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Abstract

The drivers behind regional differences of SARS-CoV-2 spread on finer spatio-temporal

scales are yet to be fully understood. Here we develop a data-driven modelling approach

based on an age-structured compartmental model that compares 116 Austrian regions to a

suitably chosen control set of regions to explain variations in local transmission rates

through a combination of meteorological factors, non-pharmaceutical interventions and

mobility. We find that more than 60% of the observed regional variations can be explained

by these factors. Decreasing temperature and humidity, increasing cloudiness, precipitation

and the absence of mitigation measures for public events are the strongest drivers for

increased virus transmission, leading in combination to a doubling of the transmission rates

compared to regions with more favourable weather. We conjecture that regions with little

mitigation measures for large events that experience shifts toward unfavourable weather

conditions are particularly predisposed as nucleation points for the next seasonal SARS-

CoV-2 waves.

Author summary

How weather modulates the spread of SARS-CoV-2 on fine spatio-temporal scales is still

not fully understood. Here we use a controlled regional comparison to isolate the impact

of five different meteorological factors, four types of non-pharmaceutical interventions as

well as individual-level mobility on transmission rates in Austria. We find that more than

60% of regional variations can be explained by these factors. Temperature and humidity

relate inversely with transmission rates whereas cloudiness and precipitation correlate
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with increasing transmission. We also observe a particularly strong impact of restrictions

targeting large events. Our results suggest that a combination of weather shifts towards

winter conditions combined with little mitigation measures for large gatherings drive the

early growth of seasonal SARS-CoV-2 waves.

This is a PLOS Computational Biology Methods paper.

Introduction

The SARS-CoV-2 pandemic impacted different world regions in a highly heterogeneous way.

A vast body of research has sought to explain these differences by factors ranging from varying

stringency of non-pharmaceutical interventions (NPIs) [1–5], socio-economic and demo-

graphic factors [6–8] to different virus variants [9–11]. Until now, only some studies paid

attention to more fine-scaled spatio-temporal variations in virus spread [12–15]. Next to

regional differences in NPIs, meteorological [16–21] and behavioural factors have been pro-

posed to account for such variations [22–25]. Infection waves typically start with localized out-

breaks in specific regions before case numbers start to soar on larger geographic scales [26].

Such localized outbreaks are often initiated by singular events in which transmission is domi-

nated by a small number of individuals, [27, 28] so-called superspreading events [29]. As these

events are stochastic and therefore near-impossible to predict, the question arises to which

extent fine-scaled spatio-temporal variations can actually be explained or whether they are

irreducibly random.

Here we seek to understand the factors that determine on finer geographic scales the degree

to which the infection dynamics in one region in Austria deviated from the dynamics observed

in neighboring regions. We consider factors from three different domains to account for these

variations, namely meteorology (temperature, cloudiness, humidity, precipitation, wind),

non-pharmaceutical interventions (targeting schools, gastronomy, healthcare, or events) as

well as individual-level mobility (as inferred from telecommunications data).

Previous literature reported inconsistent associations of weather with transmission dynam-

ics, [16–21] suggesting that the assessment of the impact of meteorological factors might

depend on geography, epidemic phase and the spatio-temporal scale on which the analysis is

conducted. In this work, we use meteorological forecast data derived from the mesoscale

numerical weather model AROME (Application of Research to Operations at Mesoscale [30,

31]) to quantify regional weather related factors. AROME is operated by ZAMG (Zentralan-

stalt für Meteorologie und Geodynamik) for a domain covering the Alpine area. More details

are given in section.

The literature is more consistent with regard to the transmission-reducing effects of

restricted mobility [22–25]. However, such effects cannot be fully disentangled from the effects

of physical distancing policies [32]. For Austria it was observed that the same regime of gov-

ernmental interventions induced quite heterogeneous mobility changes across regions [33].

Here we measure mobility by means of the median Radius of Gyration of cell phone users in a

region, which is a measure for the daily area travelled by these users.

In autumn 2020, Austria adopted a tiered pandemic management plan in which each

region was assigned one of four alert levels (green, yellow, orange, red) signalling its
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epidemiological risk [34]. The assessment was performed based on a set of indicators including

confirmed cases, available hospital capacities and the functionality of contact tracing. Regional

authorities decided on appropriate response measures in reaction to the weekly risk assess-

ment, meaning that the same alert level could and did translate into different NPIs across

regions. We used an extensive dataset on all regional response measures in Austria curated by

the Austrian National Public Health Institute. We clustered the response measures into four

different categories, based on whether they affect schools (bans on singing in class rooms,

cloth masks when not seated, etc.), gastronomy (limits for the number of persons allowed to

share a table, opening hours, etc.), healthcare settings (e.g., visitor bans), or events (size

restrictions).

Our methodological approach is outlined in Fig 1. There we show a map of Austria divided

into its nine federal states. The state of Tyrol (blue) is further divided into its finer administra-

tive regions of districts. In Fig 1 we show the epidemiological curve observed in the district of

Innsbruck (orange) and compare it with two models. First, we compare it to results from an

age-structured compartmental model that assumes the infection rate observed in Innsbruck

(orange) to be the same as the rate observed in all other districts taken together in the same

federal state (blue, the control set for the orange district), giving the red epidemiological curve.

Note that testing and tracing in Austria is implemented by the regional health authorities of

each federal state, meaning that in our approach we always compare districts with the same

strategies for testing and contact tracing. Second, we augment this model by assuming that the

age-dependent transmission rates are also a function of the district-level meteorological, inter-

vention and mobility time-series with district-independent effect sizes learned from data by

means of a cross-validated nonlinear least squares solver. This approach provides us with esti-

mates for the effect of each of the ten input time series on regional virus spread and for the

degree to which the combined effects of weather, interventions and individual-level mobility

can be used to explain differences in the spread between regions.

Fig 1. Visual representation of the methodological approach. For every one of the 116 districts in Austria the epidemiological curve of the district is

compared to the epidemiological curve of the corresponding federal state. This figure shows the example of the district Innsbruck (orange) in the

federal state Tyrol. The highlighted blue areas are the districts of Tyrol. More information on the districts is available on Statistics Austria. The

epidemiological curves are calculated employing an age-structured compartmental model. The red curve is the epidemiological curve for Innsbruck

assuming transmission rates that equal those observed in Tyrol (blue). By including a dependence of the transmission rate on weather, interventions

and mobility (green), the district-independent effect sizes of these district-specific input variables can be calculated. The map layer of this figure was

taken from open government data.

https://doi.org/10.1371/journal.pcbi.1009973.g001
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Data and methods

Case data

Our study period ranges from July 1 2020 to May 15 2021. The daily confirmed Covid-19 cases

of 116 districts in Austria were collected through the official Austrian COVID-19 disease

reporting system (EMS) [35]. A unique identification number was assigned to each positive

Covid-19 test. People can be tested positive multiple times. We calculate daily numbers of posi-

tive tests per district and age group. The population size per district was available from the

national statistics office and linked by the unique district ID.

The 116 districts in Austria have an average population of 77,005 (standard deviation [SD]

47,347) ranging from a minimum population of 2,000 to a maximum population of 291,134.

The city of Vienna is represented as 23 individual districts with an average population of

83,520 (52,867).

Meteorological data

We further used detailed information on the weather situation in Austria, including gridded

forecast data on five meteorological parameters: total cloudiness, precipitation, 2m tempera-

ture, 2m relative humidity and 10m wind speed. The gridded data sets were provided by the

mesoscale weather model AROME operated at ZAMG eight times per day producing forecasts

up to 60 hours ahead. AROME is a spectral limited area model currently operating on a 2.5km

horizontal grid covering the Alpine area using 90 vertical levels up to a height of approximately

35hPa. The 3D atmospheric initial conditions for the model runs are created using a varia-

tional data assimilation system (3DVAR, [36]) which is fed by a large number of observations

(surface station data, radiosondes, satellite data, aircraft data, etc.). To derive the surface initial

conditions, an optimum interpolation method is implemented.

For this study, the meteorological model data is provided for the study period on an hourly

basis. The gridded AROME data was further aggregated to create information on a district

level, where the district value of an input time series is given by the population-weighted aver-

age of the values observed in the corresponding grid cells. We calculate the daily mean values

of these parameters in each district and subtract the mean value of the daily mean values of all

other districts in the same federal state (control set) as input for the model.

Data on regional NPIs

A dataset on regional Austrian NPIs was collected and curated by the Austrian National Public

Health Institute. This data contains precise information on federal state, district, type and

details of intervention, start and end date of registered regional measures. The data set contains

11 individual types and an additional 83 subtypes of interventions. We further grouped these

types and subtypes of NPIs into 4 larger groups of restrictions: 1) restrictions in schools, 2)

restrictions in gastronomy, 3) restrictions in healthcare, 4) restrictions for larger events. Inter-

vention measures dependent on the corona traffic light were matched to the districts in appro-

priate traffic light colors in the given time frame. For each day in the observed time period and

each district we assigned binary values of true/false for each intervention group.

Mobility data

The mobility data contains 1,683,270 entries, including information on the date of travel,

regions by postal code (which were mapped to districts), the number of devices in this particu-

lar region, and the radius of gyration over the study period. For each region only k-anon-

ymized data is available. Any region with less than k unique devices on a specific day is

PLOS COMPUTATIONAL BIOLOGY Meteorological factors and NPIs explain local differences in SARS-CoV-2 spread in Austria

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009973 April 4, 2022 4 / 16

https://doi.org/10.1371/journal.pcbi.1009973


redacted. The radius of gyration is defined as the square root of the time-weighted centroid of

the squared distances of the mobility events (locations)~xim to the most prominent location
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Finally, as input time series for the model we consider the logarithmic radius of gyration

and subtract the average logarithmic radius of gyration observed in the control set.

Regional age-structured SIR null model without effects

To identify the impact of meteorological factors, mitigation strategies and mobility on the

infection dynamics across Austria, the epidemic curves of the 116 districts of Austria are com-

pared. We employ a parsimonious age-structured SIR model [37] to facilitate robust

calibration.

Our approach makes use of the fact that when the confirmed cases per day are known, the

“effective” transmission rate α can be calculated from data alone within the SIR model. For

each district b, we compute a transmission rate for day n and age group a in the null model

(without effects), a0
n;aðbÞ, as follows. Our null hypothesis is that the epidemiological curve of a

given district b (shown as orange in Fig 1) has values of a0
n;aðbÞ that are identical to the trans-

mission rate observed in all other districts of the same federal state (blue in Fig 1). We call

these districts the control set of districts for b, Cb. For this control set we observe the time series

of cumulative confirmed cases, Cn;aðCbÞ. This choice of the control set is also motivated by the

fact that in Austria each federal state has its own health authority that is responsible for, e.g.,

the testing strategy and contact tracing. Hence, with this choice of Cb we also control for differ-

ences in testing and tracing.

Let SðCbÞ, IðCbÞ, RðCbÞ, and NðCbÞ be the daily numbers of susceptible, infected, recovered

and total number of people in the control set, respectively. We have,

an;aðCbÞ ¼
ðCnþ1;aðCbÞ � Cn;aðCbÞÞNaðCbÞ

Sn;aðCbÞ
P

a0caa0In;a0 ðCbÞ
; ð2Þ

where caa0 represents social mixing by age. We compute a social mixing matrix for every dis-

trict to define the number of infected individuals a susceptible individual from one age group

is exposed to. The social mixing matrix by age for Austria is obtained from Prem et al. (2017)

[38] with the population being grouped into four age brackets (0–19, 20–39, 40–64 and 65

+ year old individuals). We calculate a social mixing matrix for every district and federal state.

To calculate the social mixing matrix entry for one of the four new age groups, we build the

population-weighted sum over the corresponding social mixing matrix entries provided by

Prem et al. (2017). The social mixing matrices for each federal state (used for the control sets)

are again given by the population-weighted sum over the individual districts.
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The number of susceptible, infected and removed individuals in one of the four age groups

a, can be calculated for the control set as,

Snþ1;aðCbÞ ¼ Sn;aðCbÞð1 � ln;aðCbÞÞ ð3Þ

Inþ1;aðCbÞ ¼ In;aðCbÞ þ ln;aðCbÞSn;aðCbÞ � bIn;aðCbÞ ð4Þ

Rnþ1;aðCbÞ ¼ Rn;aðCbÞ þ bIn;aðCbÞ ; ð5Þ

where we defined l ¼
an;aðCbÞ
NaðCbÞ

P
a0caa0 In;a0 ðCbÞ. Initial conditions are given by I0,a as the day with

the first case(s) in age group a and S0,a = 1 − I0,a.

The null model (without effects) for district b can then be obtained by assuming that

a0
n;aðbÞ ¼ an;aðCbÞ 8 n; a; b ; ð6Þ

holds for an age-structured SIR model for district b.

Augmented regional model with effects

To quantify the impact of meteorological factors, mitigation strategies and overall mobility on

the epidemic curves of all districts in Austria, we augment the null model in the following way.

In total we consider 11 input time series Xn(b, i), i = 1, . . ., 11. The NPI time series contain

binary variables, Xn(b, i) 2 {0, 1}, indicating whether a given measure was implemented in the

region or not. For the meteorological and mobility time series the input signal is given by the

deviation of Xn(b, i) between the district and its control set, i.e., we map Xnðb; iÞ !
Xnðb; iÞ � hXnðb0; iÞib02Cb where h�ib02Cb denotes the arithmetic average over all districts in the

control set. To each input time series we assign an effect on the transmission rate by assuming

that

an;aðbÞ ¼ a0
n;aðbÞP

10

i¼1
ð1þ aaðiÞXnðb; iÞÞ ; ð7Þ

such that αa(i) quantifies by how many percent changes in the input time series impact on the

transmission rate. We further assume that αa(i)� α(i) (i.e., effects are not age-dependent) for

all input time series except NPIs related to schools, for which we assume an effect size in the

first age group (< 20y) that is different from all other age groups. Observe that α(i) are district-

independent effects.

Cross-validation and effect size measurement

We solve the models for α(i) by means of a Levenberg-Marquandt (LM) algorithm optimizing

the residual sum of squares (RSS) between age-specific incidence time series in data and

model; incidence is measured as fraction of the total population. The model has one remaining

hyperparameter, namely the recovery rate β. To estimate the influence of varying β, we per-

form a cross-validated hyperparameter search over the range 1/β = 4, . . ., 35d. We perform

randomized cross-validation by splitting the time series into blocks of 28d and randomly pick-

ing 80% of these blocks for training (fitting α(i) via LM) and evaluating the RSS on the remain-

ing 20% test data. To obtain the effect sizes we finally evaluate the model on the full dataset.

We evaluate the model for different values of β. Different values for the recovery time (1/β) are

chosen with probabilities taken from Paul et al. [39], namely a gamma distribution with a max-

imum at 19d. To measure effect sizes we consider the weighted ensemble average over models
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with different recovery times; the corresponding standard deviations are computed via

weighted sample variances.

Results

Model calibration

For descriptive information on the input time series in the form of heat maps of the weather

and mobility timeseries, see S1, S2, S3, S4, S5 and S6 Figs and S1 Table for information on the

NPIs. Results for the cross-validated hyperparameter search to fix the recovery time, β, are

shown in Fig 2. The larger the recovery time, the higher the percentage of regional variations

that the augmented model is able to explain with respect to the null model. For recovery times

of>20d, the explained variation saturates at a bit more than 60%. Values for the training data

are only marginally higher than for the test data, suggesting that overfitting is not much of an

issue. Fig 2 also shows the distribution of recovery times that is used to compute effect sizes

over an ensemble of models with different values for β.

Effect sizes

Results for the effect sizes of meteorological, intervention and mobility variables are shown in

Fig 3. For the continuous variables (weather, mobility), see Table 1, we report the percent

change in transmission rates in units of one standard deviation (SD) of the variable in the dis-

trict with respect to its control set of districts. All meteorological variables show a significant

effect. Strong effects can be observed for humidity, where one SD decreases the transmission

rate by 15.1% (1.7), as well as for cloudiness and precipitation, where one SD increases trans-

mission rates by 13.8% (1.5) and 15.7% (2.7) respectively. The transmission rate is also

inversely associated with temperature, while wind slightly increases transmissions. Mobility, as

measured by the logarithmic radius of gyration, increases transmissions by 7.0% (0.7).

Fig 2. Results for the cross-validated hyperparameter search. For different recovery times, 1/β, we show the percent

change in RSS, ΔRSS, between null and augmented model for training (blue) and test (yellow) data. For recovery times

of more than 20d, the augmented model explains more than 60% of the regional variations in both test and training

data. The probability distribution for 1/β [39] is shown on the axis to the right-hand side.

https://doi.org/10.1371/journal.pcbi.1009973.g002
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Considering the NPIs, restrictions targeting mass events show the strongest effect on trans-

missions with reductions of about 35% (4), see also Table 2. Restrictions in healthcare settings

and gastronomy reduce transmissions by about 17% (3), respectively. For school measures we

observe age-dependent effects. While restrictions for schools reduced transmissions by about

7% (1) in the population younger than 20y, we observe no significant impact of school mea-

sures on older age groups.

Summary of effect sizes of weather variables, NPIs and mobility is depicted for different

and fixed recovery times (β = 5, 9, 12, and 25) [S7, S8, S9 and S10 Figs].

Table 1. Summary of effects of meteorological and mobility time series on the transmission rate. For each variable

we give its unit, the standard deviation (SD) of the input time series and the percent change with its weighted SD of the

transmission rate associated with a unit SD change in the input.

variable unit SD transmission rate change [%]

temperature ˚C 2.4 −6.2 (0.7)

cloudiness [0–1] 0.11 13.8 (1.5)

humidity [0–1] 0.063 −15.1 (1.7)

precipitation mm/h 0.21 15.7 (2.7)

wind m/s 0.95 3.1 (0.1)

log. radius of gyration m 7.9 7.0 (0.7)

https://doi.org/10.1371/journal.pcbi.1009973.t001

Fig 3. Summary of effect sizes of the input variables. Impacts on the transmission rate are shown in percent for

weather variables (blue), NPIs (green) and mobility (magenta). Results for weather and mobility timeseries refer to

changes in α for a unit change of one SD in the input. NPIs targeting large gatherings, temperature and humidity show

the strongest transmission rate reductions whereas cloudiness leads to the strongest increase. Error bars denote the CI.

https://doi.org/10.1371/journal.pcbi.1009973.g003
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Robustness of the model

For robustness we consider adding an input time series that estimates the number of imported

cases, as a variable capturing infections from the outside of the districts. However, due to their

resulting small effect size, we chose to not include this variable as a main result. A summary of

the effect sizes including the imported cases is depicted in S11 Fig. These small effect sizes for

imported cases might suggest that most cases are imported from neighbouring regions that are

already members of the control set for a district and therefore this effect is already included in

the null model.

We test the impact of the variable groups weather, restrictions and mobility on the

explained variation. We perform two different tests. First, we once fit the model again, setting

each one of the variable groups once to zero (i.e., repeat the entire calibration procedure with a

reduced set of variables). In a second robustness test, we run the model again (calibrated using

all input time series), and set each variable group to zero, respectively. Again, we compute all

observables in the “re-run” and “re-fit” as weighted averages using weights from [39]. From

this, the effect of the different variable groups on the explained variation can be estimated, see

Table 3. In both cases we find that dropping the intervention variables leads to larger decreases

than dropping the meteorological data, while there is no significant reduction in RSS when

dropping the mobility data.

Discussion

In this work we aimed to understand the extent to which fine-scaled spatio-temporal varia-

tions in the spread of SARS-CoV-2 can be explained by differences in meteorological factors,

NPIs, or mobility. We assume that deviations in time- and age-dependent transmission rates

of a district from the transmission rate in other districts of the same federal state result from

different temperatures, cloudiness, humidity, precipitation, wind, mobility, or measures tar-

geting schools, gastronomy, healthcare or mass events. We found that taken together these fac-

tors account for more than 60% of the variation observed in regional transmission. Humidity,

cloudiness and precipitation turned out to be the dominating meteorological factors, and

restrictions targeting mass events showed the greatest reduction in local transmission.

Table 2. Summary of effects of NPIs on the transmission rate. For each category of NPIs we give the number of implementations observed in our data, list typical exam-

ples of what the NPI consists of and the percent change of the transmission rate associated with a unit SD change in the input.

category N examples transmission rate change

[%]

schools 144 cloth masks when entering schools, no indoor singing, sports only outdoors, measures to avoid mixing of school

classes, . . .

< 20y: −6.6 (0.8)

� 20y: −0.0 (1.0)

gastronomy 123 closing time at 10pm, limits for number of people seated at table, mandatory registration, . . . −14.5 (2.3)

healthcare 161 visitor ban or a maximum of one visitor per week, mandatory registration, FFP2 masks, . . . −17.2 (3.4)

events 69 ban or size limits of seated and unseated indoor and outdoor events −34.6 (4.4)

https://doi.org/10.1371/journal.pcbi.1009973.t002

Table 3. Result of the re-fit and re-run with variable group dropout for investigation of impact of the different variable groups on explained variation.

re-fit of the model: explained variation [%] SD [%] re-run of the model: explained variation [%] SD [%]

no dropout 60.3 2.7 60.3 2.7

weather dropout 45.9 3.0 44.5 3.0

restrictions dropout 25.9 14.3 12.4 3.6

mobility dropout 60.3 2.8 58.7 2.9

https://doi.org/10.1371/journal.pcbi.1009973.t003
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As our approach aims to minimize the quadratic distance between data and model inci-

dences, the model is optimized to explain the data in pandemic phases of high incidence. Fig 1

shows this overall tendency in that the augmented model fits the first peak (Nov 2020) substan-

tially better than the second peak (April 2021). Austria experienced its highest incidences

within the study period in most districts in November 2020, when the Austrian 7-day-inci-

dence per 100,000 reached values of above 500. Our effect estimates are therefore particularly

valid to describe the factors that might explain why certain districts were more (e.g., the district

Rohrbach with a maximal 7-day-incidence of more than 1,500) or less (e.g., Gänserndorf

where the incidence peaked at about 240) affected in the growth phase of this wave, i.e. the

early growth behaviour of the 2020 seasonal SARS-CoV-2 wave. Note that here we do not

address factors that impact the spread of SARS-CoV-2 in all districts of a federal state homo-

geneously, such as NPIs that where implemented on national scales, seasonal influences (as

opposed to fine-scaled weather influences), or dominant virus variants.

Previous literature reported inconsistent associations of weather with transmission dynam-

ics [16–21]. For instance, analysis of an early outbreak in China found a positive association of

the infection rate with temperature, [16] as did a correlation study in Norway [17]. whereas an

analysis for Spain [20] and a meta-analysis of 202 locations in 8 countries [19] observed no sig-

nificant correlation. On the other hand, for the US [21] and another early, multi-city study in

China [40] negative associations were reported. Also regarding the other meteorological fac-

tors the literature reports contrary results. The previously mentioned analysis of an early out-

break in China [16] reports that increase in humidity and precipitation enhances the number

of confirmed cases whereas the multi-city study in China [40] reports that low humidity likely

favors the transmission of Covid-19. Additionally, the correlation study in Norway [17] stated

that precipitation is negatively related with Covid-19 cases. Wind may be a crucial factor in the

spread of infectious diseases [41]. Several studies had examined the relation of wind speed and

the transmission of coronavirus and showed heterogeneous effects in different countries [17,

42]. Nevertheless, an observational study using data from 190 countries suggested an inverse

association of wind speed with transmission [43].

The reasons for this divergence in the literature regarding meteorological influences are not

entirely clear. The studies mentioned above differ greatly in the included covariates, methodo-

logical approaches as well as geographic and temporal scales on which the analysis was per-

formed, which all hinders comparability. A nonlinear dependence on temperature has also

been proposed for the transmission rate [44]. In our study that adjusts for larger-scale regional

trends, regional response measures and mobility we observe that increases in temperature and

humidity both and independently lead to decreased transmission rates. These findings are in

line with results from studies showing that higher temperature and humidity both lead to

faster inactivation of SARS-CoV-2 on surfaces and in aerosols [45–47]. Airborne SARS-CoV-2

is also known to be rapidly inactivated by sunlight [48–50], in line with our finding that trans-

mission rates increase with cloudiness.

A recent meta-analysis found that school closing was the most effective NPI in reducing the

spread of SARS-CoV-2, followed by workplace closing, business closing and public event bans

[51]. The school measures evaluated here were substantially less disruptive than full closures

and included “soft” restrictions such as bans in indoor singing and sport activities, the require-

ment to wear a cloth mask when entering or leaving the school building (but not when seated

in the class room), or measures to mitigate contacts between pupils from different classes. We

find that such less disruptive measures nevertheless coincided with significantly reduced trans-

mission rates in the age group < 20y by about −6.6% (0.8). The different effect size of these

measurements is the reason why we chose to employ an age-stratified model. If we would not

stratify for age, the effectiveness of the “soft” restrictions in schools would not be visible in the
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results. Our finding of a non-significant effect of school measures on transmission rates in age

groups above 20y should not be interpreted to mean transmissions in school settings are

decoupled from the population-level spread. Rather, transmission rates in older population

groups are indirectly impacted by school measures in our model through the age-structured

social mixing matrices.

Regarding gastronomy, we again note that our analysis focuses on less disruptive measures

that did not consist of full closures, but rather of restrictions such as mandatory registration of

visitors, limits for the opening hours or for the number of people seated at a table. While the

effectiveness of fully closing such venues has been repeatedly established in the literature, [51]

it is maybe surprising to note that less disruptive interventions also coincide with noticeably

reduced transmission rates by about −14.5% (2.3).

Measures targeting the healthcare sector such as visitor bans and mandatory FFP2 masks

showed a stronger effect than the less disruptive measures targeting schools and gastronomy,

with reductions of−17.2% (3.4). This result emphasizes once more the necessity to protect hos-

pitals, [52] long-term care facilities [53] and other health and social institutions [54] as one of

the first lines of defense against SARS-CoV-2.

The NPI with the strongest effect size concerns public events with a reduction of −34.6

(4.4). In our dataset, this NPI also includes event bans, particularly on large unseated indoor

events. While public event bans have consistently been identified as one of most effective

NPIs, [51] our effect size exceeds previous estimates which are maximally in the range of −25%

[4]. This difference in effect sizes can be explained by the fact that our effect estimates are sus-

ceptible to factors influencing the rapid rise in case numbers observed at the onset of the sea-

sonal wave in autumn 2020. It is feasible that the regional onset and early growth behaviour of

this seasonal wave was heavily driven by super-spreading events that have a disproportionate

impact on regional transmission rates while case numbers are still relatively low. Regions with

event bans already in place were not susceptible to such large increases in transmission rates in

the early growth phase, which might explain our rather large effect estimate.

We find a comparably small but significant transmission-increasing effect of mobility by

about 7.0% (0.7), even controlling for regional measures. While it is well-established that

mobility serves as a surrogate measure to quantify the effectiveness of the corresponding NPI

regime, [55] our results indicate that telecommunications data derived mobility estimates

might capture additional behavioural differences.

Meteorological factors might impact SARS-CoV-2 transmission also through behavioural

effects. For example, it is feasible that people prefer to meet inside rather than outside during

rainy days which leads to an increase in COVID-19 cases. To the best of our knowledge, there

have been no studies so far that seek to disentangle physical versus behavioural weather effects

going beyond anecdotal evidence (e.g., in regions with a tropical climate high temperatures

might lead people to stay indoors in air conditioned rooms, whereas in temperate climates like

Austria people would be more likely to go outside). In the present study we sought to partially

disentangle such effects by including mobility data as a proxy for behavioural changes (e.g.,

staying at home on rainy days). When dropping the mobility variable from the analysis, how-

ever, we observed no measurable decrease in explained variation. This potentially indicates

that aggregate mobility is not a necessary indicator in addition to weather and NPIs to quantify

such behavioural changes (should they indeed play a role in the current analysis). Further

research is needed to disentangle such physical and behavioural effects across multiple climate

zones.

To further understand the relative contributions of each group of variables (weather, NPIs,

mobility), we evaluate how the percentage of explained variation changes when each one of the

variable groups is excluded. We found that NPIs had the most impact on the explained
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variation of the transmission rates followed by meteorological factors, while dropping the

mobility variable showed no significant impact in these robustness tests. This finding suggests

that how hard a region gets hit by an infection wave is mostly man-made—we are not help-

lessly exposed to seasonal forces—in the sense that control by NPIs had a larger effect on the

dynamics than changes in meteorological factors.

Our work is subject to several limitations. As our parsimonious epidemiological modelling

approach was designed to be easy and robust to calibrate, it does not account for incubation

periods, distinguish between symptomatic and asymptomatic infections or contain undetected

or quarantined cases. To make the analysis more robust with respect to potential variations in

the duration of infectiousness, we performed simulations for a range of β and calculated a

weighted average of the effect sizes employing weights from Paul et al. [39]. The weights follow

a gamma distribution with a maximum at 19d.

We also experimented with models that introduce an additional variable for the delay

between input time series and their effect on transmission rates. This additional parameter did

not result in substantial changes in model quality or effect sizes so we removed it per Occam’s

razor.

In terms of limitations we further note that our approach cannot detect spatio-temporal

variations on finer scales than districts or days (e.g., whether rain is spread out over multiple

hours or in a short and intense burst) and that we do not address nonlinear dependencies or

interaction effects between individual input time series. In the study we use age-dependent

contact patterns that have been measured before the pandemic, which could further contribute

to the unexplained variation we observed when comparing model results with data. There is

also a number of NPIs that was implemented much less than 50 times (e.g., regional quaran-

tine measures) for which we could not estimate effect sizes in a statistically robust way.

Furthermore, the model does not capture infections from outside the district. However, we

included time series reporting imported cases from outside the district. These imported cases

do not show a significant impact on the transmission rate. See S11 Fig for the summary of

effect sizes including the imported cases.

In conclusion, we find that regional differences in SARS-CoV-2 spread can in large parts be

explained by a combination of meteorological factors and regional NPIs. Our approach focuses

particularly on factors influencing the peak of the seasonal autumn 2020 wave in Austria,

which appears to be mostly driven by differences in temperature, cloudiness, humidity, and

policies targeting large public events. These findings have implications for what to expect for

upcoming seasonal SARS-CoV-2 waves. In particular, based on our results we would expect

the next wave to commence in regions where low mitigation measures targeting large public

events combine with shifts toward unfavourable environmental conditions. If no mitigation

measures for public events are in place, and precipitation, cloudiness and humidity move one

SD in the direction of winter conditions, our model expects transmission rates to be more

than twice as high compared to a region with control measures for public events and more

favourable weather. While it has been previously noted that epidemic forecasting is like

weather forecasting due to uncertainties stemming from nonlinear dynamics calibrated to

noisy data streams, [56] our results suggest that epidemic forecasting to some extent is weather

forecasting, with the added difficulty of needing to control for human behaviour.

Supporting information

S1 Fig. Heat map of the temperature timeseries for every district.

(TIF)
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S2 Fig. Heat map of the cloudiness timeseries for every district.

(TIF)

S3 Fig. Heat map of the humidity timeseries for every district.

(TIF)

S4 Fig. Heat map of the precipitation timeseries for every district.

(TIF)

S5 Fig. Heat map of the wind timeseries for every district.

(TIF)

S6 Fig. Heat map of the radius of gyration timeseries for every district.

(TIF)

S7 Fig. Result of the effect sizes for β = 1/5.

(TIF)

S8 Fig. Result of the effect sizes for β = 1/9.

(TIF)

S9 Fig. Result of the effect sizes for β = 1/12.

(TIF)

S10 Fig. Result of the effect sizes for β = 1/25.

(TIF)

S11 Fig. Summary of effect sizes including imported cases from districts.

(TIF)

S1 Table. Table with informations on implemented measures. Table showing for each

restriction how many days the restriction was active and in how many different districts it

occurred.

(PDF)
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