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Abstract

Diffusion MRI derives its contrast from MR signal attenuation induced by the movement of

water molecules in microstructural environments. Associated with the signal attenuation is

the reduction of signal-to-noise ratio (SNR). Methods based on total variation (TV) have

shown superior performance in image noise reduction. However, TV denoising can result

in stair-casing effects due to the inherent piecewise-constant assumption. In this paper, we

propose a tight wavelet frame based approach for edge-preserving denoising of diffusion-

weighted (DW) images. Specifically, we employ the unitary extension principle (UEP) to

generate frames that are discrete analogues to differential operators of various orders,

which will help avoid stair-casing effects. Instead of denoising each DW image separately,

we collaboratively denoise groups of DW images acquired with adjacent gradient direc-

tions. In addition, we introduce a very efficient method for solving an ℓ0 denoising problem

that involves only thresholding and solving a trivial inverse problem. We demonstrate

the effectiveness of our method qualitatively and quantitatively using synthetic and real

data.

Introduction

Diffusion MRI affords in vivo insights into brain tissue microstructure and allows reconstruc-

tion of white matter pathways for neuroscience studies involving development, aging, and dis-

orders [1–5]. However, since diffusion MRI derives its contrast from MR signal attenuation, it

suffers from low signal-to-noise-ratio (SNR), which complicates subsequent quantitative anal-

yses. To improve SNR, multiple repetitive scans are typically acquired and averaged for noise

reduction. This however inevitably prolongs acquisition times and is hence prohibitive in clin-

ical settings. Post-acquisition algorithms, such as total variation (TV) denoising [6], have been

widely adopted due to their ability to remove noise without requiring additional acquisition

time.
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Diffusion-weighted (DW) images are typically acquired with non-collinear gradient direc-

tions. As shown in Fig 1, DW images that are scanned with similar gradient directions share a

lot of commonalities. However, these commonalities diminish very quickly if the difference

between the gradient directions increases. Denoising performance can be improved by making

full use of information between images scanned with similar gradient directions; however,

images scanned with very different gradient directions have to be avoided to reduce artifacts.

We can also observe from the figure that the DW images are typically very noisy, indicating

the great importance of denoising.

In this paper, we propose a group ℓ0 minimization denoising framework that utilizes tight

wavelet frames and takes advantage of the correlation between DW images scanned with

neighboring gradient directions. The power of tight wavelet frames lies in their ability to

sparsely approximate piecewise smooth functions and the existence of fast decomposition and

reconstruction algorithms associated with them. In contrast, TV based methods are effective

on restoring images that are piecewise constant, e.g., binary or cartoon-like images. They will,

however, cause staircasing effects in images that are not piecewise constant [6].

TV denoising is typically realized by penalizing the ℓ1-norm of image gradients. Instead of

ℓ1 regularization, which has been shown in the theory of compressed sensing [7] to produce

sparse solutions, we opt to use ℓ0 regularization. In [8], wavelet frame based ℓ0 regularization

shows better edge-preserving quality compared with the conventional ℓ1 regularization. In [9],

iterative hard threshoding algorithms show better performance than iterative soft thresholding

algorithms. Based on these facts, we propose a group version of ℓ0 minimization to take advan-

tage of the correlation between DW images. Extensive experiments were carried out using syn-

thetic data with different levels of noncentral chi (nc-χ) noise and real diffusion MRI data. The

experimental results demonstrate that the proposed method outperforms TV denoising and

non-local means (NLM) denoising [10]. Part of this work has been presented in a workshop

[11]. Herein, we provide additional examples, results, derivations, and insights that are not

part of the workshop publication. The rest of the paper is organized as follows: In Approach

Section, we will provide detailed descriptions for our method. In Experiments Section, we will

demonstrate the effectiveness of our method using extensive experiments on synthetic data

and real data. In Discussion Section, we will provide in-depth discussions of our method.

Finally, we will conclude this work in Conclusion Section.

Fig 1. Diffusion-weighted images scanned at different gradient directions. The left and middle images were scanned with similar gradient

directions. The right image was scanned at a nearly perpendicular gradient direction with respect to the reference.

https://doi.org/10.1371/journal.pone.0211621.g001
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Approach

We will provide first a brief introduction to framelets, followed by details on how framelets

can be incorporated into an ℓ0 minimization framework for DWI denoising.

Tight framelets

A wavelet system X � L2ðRÞ is called a tight wavelet frame of L2ðRÞ [12] if

f ¼
X

g2X

hf ; gig; 8f 2 L2ðRÞ; ð1Þ

where h�, �i is the inner product of L2ðRÞ. It is clear that an orthonormal basis is a tight frame,

since the identity hold for arbitrary orthonormal bases in L2ðRÞ. When X(C) forms an

orthonormal basis of L2ðRÞ, X(C) is called an orthonormal wavelet basis. Tight frames are gen-

eralization of orthonormal bases with greater redundancy—a property central to sparse repre-

sentation and often desirable in applications such as denoising [13].

Given a set of generators C :¼ fc1; . . . ;cRg � L2ðR
d
Þ, which are desirably (anti)symmet-

ric and compact functions, the corresponding quasi-affine system X(C) from level J is the col-

lection of dilations and shifts of C:

XðCÞ ¼ fcl;r;k : 1 � r � R; l; k 2 Zg; ð2Þ

with

cl;r;k≔
2

l
2crð2

l � � kÞ; l � J;

2
l� J
2 crð2

l � � 2l� JkÞ; l < J:

(

ð3Þ

When X(C) forms a (tight) frame of L2ðRÞ, each function ψr, r = 1, . . ., R, is called a (tight) fra-

melet and the whole system X(C) is called a (tight) wavelet frame system. A tight wavelet

frame is also called a Parseval frame. Note that in the literature the affine (or wavelet) system,

which corresponds to the decimated wavelet (frame) transforms, is commonly used. The

quasi-affine system above, introduced and analyzed in [14], corresponds to the undecimated

wavelet (frame) transforms and essentially oversamples the wavelet frame system starting from

level J − 1 and downwards. In this paper, we focus on the quasi-affine system because it has

been shown to work better in image restoration [12]. We set J = 0 and consider only l< 0.

An approach to constructing framelets C is by utilizing multiresolution analysis (MRA)

[12]. One starts with a refinable function ϕ with refinement mask a0 2 ‘2ðZÞ satisfying

� ¼ 2
X

k2Z

a0½k��ð2 � � kÞ ð4Þ

and �̂ð0Þ ¼ 1, where �̂ denotes Fourier transform of ϕ. The key is to find the masks ar 2 ‘2ðZÞ
that gives

cr ¼ 2
X

k2Z

ar½k��ð2 � � kÞ; r ¼ 1; 2; � � � ;R: ð5Þ

The finite sequences a1, . . ., aR are called wavelet frame masks, or the high pass filters of the sys-

tem. The refinement mask a0 is also known as the low pass filter. The two equations above can

be combined by defining ψ0 ≔ ϕ. The unitary extension principle (UEP) [14] provides a general

theory for constructing MRA-based tight wavelet frames. That is, as long as {a1, . . ., aR} are
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finitely supported and their Fourier series satisfy

XR

r¼0

jârðxÞj
2
¼ 1 and

XR

r¼0

ârðxÞârðxþ nÞ ¼ 0; ð6Þ

for all ν 2 {0, π} and ξ 2 [−π, π], the quasi-affine system X(C) forms a tight frame in L2ðRÞ.
For example, consider the centered B-splines of order p, i.e.,

�̂ðxÞ ¼ e� ij
x
2

sinðx=2Þ

x=2

� �p

; ð7Þ

with j = 0 when p is even and j = 1 when p is odd. The corresponding refinement mask is given

as

â0ðxÞ ¼ e� ij
x
2cospðx=2Þ; ð8Þ

and the p wavelet masks as

ârðxÞ≔ � ire� ij
x
2

ffiffiffiffiffiffiffiffiffiffiffi

p
r

� �s

sinrðx=2Þcosp� rðx=2Þ; ð9Þ

where r = 1, 2, . . ., p. It is straightforward to show that the UEP conditions (6) are satisfied.

Wavelet frame masks for p = 1, 2, 4 are shown in Table 1. It is worth noting that these masks

corresponds to differential operators of various orders. For example, for piecewise linear B-

spline, the masks a1 and a2 correspond to the first order and second order difference operators

respectively up to a scaling factor.

When a tight wavelet frame is used, the given data is considered to be sampled as a local

average

u½k� ¼ hf ; �ð� � kÞi: ð10Þ

Noting that [12]

hf ;cl� 1;r;ki ¼
X

k02Z

al;r½k
0�hf ;cl;0;kþk0 i; ð11Þ

where the dilated sequence is defined as

al;r½k� ¼
ar½2

lk�; k 2 2� lZ;

0; k =2 2� lZ:

(

ð12Þ

Table 1. Wavelet frame masks.

Piecewise Constant

(p = 1)

Piecewise Linear

(p = 2)

Piecewise Cubic

(p = 4)

a0 ¼
1

2
½1; 1� a0 ¼

1

4
½1; 2; 1� a0 ¼

1

16
½1; 4; 6; 4; 1�

a1 ¼
1

2
½1; � 1� a1 ¼

ffiffi
2
p

4
½1; 0; � 1� a1 ¼

1

8
½� 1; � 2; 0; 2; 1�

a2 ¼
1

4
½� 1; 2; � 1� a2 ¼

ffiffi
6
p

16
½1; 0; � 2; 0; 1�

a3 ¼
1

8
½� 1; 2; 0; � 2; 1�

a4 ¼
1

16
½1; � 4; 6; � 4; 1�

https://doi.org/10.1371/journal.pone.0211621.t001
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The decomposition and reconstruction down to level −L [12], i.e.,

P0 f ¼ P� L f þ
XR

r¼1

X� 1

j¼� L

X

k2Z

hf ;cr;j;kicr;j;k; ð13Þ

where

Pl f ¼
XR

r¼1

X

j<l

X

k2Z

hf ;cr;j;kicr;j;k; ð14Þ

can be realized with convolution using the masks. Denoting by W the L-level framelet decom-

position, i.e.,

Wf ¼ ð. . . ;Wl;r f ; . . .Þ
> for ðl; rÞ 2 BL; ð15Þ

with

BL≔ fð1; 1Þ; ð1; 2Þ; � � � ; ð1;RÞ;

ð2; 1Þ; � � � ; ðL;RÞg [ fðL; 0Þg;
ð16Þ

we have

Wl;r f ¼ a� l;r � a� lþ1;0 � � � � � a0;0 � f ; ð17Þ

where � denotes the convolution operator. If we use W> to denote the framelet reconstruction,

we have W>W = I, i.e., f = W>Wf.
Given a 1-dimensional framelet system for L2ðRÞ, the d-dimensional tight wavelet frame

system for L2ðR
dÞ can be easily constructed by using tensor products of the 1-dimensional fra-

melets [12].

Problem formulation

Given a multi-channel or vector-valued image f of an arbitrary dimension with voxel

i 2 {1, . . ., N} consisting of vector fi 2 <M, where N is the number of voxels and M is the

number of channels, we are interested in restoring its denoised counterpart u by solving the

following problem:

min
u

FðuÞ ¼ku � f k2

2
þ
X

i;g;l;r

lg;l;r

�
�
�
�

�
�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m

w2
g;m kðWl;ruðmÞÞi k2

2

r �
�
�
�

�
�
�
�
0

( )

: ð18Þ

Here, u(m) is the m-th channel of u. The regularization term is in fact a summation of G
terms, each of which grouping a number of channels. The g-th grouping (with associated

tuning parameter λg,l,r), where g = {1, 2, . . ., G}, is defined according to the set of weights

{wg,m}, where m 2 {1, 2, . . ., M}. Channels with wg,m 6¼ 0 are included in the grouping and

their weighted framelet coefficients are jointly considered via ℓ2-norm for penalization. The

different groups can possibly overlap, implying that each channel can be included in differ-

ent groups at the same time. This is in spirit similar to the overlapped group Lasso [15]. We
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set

lg;l;r ¼
lð
P

mw
2
g;mÞ

1
2; l; r 6¼ 0;

0; otherwise:

8
<

:
ð19Þ

Here λ is a constant that can be set independently of the weights.

Optimization

Problem (18) can be solved effectively using penalty decomposition (PD) [16]. Defining auxil-

iary variables

ðvg;m;l;rÞi≔wg;mðWl;ru
ðmÞÞi; ð20Þ

this amounts to minimizing the following objective function with respect to u and v≔ {vg,m,l,

r}:

Lmðu; vÞ ¼ ku � f k2
2

X

i;g;l;r

lg;l;r

�
�
�
�

�
�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m

kðvg;m;l;rÞi k2
2

r �
�
�
�

�
�
�
�
0

þ
m

2

X

i;g;m;l;r

kwg;mðWl;ru
ðmÞÞi � ðvg;m;l;rÞi k

2

2
:

ð21Þ

In PD, we (i) alternate between solving for u and v using block coordinate descent (BCD).

Once this converges, we (ii) increase μ> 0 by a multiplicative factor δ> 1 and repeat step (i).

This is repeated until increasing μ does not result in further changes to the solution [16]. See

Algorithm 1 for a summary of the algorithm. Convergence analysis is provided in the S1

Appendix.

First subproblem. We solve for v in the first problem, i.e., minv Lμ(u, v). This is a group ℓ0

problem and the solution can be obtained via hard-thresholding:

ðvg;m;l;rÞi ¼
wg;mðWl;ruðmÞÞi; if ðhg;l;rÞi �

2lg;l;r

m
;

0; if otherwise;

8
><

>:
ð22Þ

where

ðhg;l;rÞi ¼
X

m0
kwg;m0 ðWl;ru

ðm0ÞÞi k
2

2
: ð23Þ

This subproblem can be replaced using soft-thresholding to obtain an ℓ1 version of the

algorithm.

Second subproblem. By taking the partial derivative with respect to u(m), the solution to

the second subproblem, i.e., minu Lμ(u, v), is for each m

I þ
m

2

X

g;l;r

w2

g;mW
>

l;rWl;r

 !

uðmÞ ¼ f ðmÞ þ
m

2

X

g;l;r

wg;m W
>

l;rvg;m;l;r; ð24Þ

where we have dropped the subscript i for notation simplicity. Note that since we have
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P
l;rW

>
l;rWl;r ¼ I, the the problem can be simplified to

1þ
m

2

X

g

w2

g;m

 !

uðmÞ ¼ f ðmÞ þ
m

2

X

g;l;r

wg;m W
>

l;rvg;m;l;r: ð25Þ

Solving the above equation for u(m) is trivial and involves only simple division.

Algorithm 1: Penalty Decomposition (PD)
Data : Multi-channel image f.
Parameters : Tuning parameter λ; initial penalty factor μ0 > 0;

multiplicative factor δ > 1; BCD tolerance �BCD; PD
tolerance �PD.

Initialization : Iteration index k = 0; initial solution u0,0; a
constant U � Φ(u0,0).

Output : Denoised image u.
/� Main Steps �/
(1) For a fixed μk, obtain BCD solution (uk, vk) for minu;v Lmkðu; vÞ. That

is, set k0 = 0 and iterate the following steps:
(1a) Solve vk;k0þ1 2 arg minv Lmkðu

k;k0 ; vÞ.
(1b) Solve uk;k0þ1 ¼ arg minu Lmkðu; v

k;k0þ1Þ.
(1c) If uk,k

0+1 satisfies the BCD stopping criterion

kuk;k0 � uk;k0þ1k2

maxðkuk;k0 k2; 1Þ
� �BCD;

set (uk, vk) = (uk,k
0+1, vk,k

0+1) and go to Step (2).
(1d) Set k0  k0 + 1 and go to Step (1).

(2) If uk satisfies the PD stopping criterion

kuk � ukþ1k2

maxðkukk2; 1Þ
� �PD;

stop and output uk. Otherwise, set μk+1 = δμk.
(3) If minv Lmkþ1

ðuk; vÞ > ϒ, set uk+1,0 = u0,0.
Otherwise, set uk+1,0 = uk.

(4) Set k ! k + 1 and go to Step (1).

Setting the weights

In our case, each channel corresponds to a DW image. In setting the weights {wg,m}, we note

that the weights should decay with the dissimilarity between gradient directions associated

with a pair of DW images. To reflect this, we let G = M and set, for g, m 2 {1, . . ., M},

wg;m ¼
ek½ðn>mng Þ

2� 1�; jn>mng j⩾ cosðyÞ;

0; otherwise;

(

ð26Þ

where κ� 0 is a parameter that determines the rate of decay of the weight. The exponential

function is in fact modified from the probability density function of the Watson distribution

[17] with concentration parameter κ. Essentially, this implies that for the g-th DW image

acquired at gradient direction νg, there is a corresponding regularization group that includes a

set of images with associated weights {wg,m}. The weight is maximal at wg,g = 1 and is attenu-

ated when m 6¼ g. Weights of images scanned at a gradient direction with angle greater than θ
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in relation to νg are set to 0, and the respective images are hence discarded from the group. We

set θ = 30˚.

Debiasing

The magnitude of the complex MR signal is commonly used because the phase of the complex

signal is highly sensitive to many experimental factors [18, 19]. The magnitude MR signal is

not affected by the phase error and it follows a nc-χ distribution [20, 21] rather than a Gauss-

ian distribution and bias correction needs to be carried out especially when the SNR is low

[18]. Bias correction can be performed before [22] or after [23] denoising. In our case, we

adopted the latter for unbiased noise reduction [23].

Fig 2. An illustration of how piecewise linear framelet denoising avoids the staircasing artifacts created by TV denoising.

https://doi.org/10.1371/journal.pone.0211621.g002
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Experiments

The main goal in the following experiments is to demonstrate that denoising performance can

be improved by using

1. UEP-based tight wavelet frames, which avoids the staircasing effect;

2. ℓ0 over ℓ1 regularization;

3. Collaborative utilization of angularly neighboring DW images.

Unless stated otherwise, we used the piecewise linear tight wavelet frame with L = 2 levels of

decomposition. The optimal λ values for ℓ0 and ℓ1 were in (1, 8], determined using grid search

from 0.2 to 50 in steps of 0.2 based on the maximal peak signal-to-noise ratio (PSNR) defined

Fig 3. Debiasing the denoising outcome overcomes the noise floor and results in (σ = 7.5).

https://doi.org/10.1371/journal.pone.0211621.g003

Fig 4. ℓ0 denoising using Haar, piecewise linear, and piecewise cubic framelets (L = 2, σ = 5).

https://doi.org/10.1371/journal.pone.0211621.g004
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as

PSNR ¼ 10 � log
10

MAX2

MSE

� �

; ð27Þ

where MAX is the maximal signal value and MSE is the mean square error.

For debiasing, the noise level is estimated from the image background using the method

described in [24]. More advanced noise estimation methods [23, 25] can be used for improved

accuracy.

Fig 5. ℓ0 denoising in relation to the level of decomposition, L (piecewise linear framelets, σ = 5).

https://doi.org/10.1371/journal.pone.0211621.g005

Fig 6. The effects of grouping on denoising.

https://doi.org/10.1371/journal.pone.0211621.g006
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We utilized NLM filtering as a comparison baseline. Following the work presented in [26],

we set the patch radius to 1 and search radius to 2.

Datasets

Spiral data. A synthetic dataset of a spiral was generated for quantitative evaluation. The

parameters used for synthetic data simulation were consistent with the real data described

next: b = 2000s/mm3, 48 gradient directions, 64 × 64 × 16 voxels with resolution 2 × 2 × 2

mm3. Three levels of 32-channel nc-χ noise [27] was added: σ = 5, 7.5, and 10, corresponding

to SNR = 30, 20, 10. SNR is defined as η/σ [28], where η is the true signal value, which in our

case is the white matter non-DW signal. The varying curvature reflects the various degree of

bending of white matter pathways and gives us a good basis for evaluating how denoising per-

formance changes in different conditions.

Fig 7. Performance comparison based on the spiral data.

https://doi.org/10.1371/journal.pone.0211621.g007
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ISBI phantom. Evaluation was also performed using the realistic diffusion MRI phantom

adopted in the ISBI 2013 HARDI challenge (http://hardi.epfl.ch/static/events/2013_ISBI/). A

python package, called phantomαs [29], was used to generate the noise free phantom, with

gradient directions and diffusion weighting consistent with the spiral data described above.

Three levels of 32-channel nc-χ noise, similar to the spiral data, was added to the noise free

phantom.

Real data. DW images were acquired using Siemens 3T TRIO MR scanner with the same

gradient directions and b-value as the spiral data. The imaging protocol is as follows: 128 × 96

imaging matrix, voxel size of 2 × 2 × 2 mm3, TE = 97 ms, TR = 11, 300 ms, 32-channel receiver

coil. Imaging acquisition was repeatedly performed on the same subject for 8 times. We aver-

aged the 8 sets of DW images and removed the nc-χ noise bias to obtain the ground truth for

Fig 8. Performance comparison based on the ISBI phantom.

https://doi.org/10.1371/journal.pone.0211621.g008
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evaluation. Informed written consent was obtained from the subject and the experimental pro-

tocol was approved by the Institutional Review Board of the University of North Carolina

(UNC) School of Medicine. The study was carried out in accordance with the approved

guidelines.

Results

The staircasing effect. The staircasing effect is often observed in denoising based on TV

regularization [30]. The power of tight wavelet frames lies in their ability to sparsely approxi-

mate piecewise smooth functions. They are hence better suited for images with gradual inten-

sity changes. In Fig 2, we show an example of how piecewise linear framelet denoising avoids

the staircasing effect and results in a smoother image without blocking artifacts. In contrast,

TV denoising causes patch artifacts when the image is not piecewise constant.

Bias correction. The noise-induced bias on the estimated magnitude signal is especially

prominent when the diffusion weighting is high. We removed the nc-χ bias using the method

described in [27]. Fig 3 indicates that the nc-χ noise results in a noise floor especially when the

Fig 9. Comparison of denoised DW images given by different methods (σ = 5).

https://doi.org/10.1371/journal.pone.0211621.g009
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signal is low [27]. This manifests as elevation of intensity value after denoising. Removing the

noise bias produces an image that is closer to the ground truth.

Type of framelets and number of levels. Using the spiral data for evaluation, our results

shown in Fig 4 indicate that piecewise linear framelet denoising performs better than other

types of framelets.

Fig 5 indicates that denoising performance improves with the increase in the number of lev-

els, L. However, the time cost increases dramatically with L, i.e., 27 s for L = 1, 29 s for L = 2,

and 378 s for L = 3 (based on a 4-core Intel i7 processor). Therefore, we choose L = 2 for rea-

sonable denoising performance with a reasonable time cost.

Effects of grouping. Fig 6 shows the results of denoising with and without grouping of

angularly neighboring images. Grouping can be observed to significantly improve PSNR.

Comparison between methods. The PSNR and SSIM [31] results for the spiral data and

ISBI phantom, shown in Figs 7 and 8, indicate that the proposed ℓ0-based framelet method

gives the best performance for all noise levels. The DW images, shown in Figs 9 and 10, indi-

cate that both ℓ1 and ℓ0 give sharper edges compared with NLM. Noise, however, is not totally

removed for the case of ℓ1. Only ℓ0 is able to effectively remove noise and preserve edges. Note

that, for both synthetic and real data, nc-χ bias was removed using the method described in

[27].

Fig 10. Comparison of denoised DW images given by different methods (σ = 7.5).

https://doi.org/10.1371/journal.pone.0211621.g010
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We also compared the computational times of different methods using the spiral data with

a computer equipped with a 4-core Intel i7 processor. The results, shown in Table 2, indicate

that our method and ℓ1 perform more efficiently than NLM.

Real data. For the real data, we used the average image as the ground truth for quantita-

tive evaluations. The results for all 8 datasets, shown in Fig 11, are consistent with Figs 7 and 8,

indicating that ℓ0 gives the best performance. The visual results in Fig 12 indicate that the

results given by ℓ0 is closest to the ground truth. This is confirmed by the root-mean-square

Fig 11. Performance comparison based on the real data.

https://doi.org/10.1371/journal.pone.0211621.g011

Table 2. Computation times.

NLM ℓ1 Proposed

Time (sec) 186 34 27

https://doi.org/10.1371/journal.pone.0211621.t002
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error (RMSE) map computed between the denoised data and the ground truth data. In con-

trast, NLM over-smooths the image and edge information is hence lost.

Discussion

In this paper, we have introduced a method that harnesses correlations between DW images

scanned with similar gradient directions for effective edge-preserving denoising. Our main

contributions lie in three aspects. Firstly, UEP was employed to generate frames that were

discrete analogues to differential operators of various orders; Secondly, instead of the con-

ventional ℓ1 regularization, a very efficient method was proposed in order to solve an ℓ0

denoising problem that involves only thresholding and a trivial inverse problem; Thirdly,

DW images acquired using neighboring gradient directions were used for collaborative

denoising.

NLM was used as a comparison baseline in our evaluation. However, similar to [22, 32],

we found the performance of NLM to be unsatisfactory. NLM can be improved by designing

better metrics for patch matching, instead of the conventional Euclidean distance. For

instance, inspired by the human visual system, Foi and Boracchi [33] proposed a patch fovea-

tion operator for measuring patch distance. Baselice [34] proposed to measure pixel using the

Kolmogorov—Smirnov distance, showing promising performance in reducing speckle noise

in ultrasound images. NLM can be further improved by extending its search volume. For

instance, collaborative NLM [35] extended the search volume to a number of co-denoising

images to enrich the similar information used in noise reduction. Chen et al. [36, 37] pro-

posed to improve NLM by considering the similar information in both spatial domain and

diffusion wavevector domain. This idea was further employed to improve atlas building [38]

and resolution enhancement [39].

Conclusion

In conclusion, we have proposed a method to remove the noise in DW images. The proposed

method takes advantage of multi-channel framelet and the correlations among DW images for

Fig 12. Comparison of denoised DW images using the real data.

https://doi.org/10.1371/journal.pone.0211621.g012
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effective noise removal. The associated ℓ0 optimization problem is solved by an effective itera-

tive hard thresholding algorithm. Extensive experiments on synthetic data and real data dem-

onstrate the advantage of our method over various noise reduction methods, including TV

regularization, NLM, and the ℓ1 counterpart of our method.
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