
Fast and accurate vision-based stereo reconstruction and motion estimation
for image-guided liver surgery

Andrew D. Speers1 ✉, Burton Ma1, William R. Jarnagin2, Sharifa Himidan3,4, Amber L. Simpson2,
Richard P. Wildes1

1Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
2Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
3Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
4Department of Surgery, University of Toronto, Toronto, ON, Canada
✉ E-mail: speers@eecs.yorku.ca

Published in Healthcare Technology Letters; Received on 13th August 2018; Accepted on 20th August 2018

Image-guided liver surgery aims to enhance the precision of resection and ablation by providing fast localisation of tumours and adjacent
complex vasculature to improve oncologic outcome. This Letter presents a novel end-to-end solution for fast stereo reconstruction and
motion estimation that demonstrates high accuracy with phantom and clinical data. The authors’ computationally efficient coarse-to-fine
(CTF) stereo approach facilitates liver imaging by accounting for low texture regions, enabling precise three-dimensional (3D) boundary
recovery through the use of adaptive windows and utilising a robust 3D motion estimator to reject spurious data. To the best of their
knowledge, theirs is the only adaptive CTF matching approach to reconstruction and motion estimation that registers time series of
reconstructions to a single key frame for registration to a volumetric computed tomography scan. The system is evaluated empirically in
controlled laboratory experiments with a liver phantom and motorised stages for precise quantitative evaluation. Additional evaluation is
provided through testing with patient data during liver resection.
1. Introduction: Liver resection is the only potentially curative
therapy for liver cancer but often represents a surgical challenge
due to the location of tumours throughout complex, delicate
vasculature [1, 2]. Image-guided surgical techniques improve
intraoperative localisation [3]. While image guidance has become
the standard of care in neurosurgery, the lack of non-rigid
correction and reliance on static intraoperative data has hindered
adoption in liver surgery. By imaging the liver in real time and
providing the surgeon with continuous feedback regarding the
localisation of tumours relative to adjacent major vasculature, the
likelihood of an incomplete resection or inadvertent liver injury
should be minimised.

A variety of approaches have been proposed to acquire real-time
intraoperative data, typically in isolation. Intraoperative three-
dimensional (3D) structure recovery that relies on monocular
imagery has been explored but is often susceptible to error and
suffers scale ambiguities without the presence of external markers
[4–7]. Instead of directly computing 3D structure from monocular
imagery, one approach has been explored that frames the problem
of overlaying preoperative volumetric information onto the intrao-
perative 2D video as that of computing a projection matrix from
2D–3D correspondences between the video sequence and preopera-
tive computed tomography (CT) [8]. Reconstruction from stereo
imagery using so-called local [9, 10], semi-global [11, 12] and
global approaches [13–17] also has been considered, where the
main differences can be viewed as trade-offs between computation-
al efficiency and the complexity of smoothness integration
employed in image matching. The previous work has also consid-
ered a visual odometry-based approach, making use of the quadri-
focal constraints to estimate binocular laparoscopic camera motion
in a surgical environment [18]. Stereo imaging has emerged as a
promising modality for acquiring rich continuous intraoperative
surface data in neurosurgery [19, 20] but a number of challenges
need to be solved for such systems to perform adequately in liver
surgery. Among the most pressing and immediate challenges are
that stereo reconstruction in the liver is non-trivial: the liver is a
sparsely textured organ with few features to drive reconstruction
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algorithms and specular reflections further compromise reconstruc-
tion accuracy.

Existing systems for optical organ registration in surgery have
been proposed; however, they typically rely on techniques that
may ultimately hinder their adoption in soft tissue surgery. Some
deployed systems benefit from having a rigid reference frame
(e.g. neurosurgery) and assume relatively little deformation of the
target organ with respect to this reference frame [21, 22]. Other
more recent research has considered automated rigid registration
of a liver surface model with a preoperative CT scan by matching
shape-based feature descriptors [23]. As rigid constraints are not
always applicable to soft tissue surgery, the use of cross-modality
fiducials has been proposed for use on the body [24, 25] and on
the organ itself [26]. The use of fiducials creates additional invasive
steps in the workflow of typical procedures to the degree that it is
often desirable to avoid their use altogether. Furthermore, their
utility often diminishes greatly as their placement becomes sepa-
rated from the surgical surface of interest. Other systems operate
through the use of manually chosen feature points on the visible
anatomy [27]. The reliance on the manual selection and tracing of
points in the image sequence is undesirable as it places a barrier
for the autonomous operation of the system as a whole.
Arguably, the most applicable approach to date is the use of intrao-
perative cone-beam CT (CBCT) as a bridging modality [28]. The
use of CBCT allows for the use of a non-rigid biomechanically
driven registration technique [29] for aligning the preoperative
CT and intraoperative CBCT scans which allows for the system
to compensate for the large non-rigid deformation between the
two sources of data. However, the use of CBCT exposes the
patient (and surgical team) to repeated doses of radiation to
provide this reference.

In the light of previous research, the primary contribution of this
work is a novel end-to-end system for fast surface reconstruction
and motion estimation for alignment with a preoperative CT scan.
Specifically, we deem this system to be ‘end-to-end’ as the pro-
posed system utilises manual input for initialisation purposes only
and requires neither human intervention nor does it rely on any
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intraoperative bridging modalities [such as open magnetic reson-
ance imaging (MRI), CBCT etc.] during subsequent operation.
The current instantiation of the system is designed for use during
intraoperative planning/exploratory phases. Extensions are under-
way to make the system applicable for larger portions of the surgical
workflow.
Within this end-to-end system, we make the following three sub-

contributions. (i) To the best of our knowledge, we are the first to
use an adaptive coarse-to-fine (CTF) stereo algorithm for fast and
accurate 3D surface reconstruction in intraoperative imaging. The
approach yields data-driven dense reconstruction by allowing
coarse resolution image data to inform fine resolution reconstruc-
tion, even in low texture regions [30]. CTF processing also leads
to computational efficiency, while the complementary use of adap-
tive windows supports the precise reconstruction of 3D boundaries.
(ii) We make use of a robust, 3D motion estimator based on inter-
frame feature matching to register a time series of reconstructions to
a single key frame for registration to a volumetric CT scan. Unlike
most approaches that use the iterative closest point algorithm for 3D
model registration, our feature matching-based approach ensures
that registration brings physically meaningful features into align-
ment and does so without chaining multiple incremental registra-
tions that can rapidly lead to drift. (iii) A mask denoting the
boundary of the organ of interest, the liver, is automatically main-
tained within the system. This has been studied in a standalone
fashion (e.g. [31]) but the use of such information within the
context of this system raises new insight. Maintaining a mask of
the liver boundary not only allows for efficient processing of the in-
formation by restricting processing to the portion of the video
stream imaging the liver but also allows for the system to take ad-
vantage of the fact that the intraoperative motion of the liver during
exploratory phases is predominantly rigid, allowing for more robust
motion estimation.
The system has been evaluated empirically in controlled

laboratory experiments with a liver phantom placed on motorised
stages for precise quantitative evaluation. Our phantom-based
datasets are available to the research community and can be
found at http://vision.eecs.yorku.ca/research/medical/. Additional
evaluation has been undertaken with clinical data. Both evaluations
take place in open liver resection conditions. Notably, while much
research effort focuses strictly on laparoscopic surgeries, most liver
resections are performed as open resections due to the extent and
location of disease. In our centre, roughly 75% of liver resections
are performed in an open environment [32]. Moreover, laparoscopic
approaches are only suitable for certain cases where there is onco-
logic equivalency between open and laparoscopic [32]. Overall, we
demonstrate a clinical stereo-based platform capable of reliably pro-
viding temporally dense 3D textured data in near real-time under
realistic conditions of liver surgery.
Interestingly, the only two Food and Drug Administration

(FDA)-approved liver surgery systems do not compensate for real-
time motion [33]. More generally, commercial systems rely on
optical tracking, which has a stated accuracy of <2 mm, as evalu-
ated at a single point in time [34]. The errors we report are within
comparable bounds and our system is capable of providing contin-
ual updates. Thus, our approach has potential to provide the precise
anatomical location of tumours within the complex vasculature, in
real-time, as the liver undergoes motion throughout the course of
surgery.

2. Technical approach: Fig. 1 provides an overview of the system
for recovering a time series of 3D surface reconstructions of a
surgical scene and registering to a preoperative volumetric model.
The input is a pair of synchronised images from a stereo video
camera (left and right images) and a volumetric model (CT scan).
The processing pipeline consists of three main components:
stereo correspondence determination, 2D feature tracking and six
degrees of freedom (6DOF) motion estimation. Stereo
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correspondence yields a dense disparity map between points
in the left and right images. The disparity map is projected into
3D space and filtered to produce a 3D surface reconstruction.
2D feature tracking is applied to the video from the right camera
to provide 2D matched feature locations across the image
sequence. These 2D tracks are fused with the disparity maps to
produce a 3D non-rigid deformation field. 6DOF motion
estimation regresses the 3D deformation field to a rigid 6DOF
motion relating the current frame back to a key frame. The 3D
surface reconstruction and 6DOF motion estimate are combined
to place the surface into the same reference frame as a key frame.
When combined with a hand registration of the key frame to the
preoperative scan, the registration of incoming frames back to
the key frame allows for a chained registration back to the
preoperative volumetric scan of the organ of interest.

2.1. Stereo correspondence and 3D surface reconstruction: The
system uses a local stereo correspondence algorithm that has been
shown to provide accurate and efficient depth estimates [30].
Given a calibrated stereo pair of images, I l(x, y) and I r(x, y), the
algorithm yields a disparity map, d(x, y), that provides the spatial
offset between corresponding points in the input pair. The
disparity map is recovered by solving the optimisation problem

d(x, y) = argmax
di[D

∑

u, v( )[w x, y( )
r I l(u, v), I r(u+ di, v)
[ ]

, (1)

via search over disparities, di, in a specified range, D, to maximise
the summed pixel-wise similarity measure, r, between image
intensity values within a window, w, around (x, y). Although
the algorithm does not rely on the choice of a specific similarity
measure, r, our instantiation makes use of normalised
cross-correlation. The algorithm employs CTF processing for
efficiency, whereby initial low-resolution versions of the input
images yield low-resolution disparity maps that subsequently are
refined via consideration of higher-resolution images to culminate
with the resolution of the original input. The algorithm also uses
adaptive windows, w, that confirm to avoid smoothing across 3D
boundaries. An example recovered disparity map for an input
stereo pair is shown in Fig. 1.

Use of known camera calibration allows for the recovered dispar-
ities to be back-projected to a 3D point cloud. The resulting point
cloud is filtered via statistical outlier removal to reject depth
values that differ significantly from their neighbours [35] as well
as resampled via moving least squares [36] to produce a smooth
manifold surface as the final 3D surface reconstruction. A manually
specified region of interest mask can be provided for an initial (key)
frame in the image sequence to restrict processing to the area to be
registered to the volumetric model. Following initial delineation,
the mask is warped automatically to all other frames in the sequence
via a robust affine estimate of image motion across the masked
region [37]. An example of recovered surface reconstruction is
shown in Fig. 1.

2.2. 2D feature tracking and generation of a 3D deformation field:
To establish feature tracks between frames in the stereo video
sequence, 2D features are tracked in one of the video streams
(the right is used) and subsequently are projected to 3D. Tracking
in 2D makes use of the ‘good features to track’ algorithm [38].
This algorithm restricts operations to feature points, (x, y), where
the local image gradient structure is sufficient for stable
appearance across time. Tracking is performed on the extracted
features across two images, I t and I t+dt , taken at times t
and t + dt, respectively, by minimising the dissimilarity measure

∑

u, v( )[r x, y( )
[I t+dt(u+ dx, v+ dy)− I t(u, v)]2, (2)
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Fig. 1 System diagram. Input images from stereo video cameras are shown in grey level with a red box indicating the region of analysis. Recovered stereo
correspondences are shown as a disparity map referenced to the right image, with brighter grey levels indicating larger disparities. Green lines on tracking
output show recovered 2D displacement of features across time. Pre/intraoperative alignment shows an overlay of the reconstructed surface map on the volu-
metric model
over windows, r, centred at the feature points. A gradient-based
solution is employed to yield the optimal feature displacement,
(dx, dy), for each feature point, (x, y). While the original
formulation accounted for a full affine transformation across time
[38], the simpler translational formulation given here has proved
to suffice for the cases of current interest. Example tracks are
shown in Fig. 1.

Analogous to the back-projection of stereo disparity maps to 3D
point clouds (Section 2.1), the extracted feature tracks are combined
with the disparity estimates at the tracked points to yield 3D
deformation fields. These fields provide a sequence of 3D feature
correspondences between all frames in the sequence, capturing
both the rigid and non-rigid components of the motion of the
tracked region in 3D.

2.3. 6DOF motion estimation and pre/intraoperative alignment:
Alignment between the time sequence of 3D surface
reconstructions and the volumetric model is initialised via manual
registration of a key reference frame in the reconstructions and
the model. This registration is given as a 6DOF rigid
transformation specified via a graphical user interface. (Future
work will refine the initial alignment with an automated non-rigid
registration algorithm.) Given this initial registration, all
subsequent surface reconstructions from the stereo video
sequence are registered to the first frame to inherit its alignment
to the volumetric model.

To perform the registration across frames of the 3D surface
reconstructions, a 6DOF motion between each frame and the key
frame is recovered based on the previously recovered 3D deform-
ation fields (Section 2.2). (To complement future work that consid-
ers a non-rigid initialisation to the volumetric model, the non-rigid
residual to the 6DOF estimate can be considered.) The rigid trans-
formation is recovered by a robust version of an earlier algorithm
according to

R, t( ) = argmin
R[SO(3),t[R3

∑n

i=1

‖ Rpi + t
( )− qi‖2 (3)
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where pi and qi are 3D points in two surface reconstructions that
have been brought into correspondence at n locations tracked by
the 3D deformation field, R is a 3× 3 rotation matrix and t is a
3× 1 translation vector. The rotation is found using singular value
decomposition on the covariance matrix relating the two point sets
after placing their centroids at the origins ( p′ and q′). The optimal
translation is then the residual created in the origin-centric point
clouds after the rotation is applied (i.e. t = q′ − Rp′). The solution
is made robust using the random sample consensus algorithm
to minimise the effect of outlier correspondences or those most
affected by any non-rigidity. Notably, registering incoming frames
back to a key frame ameliorates issues of registration drift that
can occur in the alternative approach of chaining sequential registra-
tions between adjacent frames over a long sequence.

An example of final alignment between a 3D surface reconstruc-
tion and volumetric model is shown in Fig. 1. For input 640× 480
images, the system executes at 8 fps on a 3.6 GHz processor.
Considerable speed up is anticipated with a graphics processing
unit (GPU) implementation, e.g. the slowest component of the
system is stereo correspondence, which already has been ported
to run on a 512 core GPU (nVIDIA GeForce GTX580) at 100 fps.
3. Empirical evaluation: The proposed system was evaluated
empirically in both controlled laboratory conditions and with
clinical data acquired during liver resection. Fig. 2 shows images
from the test scenarios as well as acquired images, surface
reconstructions and final registrations for both laboratory and
operating room conditions. The laboratory dataset, depicted in
Fig. 3, was acquired using a silicone liver phantom. The phantom
was rigidly affixed to a motion control platform (one linear and
one rotational stage – Newport Corporation, Irvine, CA) that
allowed for the phantom to undergo precise motion patterns. The
platform contains cross-modality features used for alignment of the
initial frame to a CT scan. Each laboratory test condition consisted
of a 31 frame sequences with evenly spaced samples along the
motion trajectory. Three different motion profiles were tested:
translation-only (1 mm increments), rotation-only (1° increments)
Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 208–214
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Fig. 2 Overview of experiments

Fig. 3 Laboratory datasets
and translation+ rotation motions superimposed. The laboratory
dataset was acquired at a standoff distance of 700 mm to the liver
(similar to the target distance for the device used intraoperatively).
The intraoperative data sequence was taken during an open liver
resection and consisted of 100 frames. In both the laboratory and
operating rooms, a calibrated stereo video camera was used for
image acquisition (the gold box in the upper middle portion of the
external views shown in Fig. 2).
The translation (magnitude) and rotation components of the

recovered motions are reported for the laboratory datasets in
Fig. 4. For each of the three tested motion profiles (rotation-only,
translation-only and translation + rotation), the recovered translation
Healthcare Technology Letters, 2018, Vol. 5, Iss. 5, pp. 208–214
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magnitude is shown in Figs. 4a–c, while the recovered rotation
angles are shown in Figs. 4d–f. At any given frame, the motion
was recovered with respect to the initial frame in the sequence.
For rotation-only, it is seen that the recovered angle accurately
tracks the true motion (interframe increments of 1°), approximately
a line of slope one and the recovered translation is correctly very
small. (Note that since the true translation has zero magnitude,
the error between the recovered and ground truth is the same as
the recovered and only the recovered is shown.) For the
translation-only case, the results are exactly complementary to
those of rotation-only, again showing very accurate performance.
Similarly, the translation + rotation shows the desired combination
211
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Fig. 4 Motion recovery results. The recovered translation magnitude (a–c) and rotation (d–f) estimates are plotted for each of the three laboratory motion
profiles (rotation-only, translation-only and translation + rotation). The blue line indicates the motion estimate; the red line depicts the deviation of the
motion estimate from the ground truth, as actuated by the motion platform. The two plots showing a single curve correspond to measurements, where the
ground truth signal was zero motion; hence, the recovered and error values are the same and only the recovered is shown
a–c Recovered translation magnitude
d–f Recovered rotation

Fig. 5 SRE (4) is shown at 5°/mm increments across the laboratory sequences. For the intraoperative data, four frames representing various amounts of
respiratory motion were chosen to show the system performance over the largest portion of the organ’s motion. Box plots are shown for each of the reported
frames. Whiskers cover 95% of the reconstructed point clouds. The largest outlier for each dataset is indicated by a red asterisk
of the other two cases. Notably, motion drift is not affecting the
interframe estimation over these sequences owing to the motion
always being computed relative to the initial frame. In contrast,
typical approaches that chain transformation estimates between
adjacent frames to relate a given frame back to the key frame
would be susceptible to drift.
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A measure of surface registration error (SRE)

SREi = ‖pi − p∗i ‖, (4)

where pi is a point in the registered stereo reconstruction of the
surface and p∗i is the closest point to pi in the preoperative
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Table 1 Mean and standard deviation of reported errors

Dataset SRE, mm Translation magnitude, mm Rotation angle, deg

Avg Std Avg Std Avg Std

rotation-only 1.0274 0.8698 1.8975 0.6547 −0.4124 0.5126
translation-only 1.0597 0.8736 −0.1831 0.9863 1.0898 0.5744
translation + rotation 1.0785 0.8998 0.5656 0.4092 −0.4507 0.4095
intraoperative 1.6493 1.4060 n/a n/a n/a n/a
volume, was calculated for all laboratory and intraoperative data-
sets. The plots show the distribution of SRE over all points in the
reconstructed point clouds for the selected frames. Registration
between CT coordinates and the initial frame of each laboratory
sequence was performed in a semi-automated manner, via identifi-
cation of five cross-modality features located on the platform sup-
porting the phantom in both the stereo imagery and in the CT
scan. A similar process was used for the intraoperative data after
an initial hand alignment of the datasets. This procedure defines
the transformation relating the initial (key) frame to the CT coord-
inate space. Subsequent frames were registered to the initial key
frame using the approach described in Section 2.3 and then regis-
tered to CT space using the transformation relating the key frame
to the CT scan. Fig. 5 shows SRE for the three laboratory datasets
and the intraoperative dataset. Median errors are typically on the
order of 1 mm with 95% of the points lying under 4 mm SRE
across the reported datasets. Notably, the interframe registration
algorithm never explicitly minimises SRE by applying shape-based
registration techniques (e.g. iterative closest point); therefore, the
registration is data driven with respect to the actual positions of
identified features on the surface of the organ and is more likely
to produce a physically meaningful registration.
Table 1 provides a summary of the average and standard devi-

ation of the reported SRE and motion errors for the three laboratory
datasets and the intraoperative dataset. Note that average errors and
standard deviation of the motion estimates are not provided for the
intraoperative dataset as no ground truth motion information is
available.
4. Conclusion: We have presented an end-to-end system for fast
and accurate 3D surface reconstruction and motion estimation for
alignment with a preoperative volumetric scan. Key technical
innovations include the use of an adaptive CTF algorithm for
efficient and accurate 3D surface reconstruction from stereo
imagery and use of a robust, feature-based 3D motion estimator
for physically meaningful alignment. The system has been
evaluated both quantitatively and qualitatively in controlled
laboratory conditions as well as with clinical data. The results
suggest the potential for integration into a clinical system. Future
work will make further use of the recovered 3D deformation field
(Section 2.2) to support non-rigid refinements for our 3D surface
reconstructions to volumetric model alignments. An extension of
this approach to include subsurface registration through the use of
additional sensing modalities that support subsurface data
acquisition during surgery (e.g. ultrasound, CBCT and open
MRI) is also of interest. Appropriate application of intraoperative
subsurface scanning and registration constraints may provide
better localisation for surgeons when surgical margins are tight.
Furthermore, integrating subsurface information into the
surface-based registration approach is an important step for being
able to measure the correlation between measurements of
registration errors at the surface of the organ and the ability to
target subsurface structures accurately. Finally, additional testing
on clinical data is desired in order to further validate and develop
these techniques.
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