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Multimodal brain magnetic resonance imaging (MRI) can provide biomarkers of early
influences on neurodevelopment such as nutrition, environmental and genetic factors.
As the exposure to early influences can be separated from neurodevelopmental
outcomes by many months or years, MRI markers can serve as an important
intermediate outcome in multivariate analyses of neurodevelopmental determinants.
Key to the success of such work are recent advances in data science as well as the
growth of relevant data resources. Multimodal MRI assessment of neurodevelopment
can be supplemented with other biomarkers of neurodevelopment such as
electroencephalograms, magnetoencephalogram, and non-imaging biomarkers. This
review focuses on how maternal nutrition impacts infant brain development, with three
purposes: (1) to summarize the current knowledge about how nutrition in stages of
pregnancy and breastfeeding impact infant brain development; (2) to discuss multimodal
MRI and other measures of early neurodevelopment; and (3) to discuss potential
opportunities for data science and artificial intelligence to advance precision nutrition.
We hope this review can facilitate the collaborative march toward precision nutrition
during pregnancy and the first year of life.
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INTRODUCTION

Optimal nutrition early in life is essential to support the rapid growth and development during
infancy, especially among infants born preterm or with severe medical conditions. A critical
period, from the 3rd trimester of pregnancy through the first 1,000 days of life, encompasses
multiple simultaneous neurodevelopment processes that lay the foundation for increasing neural
complexity and subsequent refinement (1, 2). The extended developmental timeline of the human
brain provides a large risk surface for environmental factors to affect the developmental trajectory,
either by increasing plasticity or vulnerability. While plasticity can provide an increased ability
to repair injury, resilience factors can be superseded by damaging factors (3). Impaired brain
development during this critical period can result in lifelong functional deficits and an increased
risk of neurological disorders (4).
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Nutrition plays a key role in supporting proper
neurodevelopment. Adequate supply of both macronutrients
and micronutrients is imperative to support the complex
processes underlying brain development. Myelination accelerates
during infancy (5) and is affected by intake of nutrients such
as long-chain fatty acids, choline, iron, sphingomyelins and
folic acid (6). At 2 years of age, synaptic density peaks are 50%
higher than in adulthood (7). Tremendous energy in the form of
macronutrients is required to fuel such extensive development.
In fact, brain glucose consumption at 2 years of age is already
equivalent to that of the adult and continues to rise during
childhood, accounting for 50% of the basal metabolic rate by
age 10 (8). Malnutrition during the prenatal and postnatal
periods inflicts a tremendous cost on the welfare and lifetime
achievement of the individual, and therefore to society as well.
Indeed, if the three most common micronutrient deficiencies
(zinc, iron and vitamin A) were corrected, it is estimated that
global IQ would increase by 10 points (9).

Advances in multimodal brain magnetic resonance imaging
(MRI) is enabling precision nutrition – optimizing nutrition
for individuals – which has the potential to provide high-
impact nutritional interventions (10). Multimodal MRI
provides insights on the nutritional requirements of specific
developmental stages, and progress to the ability to provide
individual recommendations. Several nutrients have been
specifically studied for early life impacts on neurodevelopment
(Table 1) when supplemented after birth. Currently, we have
limited knowledge regarding how nutrients interact with other
nutrients and non-nutritional factors to modify health outcomes.
Understanding these interactions will improve recommendations
for populations and individuals. This paper surveys mother-
infant nutritional studies, focusing on emerging data science
opportunities toward precision nutrition in term infants. Part I
reviews current knowledge on the effects of factors (nutritional,
genetic and environmental) on infant brain development. Part
II discusses data science opportunities in multimodal MRI and
marker studies for nutrition. Part III lists major databases, trials
and resources relevant to data-driven precision nutrition.

MATERNAL FACTORS INFLUENCING
INFANT BRAIN DEVELOPMENT

Maternal diet plays a crucial role in nutritional status before and
during pregnancy, and in breastmilk nutrition during lactation
(1, 11–19). These factors, along with parental, environmental,
genetic, socioeconomic, and other variables, influence infant
brain development and neurocognitive functions later in life
(20–22; Figure 1). The process is multifactorial and complex.
For decades, multidisciplinary research has aimed to identify
key dietary influences during pre-conception, pregnancy, and
lactation that can be the basis for efforts to improve infant
health and development (Table 1; 23–26). Likewise, researchers
have studied developmental differences between breastfed and
formula-fed infants driven by extremely complex nutritional
differences between breast milk and infant formula and also
inherent non-nutritional differences between those populations.

There are many societal factors that can facilitate or hinder
breastfeeding, so differences between breastfeeding and formula
feeding could also result from these non-nutritional influences.
While those studies have been successful in determining
the essential role of many nutrients such as folate and
iodine that have significant consequences when in deficit, new
analytical approaches open the door to understanding the
complex interactions between dietary nutrients and designing
individualized dietary recommendations that account for subtle
effects and complex interactions between dietary nutrient
and non-nutritional factors. Further, existing studies on early
nutritional influences mostly focus on preterm infants (23,
27–33), due to the high risk of nutritional deficiencies and
neurodevelopmental concerns in this vulnerable population.
Term-born infants, on the other hand, face different nutritional
needs (34, 35), and warrant specific studies.

Pre-conception
The maternal diet prior to conception affects pregnancy
outcomes and infant neurodevelopment (14, 16, 17, 36). Prenatal
deficiency in micronutrients such as folate, iron, and iodine have
been shown to impact infant outcomes. For example, maternal
pre-conception folate supplementation was found to reduce
neural tube defects (17). Offspring of mothers that received a pre-
conception supplement of folic acid and iron displayed improved
fine motor scores at 24 months of age compared to children of
mothers that received folic acid alone (37). Iodine deficiency can
negatively impact the development of the cerebral cortex and
axonal connections, as well as the myelination of the central
nervous system (38). Low pre-conception maternal intake of
iodine is associated with lower IQ in school-aged children aged
6-7 years, emphasizing the long-lasting impact of pre-conception
nutrition deficiencies (39). In addition to specific nutrients, the
activity of metabolic pathways can be measured pre-conception.
Higher maternal homocysteine levels, reflective of sub-optimal
one-carbon metabolism, were associated with an elevated risk
of anxiety, depression, and social problems at school age (40).
However, our current knowledge is very general and does not
incorporate individual patient nutritional needs. Future work
to understand interactions between micronutrients, as well as
differences in individual responsiveness to nutrient deficiency or
excess, is needed to effectively assess the value of and potential
targets for nutritional intervention in the pre-conceptual period.

During Pregnancy
During pregnancy, maternal intake of nutrients such as folate,
iron, iodine, zinc, choline and polyunsaturated fatty acids can
promote the development of the brain and central nervous
system in infants (41). Folic acid supplementation is associated
with increased brain volume as well as increased performance in
language, cognitive (42) and visuospatial domains (43). However,
questions remain about how the accumulation of unmetabolized
folic acid from high intake may impact fetal development (44).
Intrapartum maternal iron deficiency leads to decreased fetal iron
stores (45), which can persist for many months after birth (46).
Infants with iron deficiency at birth have lower language and
fine motor scores at 5 years of age (47). Iron deficiency during
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infancy leads to impaired inhibitory control in later childhood
(48) and poorer cognition and socio-emotional function through
adolescence and young adulthood (49, 50). Iodine deficiency is
estimated to affect as many as 2 billion people worldwide and
is the leading cause of preventable impaired mental functioning
(51). Fetal iodine deficiency is associated with irreversible
visual and cognitive impairment, as well as worse gross motor
development (52). Gestational zinc deficiency has been associated
with decreased novelty preference (53), though clinical trials

have failed to demonstrate positive effects of maternal zinc
supplementation upon child neurodevelopment (54). Choline is
essential for neurodevelopment, and maternal choline intake is
positively associated with child neurodevelopmental outcomes,
including processing speed, attention, inhibitory control, and
spatial memory (55). Inadequate gestational supply of nutrients
such as folate and polyunsaturated fatty acids (docosahexaenoic
& linolenic acid) can impair brain development (56). Given
the growing evidence base for the role of maternal intrapartum

TABLE 1 | Selected nutrients studied for neurodevelopmental effects during infancy.

Nutrients Age of
exposure

Age of effects Participants Outcome measures Preterm/
term

Country References

Choline Birth 7 years 895 Visual memory P/T United States (206)

12 weeks
gestation–3rd

trimester

7 years 26 Color-location memory task T United States (191)

3rd Trimester 13 months 24 Processing speed, visuospatial
memory

T United States (192)

2nd trimester–3
months

postpartum

40 months 49 Attention and social withdrawl T United States (193)

DHA 18 weeks
gestation–
3 months

postpartum

4 years 76 Mental processing T Norway (194)

3-4 months
postpartum

6 months 55 Recognition memory T United States (208)

28 weeks
gestation

12 months 126 Problem solving/IQ T Norway (195)

18 weeks
gestation to

Birth

5 years 797 Attention P/T Mexico (105)

Folate 30 weeks
gestation

10 years 536 Cognition T India (214)

20 weeks
gestation–Birth

8.5 years 59 Executive function T Germany,
Spain, Hungary

(56)

Gestation 1 month 1186 Development quotient T China (196)

Birth–3 months 6 months –
5 years

150 Myelination, behavioral
development

T United States (210)

Iodine 1st Trimester 3 – 18 months 194 Psychomotor development T Spain (58)

Preconcep-tion 6 – 7 years 654 Intelligence T United Kingdom (39)

Iron Gestation 6 months 965 Mental development index T South Korea (197)

34 weeks
gestation

18 months 331 Motor development T Spain (198)

Lutein 3-4 Months
postpartum

6 months 55 Recognition memory T United States (208)

1st-2nd
Trimester

7 years 1093 Verbal P/T United States (211)

Vitamin B12 12 months 12 months 183 Motor development T Guatemala (199)

Preonception 2 years 74 Cognition and language T India (209)

1 – 21 months 1 – 21 months 112 Early neurological development T Turkey (200)

Vitamin D 13 weeks
gestation

14 months 1820 Psychomotor development T Spain (201)

32 weeks
gestation

6 months 960 Language development P/T Vietnam (202)

2nd Trimester 24 months 1020 Receptive language development P/T United States (203)

Zinc 6 months 6-18 months 251 Habituation, attention T Peru (204)

Birth-3 months Term corrected 100 Attention P India (205)
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FIGURE 1 | Neurodevelopmental outcomes in childhood are influenced by multiple factors including those present in the prenatal period and infant stages.

nutrition on infant brain development, it is an ideal time to apply
precision medicine approaches in future studies.

Lactation
During early lactation, an infant is dependent solely on
the nutrients from maternal breast milk for nutrition and
calories (21). Proper nutrition remains critical in the first
years of life to support brain development, including intake
of iodine, choline, polyunsaturated fatty acids and other
nutrients (1, 3). Key nutrients such as iodine continue to
be important during lactation. Maternal supplementation of
iodine in populations with high rates of deficiency has been
shown to lower infant mortality rates improve cognitive function
(57). Additionally, maternal supplementation with iodine during
lactation improved psychomotor development (58). A recent
systematic review concluded that preclinical and clinical evidence
indicates choline supplementation of maternal and/or child
diets during the first 1,000 days of life supports normal
brain development and increases resilience to developmental
insults (59). Other studies are beginning to clarify the role
of omega-3 fatty acids in early development. A study of
docosahexaenoic acid (DHA) supplementation during infancy
demonstrated higher gesture scores at 12 and 18 months (60).
Recently, multivariate analysis identified positive associations
between maternal intake of omega-3 fatty acids and sub-
regional volumes in the frontal cortex and corpus callosum at
1 month of age among a cohort of 92 term-born breastfeeding
mother-infant dyads (61). One ongoing application of precision
nutrition during lactation is the targeted supplementation of
fat and protein using milk analysis for hospitalized infants
(62). With advances in the availability of milk analysis,
individualized supplementation of expressed human milk could
improve growth and developmental outcomes among high-
risk infants.

Breastfeeding
A common question is how the relative exposure to breastmilk
and formula influences infant neurodevelopment. Breastfeeding
exposure has consistently correlated with neurodevelopmental
differences in school-aged children. Neurocognitive studies
found significantly lower IQ scores as measured by Kaufman

Brief Intelligence Test and Wechsler Abbreviated Scale of
Intelligence among school-aged children who were fed formula
as infants (63–65). These studies, together with others, quantified
a neurodevelopmental benefit to breastfeeding during infancy
but did not identify any specific nutrients responsible for
the association.

Multimodal brain MRI correlates of these
neurodevelopmental outcomes are a first step toward defining
potential biomarkers. Diffusion MRI studies found lower
fractional anisotropy values (i.e., more diffuse water flow) in
left hemisphere white matter regions among 18 formula-fed
male children compared to 10 breastfed male children at
8 years of age (66). As fractional anisotropy is sensitive to
white matter integrity, and could be an early biomarker of the
impacts of breastfeeding on brain development. Emphasizing
the role of non-nutritional influences, there was no observed
effect among female children. Structural MRI studies at the
same age also demonstrated lower gray matter volume in the
left inferior temporal and superior parietal lobes of 10 male
infants who were fed formula compared to 10 male infants
who were breastfed (67). Two larger studies extended these
findings, identifying lower volumes across the whole brain,
total gray matter, cortical gray matter, and subcortical gray
matter among ∼10-year-old children who were fed formula
during infancy (N = 148) (65); and thinner cortical surfaces in
the superior and inferior parietal lobes at 12-18 years of age
among 301 children who were fed formula as infants compared
to 270 breastfed infants (64). Besides, specialized brain MRI
approaches to quantify myelination (68) identified earlier and
more rapid myelination in the frontal and temporal white matter,
peripheral aspects of the internal capsule and corticospinal
tracts, superior longitudinal fasciculus and superior occipital-
frontal fasciculus from 10 months to 4 years of age in breastfed
infants (69). These studies highlight potential neuroanatomical
biomarkers for previously observed neurocognitive associations
with breastfeeding (70). However, currently identified markers
often have weak effect size and limited ability to predict
outcomes. But group-level information about brain structure
can be an unparalleled tool to understand the dynamic,
temporal nature of nutrient effects on brain development and
confounding factors.
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While the above studies were cross-sectional, longitudinal data
can determine how nutritional exposure alters the trajectory of
neurodevelopment. One study of term infants included brain
MRI measures at 6, 12, 18, 24, 36, 48, and 60 months, totaling
231 MRI scans from 39 breastfed infants and 221 MRI scans
from 54 formula-fed infants (6). Improved overall myelination
in the white matter and corpus callosum was found in breastfed
children, and the difference increased in magnitude from birth
to about 2 years of age then plateaued thereafter. Neurocognitive
scores as measured by Wechsler Abbreviated Scale of Intelligence
were significantly higher in general, verbal, and non-verbal
cognitive domains among breastfed infants. Also, when the
formula-fed cohort was divided by formula composition, the
formula-based intake of sphingomyelin, phosphatidylcholine,
folic acid, iron, choline, vitamin B12, and two omega-3 fatty acids
(DHA and arachidonic acid) were associated with myelination
differences in focal brain areas. Future studies need to address
how breastfeeding alters development during 0-6 months of age,
when the brain develops most rapidly.

Non-nutritional Factors
Environmental influences on human neurodevelopment, both
positive and negative, begin prenatally (12, 22, 71, 72).
Preconception, non- nutritional influence from both parents can
shape infant development (73). Maternal adverse psychosocial
exposures before conception can influence child development
(13, 74–76). Potential mechanisms for the transfer of maternal
stress responses to the fetus include transplacental passage of
molecular factors, alterations to the uterine environment, and
epigenetic changes (73, 77, 78). Postnatally, adverse experiences
during childhood are associated with altered brain architecture
as well as adverse behavioral and educational outcomes (79–
81). For example, childhood poverty is associated with decreased
executive function skills; further, childhood cortisol levels were
correlated with poverty and measures of executive function (80).
Other environmental exposures including toxins, can negatively
affect neurodevelopment (82): exposures to endocrine-disrupting
chemicals can increase the risk of adverse outcomes such as
neurobehavioral disorders (78). Finally, nutritional influences on
neurodevelopment are modified by exposures to inflammation,
both related to adverse experiences as well as systemic illness
or changes in the microbiome (15, 83, 84). For example, iron is
sequestered as part of the inflammatory response, with chronic
inflammation resulting in iron deficiency anemia in vulnerable
populations (85, 86).

Maternal health also influences long-term child
neurodevelopment. There are critical windows such as the first
trimester, when maternal endocrinological conditions, such as
abnormal thyroid hormone levels, can affect brain development
(87). A cohort of school-aged children born to women with
untreated hypothyroidism had lower neuropsychiatric testing
scores across several domains including language and visual-
motor performance, compared to peers without maternal
hypothyroidism (88). Further, maternal conditions such as
obesity and pre-eclampsia alter the placental transfer and fetal
accumulation of omega-3 fatty acids (89). Specific dietary

factors may be most beneficial among infants affected by
maternal conditions.

Genetic predispositions can also affect infant
neurodevelopmental outcomes, and modifies the effect of
other exposures (90). For example, the presence of a maternal
polymorphism in peroxisome proliferator-activated receptor
gamma (PPARG), which leads to decreased protein activity,
was associated with lower scores in cognitive, language, and
motor realms in offspring at 18 months of age (91). The child’s
PPARG allele status was not correlated with these outcomes,
indicating the lasting influence of the intrauterine environment
on long-term development in childhood. Exposure to toxins, in
utero and/or postnatally, can negatively impact neuropsychiatric
development. For example, in a Taiwanese cohort of 181 children,
higher cord blood mercury concentrations were associated with
lower cognitive scores at 2 years of age, most significantly
among children with a high-risk allele of Apolipoprotein E (92).
Similarly, the relationship between child motor development at
20 months of age and maternal blood mercury concentrations
were affected by common variants in glutathione-related genes
(93). Common variants in glutathione metabolism genes also
increased the negative effect of intrapartum maternal exposure
to secondhand smoke on cognitive performance, as measured
by the Bayley Scales of Infant Development at 2 years of age
(94). With such an array of potentially influential factors on
child development, a nuanced approach that customizes positive
factors such as nutrition may be most effective if personalized
based on co-existing risk factors.

DATA SCIENCE OPPORTUNITIES
TOWARD PRECISION NUTRITION

The rise of data science, including the application of artificial
intelligence to big data, offers unique opportunities for
nutritional science. We can generate new hypotheses that can
drive intervention studies testing combinations of nutrients and
other factors. In addition, machine learning can also enable the
analysis and interpretation of large-scale clinical studies. While
much interventional nutrition research focuses on one or a
few nutrients (95), modern data science allows us to consider
multiple nutrients together and quantify their complementary or
competing contributions to outcomes. Nutritional intervention
studies typically involve only one or a few nutrients, while
retrospective correlation studies can examine multiple nutrients,
these nutrients are often analyzed separately. Further, only
a limited set of non-dietary factors (96, 97) (environmental,
genetic, socioeconomic, etc.) have been typically included in
models of nutritional effects. In contrast, machine learning
approaches can jointly consider all these factors to identify
biomarkers of important outcomes, or to determine influential
dietary and/or nutritional supplements given other features
of an individual mother-infant dyad such as genetic risk,
environmental exposures, or previous nutritional interventions.
Big data in this context could refer to large cohorts, large number
of variables per participant, or both. Such approaches fit well with
the concept of precision nutrition (98) – nutrition that can be
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optimized for individuals, which is elaborated in the 2020-2030
Strategic Plan for National Institute of Health (NIH) Nutrition
Research as released in May 2020 (99).

A challenge of the traditional approach to nutrition studies
of neurodevelopment is that, in addition to measuring the
efficacy of a particular nutrient dose, the temporal window for
optimal influence must also be assessed for each nutrient or
combination of nutrients. In many cases, a nutritional deficiency
may exist, even in healthy and term-born infants, but the
effects of the deficiency may not be evident given the long
time between exposure and measurable outcome, requiring
highly sensitive and specific biomarkers to be identified (100–
102). Traditionally, the impact of infant intake of a single
nutrient on neurodevelopmental outcomes, or a biomarker of
that outcome, is followed over time, typically in school age,
childhood, or adolescence (28, 50, 63, 67, 103). This long
interval between exposure and assessment is necessary because
many neurodevelopmental outcomes cannot be measured until
school age or adolescence. For example, the varying impact of
supplementation with DHA on neurodevelopment (104–107)
may be clarified using machine learning to improve sensitivity
by accounting for confounding factors. The need for early
intervention fuels studies of blood biomarkers or non-invasive
imaging. Often, nutrition studies require highly sensitive and
specific biomarkers (100–102) because the effects of suboptimal
nutritional status are only detectable after a long post-exposure
latency. Such markers could enable the optimization of nutrition
at the earliest time possible for mothers and infants. Finally,
combining longitudinal data using machine learning could
develop new hypotheses on nutrient combinations that impact
markers or outcomes.

Multimodal Brain MRI
Neuroimaging such as multimodal brain MRI and
magnetoencephalography can non-invasively and quantitatively
measure localized effects of specific nutrient on brain structure
and function (26, 32, 61), identify neuroanatomic mechanisms
linking nutritional status with brain development outcomes, and
evaluate the effects of nutritional interventions (29, 100–102).
Neuroimaging provide objective and quantitative outcomes
that compliment other nutrition biomarkers such as reported
diet. Disadvantages include logistical hurdles and expense of
image acquisition, and the requirement of advanced analytics.
At least two recent advancements are facilitating the use
of brain MRI in nutritional studies. The first is the rise of
brain MRI databases that span the human lifespan (100–102).
Hundreds to tens of thousands of brain MRI data from healthy
controls are now available publicly, many with nutrition,
parental, socioeconomic, behavior, neurocognitive development,
environment, and other types of comprehensive data. The other
advancement, as elaborated later, is the quantification of normal
brain development in space across different anatomic locations,
in time across ages, and across modalities that alternatively assess
structural, diffusion, metabolic, or functional data (108). These
increase our ability to pinpoint the subtle and complex patterns
associated with specific nutrients or malnutrition.

Multi-modal brain MRI offers comprehensive tools to evaluate
the effect of nutrition on the brain structure and function.
Structural, or anatomic, brain MRIs such as T1- and T2-weighted
sequences help reveal nutritional effects on regional volumes (61,
109–112) as well as cortical surface thickness, area, curvature and
folding patterns (113–115). T2∗ and T2’ sequences, in particular,
have shown potential to directly quantify iron levels in the
brain (116, 117), as has quantitative susceptibility mapping (117–
119). Diffusion-weighted and diffusion-tensor brain MRIs offer a
lens to quantify white matter water diffusion. Diffusion-tensor-
based parameterization maps such as fractional anisotropy,
mean diffusivity, apparent diffusion coefficient, radial diffusivity,
and axial diffusivity images measure water diffusion magnitude
and directionality. Diffusion-tensor-reconstructed tractography
quantifies the structural connectivity along white matter tracts
(32, 109, 120, 121). Functional MRI of the brain, on the other
hand, measures the brain circuits/connectivity based on blood
flows, and have been used to probe the neural substrate of
nutrition on neurodevelopmental outcomes (122–125). Magnetic
resonance spectroscopy reveals the metabolism in the brain that
can be related to nutrition (126–129). The choice and the optimal
combination of various brain MRI sequence remain an open
topic, though, and are largely dependent on the cohort, specific
nutrients, and study aims (100, 102).

Neurophysiology Tools
Brain activity and its developmental trajectory can be monitored
non-invasively using scalp electroencephalography (EEG) or
magnetoencephalography (MEG). EEG/MEG recordings are
non-invasive procedures that can be performed in subjects of
any age or clinical status. This makes them suitable tools for
testing the short-term and long-term neurophysiological effects
of malnutrition or nutritional interventions.

EEG is sensitive to the neural correlates of cognitive
dysfunction associated with early childhood malnutrition (130).
Childhood malnutrition, before the age of two years, is shown
to lead to irreversible shifts in the cerebral activity organization
that are measurable through EEG (131–134). Quantitative EEG
biomarkers of the malnutrition effects may help stratify children
at risk of adverse neurodevelopmental effects and inform
targeted interventions. An EEG-based age-adjusted classifier
(mainly driven by the EEG alpha activity in the lingual gyrus)
was also recently developed, which distinguished infants with
histories of protein-energy malnutrition from healthy controls
with 82% accuracy (134). This encourages the use of EEG as
a mediator in disease progression models to optimize cost-
effective interventions.

A demonstrated association was also shown between infant
diet and early postnatal development of gamma EEG activity,
which is sensitive to the development of the GABAergic system
(135). EEG activity during infancy was also shown to differ
between infants who are fed through breastfeeding versus milk or
soy formula, possibly suggesting that EEG measures may reflect
environmental- or diet-related influences on the development of
brain function that could lead to different neurodevelopmental
trajectories (136). Nutritional exposures outside of infancy also
lead to differences in EEG traits. Resting-state EEG activity is
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altered by the content of omega-3 and omega-6 fatty acids diets
in infants, children, and adults (100).

With a coordinated effort, large EEG datasets could become
available as EEG technology is widely used in hospital settings and
can be recorded at the bedside. The use of high-resolution EEG
techniques or even MEG, as well as the use of recent advanced
computational methods for data analysis, can potentially enhance
the development of neurophysiological markers of nutritional
interventions or disorders. To our best knowledge, no MEG
studies exist investigating these aspects. Nevertheless, the
increasing availability of MEG systems worldwide will likely bring
to wider, multi-center collection of MEG data in this direction.

Non-imaging Biomarkers for Early
Nutritional Interventions
As the time window for nutritional interventions to optimize
infant neurodevelopment is likely to precede measurable
outcomes, proximal biomarkers of neonatal nutritional status are
necessary. Potential markers of infant nutritional status include
weight, head circumference, body composition, and macular
pigment density (137–145). Body composition measurements
determine the relative amounts of fat and fat-free mass, the
latter of which includes total body water, bone mineral, and
muscle mass (146). Body composition can be measured by
multiple approaches including anthropometric measurements,
isotope dilution, dual energy x-ray absorptiometry, bioelectrical
impedance analysis, MRI, and air displacement plethysmography
(147). Each measure has varying measurement types, degrees of
accuracy, measurement time, expense, and associated exposures.
Differences in body composition among preterm infants have
been associated with speed of processing at preschool age (148),
indicating that body composition has promise as a proximal
biomarker of nutrient effects on neurodevelopment. In addition,
regional bone mass (mineral and density) such the head region
measured with dual energy X-ray absorptiometry (DEXA) which
correlates very well with head circumference measures may
potentially serve as a non-invasive marker for brain development.

Macular pigment optical density (MPOD) often reflects
lutein and zeaxanthin intake in the adult population (137,
149, 150). It is quantitative and non-invasive measure that
can be followed serially over time. Studies have demonstrated
the feasibility of measurement among preterm infants (151)
and a positive correlation between maternal serum zeaxanthin
levels and infant MPOD measurements (152). Breastfed infants
have higher MPOD values than formula-fed infants (153,
154), though the exact milk components responsible for this
difference remain to be determined. Childhood MPOD measures
have been associated with academic performance, supporting
its potential role as a biomarker of neurodevelopment (155).
However, open questions include (a) whether MPOD remains
stable during lactation, and the lack of longitudinal studies
in a large cohort for the dynamics of MPOD from pre-
conception, pregnancy, and postpartum; (b) what exact nutrients
or nutrient combinations in these three stages do MPOD
reflect in maternal nutrition – because existing evidence that
MPOD reflects lutein and zeaxanthin intake has been from

non-pregnant populations. This association may or may not
replicate in mothers before, during, and after pregnancy as
dietary carotenoids are also transferred to breastmilk (153, 155)
and therefore are likely to have a different relationship with
MPOD (145).

Measuring Nutritional Intake
Ascertainment of the effects of maternal nutrient intake on infant
outcomes can be achieved through targeted supplementation
of single or multiple nutrients, or by passive assessment of
nutrient intake. Estimating nutrient intake from consumption
of infant formulas can include significant error unless bottles
are weighed before and after feedings. A formalized, quantitative
method to profile maternal nutrient intake is food frequency
questionnaire (FFQ) (156, 157). FFQs collect the portion size and
frequency of consumption among a list of foods, and can be self-
administered or completed by interview (158). This food data
is then converted into daily nutrient intake values (159, 160).
Advantages to FFQs include scalability, ease of administration,
and opportunity for serial measurement. Disadvantages include
concerns about reproducibility and systematic errors and biases
associated with self-reported data, memory-based measurements,
inability to verify or falsify data (161), or objective infant brain
measurement (61), and data processing assumptions.

Multivariate Analysis of
Macro/MicroNutrient Interactions
The majority of existing studies focus on the effects of a
single nutrient, or multiple nutrients examined independently.
However, nutrients interact with each other to produce biological
effects. For example, choline and DHA interact during eye
and brain development (162); vitamin B12, iron and folate all
affect red blood cell development (163); and lutein, vitamin E,
arachidonic acid and DHA interact during brain development
(164–166). Defining additional subsets of nutrients that jointly
impact brain development and general health is an essential
step toward precision nutrition (167). Multivariate analysis in
machine learning and data science is appropriate for the task. One
obvious challenge, though, is the need for big data including a
full spectrum of nutrient, biomarker and outcome data for ideally
thousands or more individuals.

Pathway Connecting Maternal Diet,
Breastmilk, Infant Brain Development
and Later Neurocognition
Current mother-infant dyad studies focus on associations
between nutrient intake and infant outcomes, but causality is
not addressed by linking maternal dietary factors to changes in
breastmilk composition. For instance, breastmilk components
that influence infant brain health may be constant and
not significantly modified by maternal intake of nutrients.
Alternatively, the maternal nutrients associated with infant
brain health may not be related to the quantity of breastmilk
components but could instead vary based on the bioavailability
or activity of nutrients. Furthermore, nutrient bioavailability
and activity may vary during pre-conception, pregnancy, and
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lactation periods. One way to move toward a causality study is
to find a pathway linking maternal diet, breastmilk components,
and infant development (either neurocognitive measurements or
biomarkers such as brain MRI measures, or both). Establishing a
pathway can generate a specific hypothesis regarding nutrients
or supplements that may impact breastmilk components and
subsequently improve infant brain health. These nutrients could
then be studied in randomized trials, the modification of which
may show the maximum impact in infant brain development.
Recent advancements in multivariate analysis, artificial neural
network analysis, and graph theory set the stage for such
a pathway study.

Moving From Population Science to
Precision Nutrition
Precision nutrition can produce tailored nutritional intake
recommendations to optimize health and outcomes (168). By
contrast, most nutritional studies focus on population-level
associations. Whereas individuals differ by dietary habits,
genetics, environmental exposures, parental factors, health
status, microbiome, metabolism, socioeconomics, physical
activity, psychosocial characteristics, and other factors, precision
nutrition aims to create individual nutrition recommendations
that consider these complex influences (169–171). Precision
nutrition is an important constituent of precision medicine
(98). The 2020-2030 NIH Strategic Plan for Nutrition Research
articulated four strategic goals: (1) discover what we eat and how
it affects us; (2) investigate what and when we should eat; (3)
define how nutrition promotes health across our lifespan; and
(4) understand how to modify diets to improve health, or “Food
as Medicine” (99). The prenatal period, as reviewed in this paper,
marks the earliest time that precision nutrition can make an
impact, and arguably the time precision nutrition can make the
largest lifelong impact.

EXISTING RESOURCES TO POWER
PRECISION NUTRITION

Birth Cohorts
Some large birth cohort studies and national registries have been
collecting data since the 1990s or earlier. These databases aim
to provide information that advances our understanding of how
various factors act together to impact psychical, socio-emotional,
cognitive and behavior development of participants across
infancy, adolescents, adulthood, and subsequent generations
(172, 173). A typical birth cohort contains thousands to tens of
thousands of participants, who were followed up for years or
decades for these comprehensive sets of data (Table 2). In all
these birth cohort studies, nutritional data is collected alongside
other measures that are potential biomarkers of development.
Some studies include brain MRI measurements, sometimes
longitudinally collected. Examples of such MRI-containing birth
cohorts are Dutch Generation R, FinnBrain, Norwegian MoBa,
Singapore GUSTO cohorts. Merging data across cohorts, a big
data opportunity not yet explored, may face problems such as

TABLE 2 | Birth cohort studies.

Cohort Families Year Started (Ended)

Avon Longitudinal
Study of Parents and
Children (ALSPC)

14,000 1990

Dutch Generation R 4,000 2001

United Kingdom
Millennium Cohort
Study (MCS)

21,000 2000

Norwegian Mother,
Father and Child
Cohort Study (MoBA)

100,000 1999 (2009)

Danish National Birth
Cohort (DNBC)

100,000 1996-

Greek Mother-Child
Study (RHEA)

1,600 2007 (2015)

Amsterdam-Born
Children Development
(ABCD)

12,000 2003

French EDEN
Mother-Infant Study

1,800 2003

Growing Up in Australia 10,000 2002

Growing Up in
New Zealand

7,000 2009

Growing Up in Scotland 10,000 2004

Growing Up in Ireland 18,000 2008

China Anhui Birth
Cohort

17,000 2008

KUNO-Kids Germany 5,000 2019

China Shengjing Cohort 1,000 2019

Singapore GUSTO
Birth Cohort

1,100 2009

Spanish INfncia y
Medio Ambiente

3,600 1997 (2008)

United Kingdom Born
in Bradford

30,000 2007

FinnBrain Research 3,000 2011 (2015)

missing or differently-formatted data. A subset of the datasets
may share sufficient data characteristics to be tangible for meta-
analysis.

Quantification of Typical Brain
Development Over the Lifespan
Healthy brain MRIs in the public domains have grown from
∼8000 in 2014 (174) to now more than 40,000, and including
many that represent timepoints now across human lifespan
(174–176). Ongoing projects include the HEALthy Brain and
Child Development (HBCD) initiative, which is collecting
comprehensive birth cohort data from thousands of mother-
infant dyads in the next decade in more than 20 sites across
the United States (177). Datasets that depict typical neonatal
brain development through early childhood are increasingly
available at a 1 mm x 1 mm x 1 mm spatial resolution and high
temporal resolution (bi-weekly, monthly, quarterly and annual
intervals) (178–181). Fetal brain atlases are now available at a
weekly interval between 19 and 39 weeks of age (182). These
valuable brain MRI data during typical development provide
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baseline measures for comparison in future cohorts, though
the applicability of each reference dataset should have careful
consideration of potential confounding exposures (183, 184).
Computer-constructed atlas characterizes structural, diffusion
and functional neurodevelopment at high spatial and temporal
granularity (185). Machine learning-driven age prediction
captures subtle deviation compared to a subject’s chronological
age, reflecting accelerated or slowed changes associated with
aging (186–188). These datasets and sensitive algorithms equip
nutrition researchers with a better understanding of brain
development in early life, and a series of tools to explore the
relationship between maternal nutrition and infant brain health.
Opportunities also emerge for brain MRI to identify subtle
nutrition deficiencies and suggest nutritional supplements for
individual mother-infant dyads, as well as to assess the influence
of additional factors relevant to precision nutrition on sensitive
MRI biomarkers of development.

Ongoing Clinical Trials
While there are many clinical nutritional intervention studies,
few collect the comprehensive data necessary for precision
nutrition. At clinicaltrials.gov (accessed on 01/09/2022), there
are 202 clinical studies currently enrolling participants that are
identified by the keyword ‘nutrition’ and participant age of 0
years, 103 of which are interventional. There were an additional
82 active clinical studies, 49 of which are interventional. Ten
active interventional trials involved dietary supplements, mostly
focused on preterm infants (7 of 10). An additional 792
completed clinical trials were identified using the same search
terms, of which 549 were interventional. One hundred thirty-
two were focused on infants, but again only those born preterm,
while only 2 included neurodevelopmental outcomes or utilized
brain magnetic resonance imaging. Thus, research motivation
for studying nutritional interventions for infants is high, but few
studies focus on term infants, neurodevelopment or MRI analysis
of brain structure or connectivity.

National Institutes of Health Nutritional
Task Force
The NIH Nutrition Research Task Force, formed in October 2016
(189), released a 10-year (2020-2030) strategic plan to accelerate
nutrition research into precision nutrition in May 2020 (99,
190). To achieve the third of four NIH-wide strategic goals –
“to define the role of nutrition across the lifespan” – three
specific objectives were developed to focus on nutrition in the

pre-conception, pregnancy and infancy stages. These objectives
are: examine the role of peri-conceptional and prenatal nutrition
in development and disease outcomes (Objective 3-1); enhance
knowledge of human milk composition and the translational
roles of its components (Objective 3-2); and access the influence
of diet and nutritional status on infant developmental and health
outcomes (Objective 3-3). Precision nutrition approaches will
provide the most comprehensive and personalized answers to
these objectives when high-quality data from relevant stages are
analyzed using multivariate techniques.

CONCLUSION

Precision nutrition is an emerging branch of precision medicine.
Among the many factors that influence early brain development,
nutrition is a relatively modifiable factor. Tremendous
opportunities are available to improve neurodevelopmental
outcomes by optimizing the very origin of brain development
(between conception to infancy), through modifying maternal
nutrition (during pre-conception, pregnancy and lactation
periods) and infant nutrition. We reviewed the current
knowledge in this field, discussed opportunities from data science
perspectives, and provided a catalog of major resources. We hope
this survey and perspective study helps push nutritional studies
for early life to a new height.
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