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A prebiotically plausible scenario of an  
RNA–peptide world

Felix Müller1,2, Luis Escobar1,2, Felix Xu1, Ewa Węgrzyn1, Milda Nainytė1, Tynchtyk Amatov1, 
Chun‐Yin Chan1, Alexander Pichler1 & Thomas Carell1 ✉

The RNA world concept1 is one of the most fundamental pillars of the origin of life 
theory2–4. It predicts that life evolved from increasingly complex self-replicating RNA 
molecules1,2,4. The question of how this RNA world then advanced to the next stage, in 
which proteins became the catalysts of life and RNA reduced its function predominantly 
to information storage, is one of the most mysterious chicken-and-egg conundrums in 
evolution3–5. Here we show that non-canonical RNA bases, which are found today in 
transfer and ribosomal RNAs6,7, and which are considered to be relics of the RNA world8–12, 
are able to establish peptide synthesis directly on RNA. The discovered chemistry creates 
complex peptide-decorated RNA chimeric molecules, which suggests the early existence 
of an RNA–peptide world13 from which ribosomal peptide synthesis14 may have 
emerged15,16. The ability to grow peptides on RNA with the help of non-canonical vestige 
nucleosides offers the possibility of an early co-evolution of covalently connected RNAs 
and peptides13,17,18, which then could have dissociated at a higher level of sophistication to 
create the dualistic nucleic acid–protein world that is the hallmark of all life on Earth.

A central commonality of all cellular life is the translational process, 
in which ribosomal RNA (rRNA) catalyses peptide formation with the 
help of transfer RNAs (tRNA), which function as amino acid carrying 
adapter molecules14,19,20. Comparative genomics21 suggests that ribo-
somal translation is one of the oldest evolutionary processes15,16,22,23, 
which dates back to the hypothetical RNA world1–4. The questions of 
how and when RNA learned to instruct peptide synthesis is one of the 
grand unsolved challenges in prebiotic evolutionary research3–5.

The immense complexity of ribosomal translation14 demands a step-
wise evolutionary process11. From the perspective of the RNA world, at 
some point RNA must have gained the ability to instruct and catalyse 
the synthesis of, initially, just small peptides. This initiated the tran-
sition from a pure RNA world1 into an RNA–peptide world13. In this 
RNA–peptide world, both molecular species could have co-evolved to 
gain increasing ‘translation’ and ‘replication’ efficiency17.

To gain insight into the initial processes that may have enabled the 
emergence of an RNA–peptide world13, we analysed the chemical prop-
erties of non-canonical nucleosides6,7, which can be traced back to the 
last universal common ancestor and, as such, are considered to be 
‘living molecular fossils’ of an early RNA world8–12.

This approach, which can be called ‘palaeochemistry’, enabled us 
to learn about the chemical possibilities that existed in the RNA world 
and, therefore, sets the chemical framework for the emergence of life. 
In contrast to earlier investigations of the origin of translation24–29, 
we used naturally occurring non-canonical vestige nucleosides and 
conditions compatible with aqueous wet–dry cycles30,31.

Peptide synthesis on RNA
In modern tRNAs (Fig. 1a), the amino acids that give peptides are linked 
to the CCA 3′ terminus via a labile ester group32. Some tRNAs, however, 

contain additional amino acids in the form of amino acid-modified 
nucleosides, for example, g6A (ref. 33), t6A (ref. 34) and m6t6A (ref. 35), 
which are found directly next to the anticodon loop at position 37. 
Other non-canonical vestige nucleosides often present in the wobble 
position 34 are nm5U and mnm5U (refs. 36–38).

Close inspection of their chemical structures (Fig. 1b) suggests that if 
they are in close proximity (step 1), an RNA-based peptide synthesis may 
be able to start (step 2), which would create, via a hairpin-type interme-
diate, a peptide attached by a urea linkage to the nucleobase (m6)aa6A. 
Cleavage of the urea39,40 (step 3) would furnish RNA with a peptide con-
nected to a (m)nm5U (step 4). Subsequently, strand displacement with a 
new (m6)aa6A strand may finally enable the next peptide elongation step.

To investigate the potential evolution of an RNA–peptide world, 
we synthesized two complementary sets of RNA strands, 1a–1j and 
2a–2c (Fig. 2). The first set contained various m6aa6A nucleotides41 
at the 5′ end (1a–1j) as RNA donor strands. The complementary RNA 
acceptor strands were prepared with an (m)nm5U nucleotide at the 3′ 
terminus (2a–2c). Figure 2a shows the reactions between 1a and 2a. 
The analytical data are presented in Fig. 2b. We hybridized 1a with 2a 
and activated the carboxylic acid of 1a using reagents such as EDC42/
Sulfo-NHS43, DMTMM·Cl43 or methyl isonitrile44 (pH 6, 25 °C). In all cases 
we observed high yielding product formation (Fig. 2c).

A kinetic analysis shows that the nature of the amino acid affects the 
coupling rate (Fig. 2d). For example, G (in 1a) couples to 2c with an apparent 
rate constant (kapp) of 0.1 h−1. For the amino acids L (in 1d), T (in 1e) and M 
(in 1h) a fourfold higher rate constant (≈0.4 h−1) was determined, and the 
highest rate was measured for F (in 1g) with kapp > 1 h−1. These differences 
establish a pronounced amino acid selectivity in the coupling reaction, 
probably as a result of distinct pre-organizations. We next reduced the 
length of the RNA donor strand to five, and finally to three, nucleotides 
(Supplementary Information). We detected coupling even with a trimer 
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RNA donor strand, although it required duplex-enforcing high salt and 
low temperature conditions (1 M NaCl and 0 °C). The interaction of three 
nucleotides on the donor with the corresponding triplet on the acceptor 
seems to be the lower limit for productive coupling. Interestingly, this is the 
size of the codon–anticodon interaction in contemporary translation11,18.

We next investigated coupling of the nitrile derivative of 1a (m6gCN
6A, 

1j) with the different acceptors 2a–2c under the recently described 
prebiotically plausible thiol activation conditions45 (DTT, pH 8, 25 °C). 
Here also, the coupling products were obtained within a few hours 
(Fig. 2c). For example, the combination of nm5U 2b with 1a gives cou-
pling yields of 64% and 66% using EDC/Sulfo-NHS or DMTMM·Cl, 
respectively. Coupling of 1a and 2a, featuring a secondary amine, 
afforded 3a in 16% and 33% yields. The nitrile of 1j afforded yields of 
up to 65% after thiol activation coupling.

We next measured the stability of the hairpin-type intermediates. For 
the hairpin 3a (Fig. 2a), a melting temperature (Tm) of approximately 
87 °C was determined, which in comparison to the starting duplex 
(approximately 30 °C for 1a·2a, see Supplementary Information), 
proves that the peptide formation reaction generated thermally more 
stable structures. This could have been an advantage during wet–dry 
cycling under early Earth conditions.

The discovered concept also enabled the synthesis of longer pep-
tides. When we used 3′-vmnm5U-RNA-5′ 2c as the acceptor, we observed, 
on reaction with 1a–1j, peptide bond formation with up to 77% yield 
(Fig. 2c, d and Fig. 3a).

We next studied the cleavage of the urea linkage and found that this 
reaction was possible at elevated temperatures (90 °C) in water at pH 6 
(Fig. 2a, b). After 6 h, the products, m6A-containing RNA 4 and RNA 5a 
were formed already with a yield of 15%.

Longer peptide structures on RNA
We next investigated how the length of the generated peptides influ-
ences the coupling reaction (Fig. 3 and Extended Data Fig. 1). For this 

study we used synthetic 3′-peptide-mnm5U-RNA-5′ acceptor strands 
as starting materials (Supplementary Information). The synthesized 
acceptor strands were hybridized to the donor strand 1a. After carbox-
ylic acid activation, rapid formation of elongated hairpin-type inter-
mediates with yields between 40% and 60% was observed (Fig. 3b). We 
found that the coupling yields did not drop substantially with increasing 
peptide length, suggesting that other factors, such as the RNA hybridi-
zation kinetics, are rate limiting. In all cases, the subsequent urea cleav-
age (pH 4, 90 °C) affords dipeptide- to hexapeptide-decorated RNAs 
in 10–15% yield. These modest yields are the result of substantial RNA 
degradation, driven by the pH and temperature conditions that were 
used. The decomposition of RNA, however, can be overcome by using 
2′-OMe nucleotides (see 'Stepwise growth of peptides on RNA'), which 
are also vestiges of the early RNA world46.

During urea cleavage we detected competing formation of hydan-
toin side products47, depending on the pH and temperature (Fig. 3a). 
Under mildly acidic conditions (pH 6, 90 °C), exclusive formation of the 
hydantoin product, cyclic-5c, was observed. Reducing the temperature 
and a shift to higher acidity (pH 4, 60 °C) led to the preferential forma-
tion of the peptide product, 5c (approximately 7:1 5c:cyclic-5c ratio).

Fragment coupling on RNA
We investigated whether longer peptides can also be generated by frag-
ment coupling chemistry with RNA donor strands containing an already 
longer peptide (m6peptide6A). This is essential because an RNA–peptide 
world, with initially low chemical efficiency, might have been limited to 
the synthesis of smaller peptides. We found that the required adenosine 
nucleosides, containing a whole peptide attached to the N6-position, 
are available if the peptides that are produced by RNA degradation 
of the RNA–peptide chimeras, for example, can react with nitrosated 
N6-methylurea adenosine (Fig. 4a). When we treated N6-methylurea 
adenosine with NaNO2 (5% H3PO4) and added the solution to triglycine 
(pH 9.5), we obtained the peptide-coupled adenosine nucleoside ggg6A 
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Fig. 1 | Concept of how nucleoside relics of the RNA world enable RNA-based 
peptide synthesis. a, tRNA structure showing selected ribose and nucleobase 
modifications. The 3′-amino acid-acylated adenosine is located at the CCA 3′ 
end in contemporary tRNAs. 5-Methylaminomethyl uridine, mnm5U, is found in 

the wobble position 34. The amino acid-modified carbamoyl adenosine, 
(m6)aa6A (aa, amino acid), is present at position 37 in certain tRNAs. b, General 
RNA–peptide synthesis cycle based on mnm5U and m6aa6A. The structures of 
oligonucleotides are simplified and only terminal nucleobases are drawn.
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in approximately 65% yield. Incorporation of (m6)ggg6A into RNA and 
hybridization of this donor strand with a 3′-ggvmnm5U-RNA-5′ acceptor 
strand furnished, after coupling and urea cleavage, the RNA–peptide 
chimera 3′-gggggvmnm5U-RNA-5′ (53% coupling, approximately 10% 
cleavage; Fig. 4b, left). We could also directly transfer longer pep-
tides. When we hybridized the 5′-m6gaggg6A-RNA-3′ donor with the 
3′-agggvmnm5U-RNA-5′ acceptor, 3′-gagggagggvmnm5U-RNA-5′ was 
obtained as the product (56% coupling, approximately 9% cleavage; 
Fig. 4b, right). These experiments suggest the possibility of generat-
ing highly complex RNA–peptide chimeras with just a small number 
of reaction steps48.

Multiple peptide growth on RNA
We next investigated whether peptide growth is possible at different 
RNA positions simultaneously. To this end, we examined the simul-
taneous binding of different donor strands to one or two acceptor 
strands. We hybridized two donor strands (7-mer: 5′-m6g6A-RNA-3′ and 
10-mer: 5′-m6v6A-RNA-3′) to a single RNA acceptor strand (21-mer) with 
a central gmnm5U and a 3′ terminal nm5U (Fig. 5a, left). On activation 
of the carboxylic acids, a GG-dipeptide was synthesized in the centre 
of the RNA, whereas a valine amino acid was attached to the 3′ end of 
the acceptor strand. In a different experiment, we hybridized an RNA 
donor strand (22-mer), containing both a 3′-m6g6A and a 5′-m6v6A, to 
two different acceptor RNAs, containing a central vmnm5U (21-mer) 
and a 3′ terminal vmnm5U (11-mer) (Fig. 5a, right). On activation, we 
observed formation of a central GV- and a terminal VV-dipeptide.

Effect of base pairing
To investigate the importance of sequence complementarity, we added 
two RNA donor strands of different lengths (7-mer: 5′-m6g6A-RNA-3′ 
and 11-mer: 5′-m6v6A-RNA-3′) to an acceptor strand with a vmnm5U at 
the 3′ end (11-mer: 2c) (Fig. 5b, left). On the basis of the melting tem-
peratures of the two possible duplexes (approximately 30 °C for the 
7-mer·11-mer and 59 °C for the 11-mer·11-mer, see Supplementary Infor-
mation), only formation of the VV-dipeptide RNA conjugate, derived 
from the thermodynamically more stable duplex, was observed. Finally, 
we mixed two RNA donor strands of identical length (7-mer). The first 
contained a 5′-m6l6A and the second a 5′-m6g6A, together with two mis-
matches. We added this mixture to an RNA acceptor strand (11-mer: 
2c) with a 3′-vmnm5U nucleotide (Fig. 5b, right). In this experiment, 
exclusive formation of the LV-dipeptide was found, generated from 
the fully complementary strands and thus the more stable duplex. 
Collectively, these results support that full complementarity is needed 
for efficient peptide synthesis.

Stepwise growth of peptides on RNA
We finally investigated whether one-pot stepwise growth of a peptide 
on RNA is possible (Fig. 5c). To increase the stability of the RNA towards 
phosphodiester hydrolysis, as needed for this experiment, we used 
the RNA acceptor strand 2g, in which the contemporary canonical 
bases were replaced by the non-canonical 2′-OMe nucleotides: Am, Cm, 
Gm and Um. The strand 2g was equipped with an additional 3′-mnm5U 
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nucleotide. For the experiment we used the same amount of donor 
strand for all coupling steps and performed filtration steps to remove 
remaining activator. After two couplings, two urea cleavages and two 

filtrations, we observed, by high-performance liquid chromatography 
(HPLC) analysis, the presence of the product 3′-ggmnm5U-RNA-5′ 7g 
(Fig. 5c, left). The circumvented material consuming isolation steps 
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(Extended Data Fig. 2) enabled us to obtain the product in an overall 
yield of about 18%. A final, third coupling reaction with the 5′-m6f6A 
donor strand 1g furnished the FGG-hairpin intermediate 8g in approxi-
mately 10% overall yield (Fig. 5c, right).

We next studied fragment condensation with the 5′-m6ggg6A-RNA-3′ 
donor strand and the complementary 3′-aggmnm5U-RNA-5′ acceptor 
strand, consisting only of 2′-OMe nucleotides. Here, coupling with 
approximately 50% and urea cleavage with approximately 85% gener-
ated the product 3′-gggaggmnm5U-RNA-5′, together with some of the 
hydantoin side product (Supplementary Information). Together these 
data show that, with the help of 2′-OMe nucleotides, peptides can grow 
on RNA in a stepwise fashion and via fragment condensation to gener-
ate higher complexity.

Discussion
The plausible formation of catalytically competent and self-replicating 
RNA structures without the aid of proteins is one of the major chal-
lenges for the model of the RNA world1–4. It is difficult to imagine how an 
RNA world with complex RNA molecules could have emerged without 
the help of proteins and it is hard to envision how such an RNA world 

transitions into the modern dualistic RNA and protein world, in which 
RNA predominantly encodes information whereas proteins are the 
key catalysts of life.

We found that non-canonical vestige nucleosides8–12, which are key com-
ponents of contemporary RNAs6,7, are able to equip RNA with the ability to 
self-decorate with peptides. This creates chimeric structures, in which both 
chemical entities can co-evolve in a covalently connected form13, generat-
ing gradually more and more sophisticated and complex RNA–peptide 
structures. Although, in this study, we observe peptide coupling on RNA in 
good yields, the efficiency will certainly improve if we allow optimization 
of the structures and sequences of the RNA–peptides by chemical evolu-
tion. The simultaneous presence of the chemical functionalities of RNA 
and amino acids certainly increases the chance of generating catalytically 
competent structures. The stabilization of RNA by incorporation of 2′-OMe 
nucleotides significantly improved the urea cleavage yield.

Interestingly, in the coupling step we observed large differences in 
the rate constants, which suggests that our system has the potential to 
preferentially generate certain peptides. We also found that peptides 
can simultaneously grow at multiple sites on RNA on the basis of rules 
determined by sequence complementarity, which is the indispensable 
requirement for efficient peptide growth.
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All these data together support the idea that non-canonical vestige 

nucleosides in RNA have the potential to create peptide self-decorating 
RNAs and hence an RNA–peptide world. The formed RNA–peptide 
chimeras are comparatively stable, and so it is conceivable that some 
of these structures learned, at some point, to activate amino acids 
by adenylation49 and to transfer them onto the ribose OH groups50 to 
capture the reactivity in structures that were large and hydrophobic 
enough to exclude water. This would then have been the transition 
from the non-canonical nucleoside-based RNA–peptide world to the 
ribosome-centred translational process that is a hallmark of all life on 
Earth today.
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Methods

General method for the peptide coupling reactions
The RNA donor and acceptor strands (1:1 ratio, 5 nmol of each strand) 
were annealed with NaCl (5 μl from a 1 M aqueous solution) by heat-
ing at 95 °C for 4 min, followed by cooling down slowly to room tem-
perature. After that, MES buffer pH 6 (25 μl from a 400 mM aqueous 
solution) and NaCl (5 μl from a 1 M aqueous solution) were added 
to the oligonucleotide solution. Finally, carboxylic acid or nitrile 
activator/s (10 μl of each component from a 500 mM aqueous solu-
tion) and water (100 μl of total reaction volume) were added to the 
solution mixture. The peptide coupling reaction was incubated at 
25 °C for 24 h. The crude reaction mixtures were analysed by HPLC 
and MALDI-TOF mass spectrometry.

General method for the urea cleavage reactions
The hairpin-type intermediate (0.5 nmol) was diluted with MES buffer 
pH 6 or acetate buffer pH 4 (12.5 μl from a 400 mM aqueous solution), 
NaCl (5 μl from a 1 M aqueous solution) and water (50 μl of total reacion 
volume). The urea cleavage reaction was incubated at 60–90 °C at 
different time intervals. The crude reaction mixtures were analysed 
by HPLC and MALDI-TOF mass spectrometry.

Data availability
The data that support the findings of this study are available within the 
paper and its Supplementary Information. 
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Extended Data Fig. 1 | Analytical data of the growth of longer peptides on 
RNA. a, HPLC chromatograms show the crude mixtures of the coupling 
reactions (100 mM MES buffer pH 6, 100 mM NaCl, 50 mM EDC/Sulfo-NHS, 
25 °C, 24 h) between 5′-m6g6A-RNA-3′ 1a and RNA-peptide acceptor strands.  
b, MALDI-TOF mass spectra (negative mode) are shown for the isolated 

products obtained after the cleavage reactions (100 mM acetate buffer pH 4, 
100 mM NaCl, 90 °C, 6 h) of the coupled compounds. In the HPLCs, the RNA 
strands are coloured: donor in blue; acceptor in red and hairpin-type 
intermediate in purple.



Extended Data Fig. 2 | RNA-peptide synthesis cycles using a 2′-OMe 
acceptor strand. a, Two RNA-peptide synthesis cycles in which the product of 
each step was separated and added into the next reaction (coupling conditions: 
100 mM MES buffer pH 6, 100 mM NaCl, 50 mM DMTMM•Cl, 25 °C, 24 h; 

cleavage conditions: 100 mM acetate buffer pH 4, 100 mM NaCl, 90 °C, 24 h).  
b, HPLC chromatograms show the crude mixtures of the coupling and cleavage 
reactions. In the HPLCs, peaks of RNA strands are coloured as in the reaction 
scheme. The product 3′-ggmnm5U-RNA-5′ 7g was obtained in ≈ 6% overall yield.
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