDNAb-F) specific for sites a and b were
synthesized as shown in Table 1, similar to the protocol described in a previous report [45]. To anneal
the primers ssDNAa-F and ssDNAb-F with the reverse primer ssDNA-R, PCR was conducted for
30 cycles at 95 ◦C for 15 s, 55 ◦C for 15 s, and 72 ◦C for 20 s using 2× UTaq MasterMix (Zoman).
The PCR products were then purified with CP buffer (Omega, Norcross, GA, USA) and transcribed
using a T7 transcription kit (NEB, Ipswich, MA, USA) according to the manufacturer’s instructions
to produce the targeted sgRNA a and sgRNA b. The purity of the sgRNA products was analyzed by
electrophoresis on agarose gels using 0.5 µg of each sgRNA product.

Table 1. Details of the oligonucleotide primers used to produce the specific sgRNA for the double
digestion of targeted BAC.

Primer Sequence

ssDNAa-F TTAATACGACTCACTATA GGCTCCACAAAATCAATTGA GTTTTAGA GCTAGA
ssDNAb-F TTAATACGACTCACTATA GGTCTTGGTATGAAGCGTAG GTTTTAGA GCTAGA

ssDNA-R AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAA
CGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC

2.7. Specific Cleavage of pTGEV-GFP BAC by the CRISPR/Cas9 System In Vitro

To modify the sequence of TGEV S_NTD224, pTGEV-GFP BAC was digested using the targeted
sgRNAs. Specifically, pTGEV-GFP BAC was digested in a 50 µL reaction mixture with 5 µg of
pTGEV-GFP BAC, 5 µL of Cas9 (NEB, Ipswich, MA, USA), 10 µg of sgRNA, and 5 µL of nuclease
reaction buffer incubated at 37 ◦C for more than 2 h or, preferably, overnight.

2.8. Construction and Recovery of the Recombinant Virus Containing the S_NTD224 Mutation

For purification of the digested pTGEV-GFP BAC, an equivalent volume of Solution I (plus RNase;
Omega, Norcross, GA, USA) was first added to digest the sgRNA at room temperature for 3 min, and
the CP buffer (OMEGA, Norcross, GA, USA) was then applied to recycle the digested BAC according
to the manufacturer’s instructions. The PCR products with the 672-bp deletion were constructed by
two-cycle PCR. First, the primers rec-672SF and δS-NTDR or the primers rec-672SR and δS-NTDF
(Table 2) were used to amplify the primary PCR products from the template of the pTGEV-GFP BAC.
Second, the two primary PCR products were annealed to produce PCR products of the 672-bp deletion
using the primers rec-672SF and rec-672SR (Table 2). Homologous recombination was then performed
using the ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, Jiangsu, China) according to the
manufacturer’s instructions using 200 ng of recycled linearized pTGEV-GFP BAC, 45 ng of PCR
products of S_NTD and two pairs of primers (rec-672SF/δS-NTDR and rec-672SR/δS-NTDF) (Table 2).
Subsequently, a pair of primers (PrimerF/PrimerR) (Table 2) was designed to amplify the sequence
of the modified S_NTD224 area for sequencing (GenScript, Nanjing, China). The recombinant virus
corresponding to the correct pTGEV-GFP-∆S_NTD BAC was then recovered as described above.

2.9. Growth Curves of Viruses

PK-15 cells were infected with TGEV WH-1 or a recombinant virus (TGEV-GFP or
TGEV-GFP_∆S_NTD) at a multiplicity of infection (MOI) of 0.01 in six-well plates for 1 h and then
washed three times with phosphate-buffered saline (PBS). Subsequently, the supernatants of the
infected cells at 12, 24, 36, and 48 h post-infection were collected and stored at −80 ◦C. The viral titers
at each time point were determined by TCID50. The viral titers of the two recombinant viruses could
also be determined by obvious green fluorescence at 24 h post-infection, but a more obvious CPE of
the virus could be observed at 48 h post-infection.
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Table 2. Details of the oligonucleotide primers used to construct and detect the transmissible
gastroenteritis virus (TGEV) S_NTD224 for recombination.

Primer Sequence

rec-672SF GATGGCTCCACAAAATCAA
δS-NTDR GTAGTACCATTTTTATTTCCATAAATCAATGGCATTACG
δS-NTDF AATAAAAATGGTACTACCGTAG
rec-672SR TGGGTTGACCATAACCAC
PrimerF GACGCAGACTTCAGTGTTAC
PrimerR TCAGAACGAATACAGTACAC

F1 AGGGTAAGTTGCTCATTAGAAATAATGG
R1 CTTCTTCAAAGCTAGGGACTG
F2 TTGTGGTTTTGGTCGTAATGCC
R2 GGCTGTTTGGTAACTAATTTACCA

2.10. Viral Fluorescent Plaque Assay

PK-15 cells in six-well plates were inoculated with 10-fold serially diluted recombinant virus.
After virus adsorption for 30 min, monolayer cells were washed three times with PBS and overlaid
with a mixture of 2% low-melt agarose and 2 times the concentration of DMEM (Invitrogen, Carlsbad,
CA, USA) supplemented with 4% fetal bovine serum (Gibco). The overlay was then solidified at
4 ◦C for 10 min. Subsequently, the plates were cultured at 37 ◦C in a 5% CO2 incubator, and 4 days
post-infection, the fluorescent plaques were visualized by fluorescence microscopy.

2.11. Animal Experiments with Piglets

Thirteen 2-day-old piglets from a TGEV-free sow were randomly divided into three groups
and fed fresh liquid milk diluted in warm water every 4 h. All piglets were confirmed to be free
of TGEV, PEDV, porcine delta coronavirus (PDCoV), and rotavirus (RV) through a RT-PCR assay of
piglet feces before viral challenge. The piglet weights were measured and recorded at the beginning
of the challenge. The piglet challenge group was intranasally and orally inoculated with 500 µL
(1 × 105 TCID50) of chimeric virus, and the mock-infected control group was intranasally and orally
inoculated with 500 µL of DMEM.

The piglets were monitored for their clinical status every 4 h. Any piglet exhibiting moribund
signs were euthanized. At 7 days post-inoculation, all surviving piglets were euthanized consecutively
to reduce the stress of the other piglets. Before necropsy, the weight of each piglet was recorded.
At necropsy, five sections of the duodenum, jejunum, ileum, colon and stomach were collected, fixed
in 10% formalin for histopathological examination and stained with hematoxylin and eosin (HE). After
necropsy, samples of jejunal contents and lung tissue were collected for virus detection by nested
RT-PCR using the specific primers F1/R1 and F2/R2 (Table 2) [50].

2.12. Ethics Statement

The animal experiments were performed according to the protocols approved by The Scientific
Ethics Committee of Huazhong Agricultural University (Permit number: HZAUSW-2017-007). The
animal care and maintenance protocols complied with the recommendations detailed in the Regulations
for the Administration of Affairs Concerning Experimental Animals made by the Ministry of Science
and Technology of China.

3. Results

3.1. Design of a TGEV Infectious Clone and Rescue of the Recombinant Virus

To construct an infectious clone of TGEV, six overlapping cDNA fragments designated A to F
were generated by reverse transcriptase PCR (RT-PCR) using total RNA extracted from PK-15 cells
infected with TGEV WH-1 (Figure 1A,B). Fragments A, B, D, and E were cloned into the pMD18-T
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vector, and fragments C and F were cloned into the bacterial artificial chromosome (BAC) to produce
the corresponding subclones. Subclone F was also constructed as the final recipient BAC vector
by inserting the cytomegalovirus (CMV) promoter at the 5′ terminus of fragment F and a 25-bp
poly(A) tail (25A) followed by the hepatitis delta virus ribozyme (Rz) and bovine growth hormone
(BGH) transcription terminal signal sequences at the 3′ terminus of fragment F (Figure 1B). To more
conveniently observe the chimeric virus and exclude the influence of the accessory gene ORF3 on
TGEV enteric tropism and virulence, the gene encoding ORF3 at the genome position from 24,826 to
28,580 was replaced by the EGFP gene (Figure 1A,B). Through the one-step assembly of fragments A to
F, we successfully obtained a full-length cDNA infectious clone of TGEV, designated pTGEV-GFP BAC
(Figure 1B,C). The full-length pTGEV-GFP BAC was verified by sequencing. After propagation for
more than 200 generations in E. coli DH10B cells, pTGEV-GFP BAC digestion with the KpnI enzyme,
which produced six different fragment products, also confirmed the correct pTGEV-GFP BAC clone
(Figure 1C,D). In other words, the cloning of fragment C into the BAC yielded no toxic sequences in
any of the experiments.
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Figure 1. Construction of the TGEV-GFP infectious bacterial artificial chromosome (BAC) clone. The
number represents the nucleotide (nt) position in the TGEV genome. (A) Structure of the TGEV genome.
The 5′ and 3′ UTRs represent the 5′ and 3′ untranslated regions, respectively. (B) The TGEV genome
was divided into six contiguous cDNAs (A to F): A, −14 to 4024; B, 4025 to 7467; C, 7468 to 10,968;
D, 10,969 to 15,148; E, 15,149 to 23,454; and F, 23,455 to 28,580. A4553T was introduced to ablate a
natural Van91I site at nt 4553 (N). The CMV promoter, fragment F, a 25-bp poly(A) tail (25A), hepatitis
delta virus self-cleaving ribozyme sequence, Rz (HDV RZ), and the bovine growth hormone (BGH)
transcriptional terminal signal were inserted into the BAC to form the final recipient BAC vector or
subclone F. The following restriction sites are noted: SacI (−14), Van91I (4024, 7467, 10,968, and 15,148)
and KasI (23,454). The EGFP gene replacing open reading frame 3 (ORF3) is noted at 24,826 and 25,692.
(C) Schematic map of pTGEV-GFP BAC restriction enzyme digestion by KpnI. (D) The left lane is the
DL15000 DNA marker, and the right lane is the product of pTGEV-GFP BAC by KpnI digestion.
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To rescue the recombinant CoV of TGEV-GFP (corresponding to pTGEV-GFP BAC), the
pTGEV-GFP BAC was transfected into PK-15 cells using Lipofectamine 2000. Sporadic green
fluorescence was observed 24 h post-transfection, as depicted in Figure 2A, but the infected PK-15 cells
grew and showed a normal morphology. However, compared with the mock-infected group, obvious
green fluorescence and the cytopathic effect (CPE) could be observed 48 h post-transfection (Figure 2B).
Western blot and RT-PCR assays were performed to further confirm the recombinant virus TGEV-GFP.
The 43.5-kilodalton band of TGEV N protein (Figure 2C) and the marker mutation at position 4553 in
the TGEV genome (Figures 1B and 2D) confirmed the recovery of the TGEV-GFP recombinant virus.
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Figure 2. Rescue of the TGEV-GFP infectious clone in PK-15 cells. (A) PK-15 cells were infected with
the recombinant or parental virus or mock infected, and at 24 h post-infection, their green fluorescence
was visualized. (B) CPE or green fluorescence of PK-15 cells infected with the recombinant viruses
TGEV-GFP or parental TGEV or mock infected was visualized at 48 h post-infection. (C) The expression
of the TGEV N protein in PK-15 cells infected with recombinant TGEV-GFP or mock infected was
analyzed by Western blotting using rabbit poly-antiserum against TGEV N protein. (D) The mutation
of A4553T at nt 4553 was determined by sequencing after performing RT-PCR in triplicate.
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3.2. Establishment of a Novel Approach for Coronavirus Gene Editing Using the CRISPR-Cas9 System

Spike with N-terminal 224 aa deletion in TGEV WH1 is analogous to the spike of a reported
natural PRCV strain (Figure 3A). To verify whether S_NTD224 is the enteric tropism determinant
for TGEV, we used the CRISPR-Cas9 system to efficiently manipulate the TGEV gene. Briefly, two
specific enzyme sites encompassing the sequence of S_NTD224 were selected. We then synthesized
two types of single-stranded DNA forward primers (ssDNAa-F or ssDNAb-F) and a constant reverse
primer (ssDNA-R) (Table 1) corresponding to the two enzyme cutting sites, designated sites a and b
(Figure 3C). After annealing PCR using the forward and reverse primers, the purified PCR products of
short DNA fragments were transcribed by T7 RNA polymerase (Figure 3B). The transcribed products
corresponding to sites a and b (designated sgRNA a and sgRNA b) (Figure 3C) were incubated with
the nuclease Cas9 to digest the pTGEV-GFP BAC in vitro, and the digestion yielded a linearized BAC
and a ~2.1-kb DNA fragment that included the sequence of S_NTD224 (Figure 3A,D).
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Figure 3. Specific cleavage of pTGEV-GFP BAC by the CRISPR/Cas9 system in vitro. (A) The
specific sequence at residues 17-240 were deleted from the N-terminal domain of the TGEV Spike
gene. The GenBank accession number of the PRCV S protein partial sequence is BAG83239.1.
(B) Annealing PCR with the two specific primers was performed to transcribe the targeted sgRNA
in vitro. (C) Electrophoresis detection of the purity of the transcription product from the annealing
DNA fragments. The targeted sites a and b of pTGEV-GFP used for digestion are marked with red
arrows. (D) Specific cleavage of pTGEV-GFP to delete the sequence containing S_NTD224. The
pTGEV-GFP BAC digested by Cas9, guided by sgRNA a and sgRNA b, was detected by electrophoresis.
(E) Electrophoresis identification of the pTGEV-GFP-∆S_NTD by RT-PCR using a pair of primers
(rec-672SF and rec-672SR).

To construct the mutant infectious clone of the S_NTD224 deletion (designated
pTGEV-GFP-∆S_NTD BAC) from the pTGEV-GFP BAC, we produced a 672-nucleotide deletion-specific
mutation PCR product using two pairs of primers (rec-672SF/δS-NTDR and rec-672SR/δS-NTDF)
(Table 2). The mutation PCR products were then recombined into the linearized BAC vector cleaved
from the full-length pTGEV-GFP BAC (Figure 3D). After the recombination products were transformed
into DH10B competent cells, all 10 monoclonal colonies were identified as positive clones by PCR
using the primer pair rec-672SF/rec-672SR (Figure 3E). The sequencing of three randomly selected
monoclonal colonies also confirmed the positive pTGEV-GFP-∆S_NTD BAC, and we then constructed
an infectious clone with the corresponding 224-aa deletion in the N-terminus of the TGEV-GFP S
protein by sequencing one entire genome of the three positive clone (Figure 3E).
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3.3. Recovery and Characteristics of the Mutant Virus TGEV-GFP-∆S_NTD in PK-15 Cells

We rescued the recombinant virus TGEV-GFP-∆S_NTD from PK-15 cells as previously described,
and sporadic and more obvious green fluorescence was observed at 24 and 48 h post-transfection,
respectively (Figure 4A). We then verified the modified virus TGEV-GFP-∆S_NTD by RT-PCR using
the primers PrimerF and PrimerR (Table 2). An obvious deletion of approximately 600 bp was observed
in TGEV-GFP-∆S_NTD in comparison with TGEV-GFP (Figure 4B). Subsequently, the RT-PCR product
was sequenced using the primers PrimerF and PrimerR (Figure 4C). Comparison with the pTGEV-GFP
BAC showed that all the modified nucleotides were correct, as depicted by the model shown in
Figure 4D.
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Figure 4. Rescue of TGEV-GFP-∆S_NTD infectious clone in PK-15 cells. (A) CPE or fluorescence
microscopy of PK-15 cells infected with the recombinant virus TGEV-GFP-∆S_NTD or mock infected
at 24 and 48 h post-transfection. (B) Electrophoresis detection of recombinant TGEV-GFP and
TGEV-GFP-∆S_NTD by RT-PCR using the primers rec-672SF and rec-672SR; (C) Sequence analysis
of the targeted mutation area between recombinant TGEV-GFP and TGEV-GFP-∆S_NTD by RT-PCR
sequencing. (D) Model for the simultaneous construction of numerous infectious clones including
S_NTD224. (E) Growth curves with the wild-type viruses TGEV-GFP and TGEV-GFP-∆S_NTD
with an original MOI of 0.01. (F) Viral fluorescent plaques between recombinant TGEV-GFP and
TGEV-GFP-∆S_NTD. The red box represents the size of the viral fluorescent plaques.
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To further evaluate the role of S_NTD224 in TGEV, we measured the growth kinetics of the
wild-type virus, TGEV-GFP and TGEV-GFP-∆S_NTD. The replication kinetics of the TGEV-GFP
and wild-type viruses were comparable to each other and considerably different from those of
TGEV-GFP-∆S_NTD (Figure 4E). Twelve hours after inoculation, the titer of TGEV-GFP was more than
10-fold greater than that of TGEV-GFP-∆S_NTD (Figure 4E). To further identify the effect of S_NTD224
on TGEV, we also analyzed the fluorescent viral plaques. The plaque size of TGEV-GFP-∆S_NTD was
notably different from that of TGEV-GFP (Figure 4F), which also indicated that TGEV-GFP infected
cells more effectively than TGEV-GFP-∆S_NTD.

3.4. S_NTD224 Is Not the Enteric Tropism Determinant for TGEV

To validate whether S_NTD224 determines the enteric tropism of TGEV, 13 two-day-old piglets
were randomly divided into three groups, with five piglets in each virus-infected group and three
piglets in the mock-infected control group. The piglets in the two virus-infected groups were inoculated
intranasally and orally at a dose of 1× 105 50% tissue culture infective dose (TCID50) with the respective
chimeric virus, and the mock-infected control piglets were inoculated with Dulbecco’s modified Eagle’s
medium (DMEM). All the piglets in the TGEV-GFP group exhibited severe clinical symptoms and
weight loss, and those in the TGEV-GFP-∆S_NTD group showed ameliorated but still obvious clinical
symptoms (Figure 5A,B). In addition, the piglets in the TGEV-GFP and TGEV-GFP-∆S_NTD groups
appeared moribund within 3 days postinoculation, whereas the piglets in the mock-infected control
group remained healthy (Figure 5C). In addition, the piglets in the TGEV-GFP group showed a
higher mortality rate (as high as 100%) and presented earlier symptoms compared with those in the
TGEV-GFP-∆S_NTD group, which showed 40% mortality at 3 days postinoculation (Figure 5A,C).
To better detect the presence of the inoculated virus in the euthanized piglet intestine, the presence
of both TGEV-GFP and TGEV-GFP-∆S_NTD in intestinal tissue was detected by nested PCR using
the primer pairs F1/R1 and F2/R2 (Table 2). TGEV-GFP and TGEV-GFP-∆S_NTD were detected in
intestinal tissue from the moribund piglets (Figure 5D), but no chimeric virus was detected in the two
piglets in the TGEV-GFP-∆S_NTD group that were euthanized at 7 days post-inoculation (Figure 5D).
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Figure 5. Pathogenicity evaluation and detection of the recombinant virus. (A) Clinical status scores of
the piglets: 0, normal piglets; 1, piglets that moved slowly; 2, piglets that tended to lie down; 3, piglets
that often lied down; and 4, piglets that were unstable to stand or moribund. (B) Average weight gain
of the piglets at the time of euthanasia. (C) Percent survival of the different piglet groups. (D) Virus
detection in intestinal tissue by nested-RT-PCR. All intestinal tissue samples were collected when the
piglets were moribund or euthanized at 7 days post inoculation.
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The postmortem of the moribund piglets in the TGEV-GFP and TGEV-GFP-∆S_NTD groups
revealed that the small intestines were filled with watery contents. In particular, the intestinal walls
in the jejunal section of the intestines of these piglets were clearly thinner and more transparent
compared with those of the mock group (Figure 6A). HE staining compared with the normal mock
group also revealed that the TGEV-GFP chimeric viruses caused more severe intestinal tissue damage
than TGEV-GFP-∆S_NTD (Figure 6B). More severe villous atrophy was observed in the small intestine,
particularly the jejunum and ileum, of the piglets in the TGEV-GFP and TGEV-GFP-∆S_NTD groups
compared with those of the mock group (Figure 6B). Collectively, these results suggested that
S_NTD224 has not altered the enteric tropism for TGEV but exerts a mild influence on TGEV virulence.
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Figure 6. Gross lesions and histopathological examination of piglets challenged by recombinant
viruses: (A) Gross lesions after the piglets were euthanized. The piglets in the TGEV-GFP and
TGEV-GFP-∆S_NTD groups showed obvious colon damage compared with those of the mock group.
(B) Histopathological examination of different tissue sections, including the stomach, duodenum,
jejunum, ileum and colon, from the piglets.

4. Discussion

The N-terminal domain of Spike protein is recognized as the TGEV enteric tropism determinant
in piglets, as demonstrated through comparisons of the sequences of natural TGEV isolates or those
obtained after continuous passage in cell culture [13,51,52], but more direct evidence is still needed.
In this study, based on a DNA-launched infectious clone, we used a novel CoV gene editing method to
efficiently perform CoV targeted gene editing. Using reverse genetics, we found that S_NTD224 was
not the enteric tropism determinant for TGEV. The relevant insights regarding the novel CoV targeted
gene editing method and TGEV S_NTD224 are discussed below.
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4.1. Efficient Targeted CoV Gene Editing

Because CoVs are the viruses with the largest RNA genomes, the construction of a CoV infectious
clone is hampered by two main challenges: large full-length cDNA and toxic sequences in the bacterial
clone [31,53]. Although the problem of CoV cDNA sequence instability has been overcome by several
methods, the manipulation of the large full-length CoV genome remains a considerable challenge.
Until now, the direct editing of the full-length cDNA of CoVs has not been reported. In this study, we
constructed a TGEV-GFP infectious clone by ligating six fragments in one step [49]. The CRISPR/Cas9
system was then used to finish the construction of pTGEV-GFP-∆S_NTD. To our knowledge, this
study provides the first demonstration of the direct in vitro manipulation of full-length coronavirus
cDNA. To edit specific CoV genes, targeted cleavage of the BAC was completed by Cas9 protein
through a reaction mediated by two types of sgRNA transcribed together or separately (Figure 3B,D).
sgRNA can be easily obtained by annealing PCR and transcription using an available kit. Moreover,
regardless of the exonuclease trimming activities of Cas9 [45], in the experiment, we were able to
insert the mutated fragments in the linearized BAC with 200-bp overlapping sequences through
homologous recombination.

Notably, numerous mutation fragments can be inserted efficiently into the linearized BAC at
the same time (Figure 4D), which is perfect for the construction of a viral mutant library [54–56].
Similar to traditional plasmid manipulation, we edited the targeted gene by recombination in vitro
with overlapping PCR products (e.g., mutations, deletions, or insertions). Moreover, as little as 100 ng
of linearized, digested BAC was sufficient to complete the recombination reaction. To determine the
mutation of the targeted BAC, we only needed to amplify the fragments by bacterial PCR using a
pair of primers in duplicate, and this assay can be used to sequence the site of recombination and the
modified fragment area. Furthermore, almost any area of the targeted BAC can be simply cleaved by
the CRISPR/Cas9 system with two types of specific sgRNA. Throughout the process, we accomplished
recombinant virus recovery using only one plasmid of BAC in a single week (Figure 3). Namely, once an
infectious clone was constructed, the recombinant coronaviruses was more efficiently and conveniently
rescued in this study than in previous research, and the proposed approach thus greatly accelerates
the gene editing speed of large RNA virus rescue. Moreover, the simple manipulation of a BAC vector
and modification of the specific small region throughout the procedure would theoretically lower the
mutation probability of the full-length CoV cDNA. Thus, this method is not only cost-effective but also
reduces the probability of introducing additional mutations during the BAC modification procedure.

4.2. S_NTD224 of TGEV Had a Mild Influence on TGEV Virulence but Was Not the Enteric Tropism and
Virulence Determinant

The Spike gene of TGEV has been shown to alter TGEV virulence or enteric tropism. However,
recombinant TGEV with S protein N-terminal amino-acid deletion was constructed through targeted
recombination and passaged several times, which might cause other locus mutations in addition to
the S protein deletion [20]. In particular, an early study reported that a 224-residue deletion in PRCV
corresponding to the N-terminal domain of the TGEV S protein, as depicted in Figure 3A, is likely
responsible for the loss of replication observed in the enteric tract [21]. No other studies have provided
direct evidence demonstrating that only the N-terminal region of the Spike gene changes the TGEV
virulence or enteric tropism [57]. Here, we emphasize the importance of the N-terminus of the TGEV S
protein for the enteric tropism of the virus. To that end, we constructed a recombinant virus with an
S protein analogous to that of PRCV (Figure 3A), TGEV-GFP-∆S_NTD, and this recombinant virus
showed titers and fluorescent plaque sizes that greatly differed from those of TGEV-GFP (Figure 4E,F).
These results indicated that the 224 amino acids of the N-terminal of the TGEV Spike protein are
not essential for viral survival but important for viral replication or infection, which was analogous
to the findings obtained for PEDV and other CoVs [58–61]. Our animal experiments revealed that
TGEV-GFP-∆S_NTD caused 40% mortality in piglets and obvious intestinal tissue damage, which
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indicates that S_NTD224 has a mild influence on virulence but does not alter the enteric tropism of
TGEV [62].

Using reverse genetics, we confirmed that changes in S_NTD224 alone altered, albeit not
completely, the virulence of TGEV. One reason explaining no detection of TGEV-GFP-∆S_NTD in the
two piglets euthanized at 7 days post-inoculation might be related to immunity of recovering piglets.
The role of S_NTD224 might be analogous to that of the 197-amino-acid region in the N-terminus
of the PEDV S gene when used as a viral virulence marker. Consistent with previous reports, our
experiments also detected TGEV-GFP and TGEV-GFP-∆S_NTD in the jejunal contents tissue by nested
RT-PCR [63,64], which indicates that changes in S_NTD224 alone do not alter TGEV enteric tropism
in vivo. And it is also possible that other genes in addition to the 224 amino acids of the N-terminal of
the TGEV Spike protein might regulate changes in TGEV tissue tropism [20,58]. Additional research is
needed to determine the detailed mechanism of TGEV enteric tropism in vivo.

5. Conclusions

In summary, using the reverse genetics method, we have provided direct evidence showing that
the N-terminal domain of Spike protein is not the determinant of TGEV enteric tropism in piglets,
although S_NTD224 exerts a mild influence on TGEV virulence. These results provide new insights
into the development of a new attenuated vaccine against TGEV. Furthermore, the method developed
in this study allows the efficient and rapid editing of the full-length CoV genome in vitro and can
theoretically be applied to all viruses with large RNA genomes once the full-length cDNA is obtained.
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