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Among the snail genera most responsible for vectoring human-infecting schistosomes, Bulinus,
Biomphalaria, and Oncomelania, the former is in many respects the most important. Bulinid snails
host the most common human blood fluke, Schistosoma haematobium, responsible for approximately
two-thirds of the estimated 237 million cases of schistosomiasis. They also support transmission of
schistosomes to millions of domestic and wild animals. Nonetheless, our basic knowledge of the 37
Bulinus species remains incomplete, especially with respect to genome information, even including
mitogenome sequences. We determined complete mitogenome sequences for Bulinus truncatus, B.
nasutus, and B. ugandae, and three representatives of B. globosus from eastern, central, and western
Kenya. A difference of the location of tRNA-Asp was found between mitogenomes from the three
species of the Bulinus africanus group and B. truncatus. Phylogenetic analysis using partial cox1
sequences suggests that B. globosus is a complex comprised of multiple species. We also highlight the
status of B. ugandae as a distinct species with unusual interactions with the S. haematobium group
parasites deserving of additional investigation. We provide sequence data for potential development
of genetic markers for specific or intraspecific Bulinus studies, help elucidate the relationships

among Bulinus species, and suggest ways in which mitogenomes may help understand the complex
interactions between Schistosoma and Bulinus snails and their relatives.

Of the world’s 237 million estimated cases of human schistosomiasis', about 85% occur in sub-Saharan Africa®™,
and approximately two-thirds of the patients are afflicted with urogenital schistosomiasis®*. Like intestinal schis-
tosomiasis, urogenital schistosomiasis causes underappreciated morbidity along with well-known pathological
symptoms such as hematuria, and an association with bladder pathology including cancer>~”. Damage to the
urogenital system, especially in females, is increasingly recognized as a factor favoring the transmission of the
Human Immunodeficiency Virus (HIV)®°. The relatively recent emergence of urinary schistosomiasis in Corsica,
France'®!! has highlighted the opportunistic nature of Schistosoma haematobium, particularly with respect to
a large number of recent studies suggestive of its ability to hybridize with closely related species like S. bovis or
S. curassoni'*™4,

Freshwater pulmonate snails of the genus Bulinus (Gastropoda, Planorbidae) are the obligate intermediate
hosts of S. haematobium. Thirty-seven species of Bulinus are recognized and predominantly distributed on the
African continent including Madagascar and associated smaller oceanic islands, several Mediterranean islands
and southern continental Europe, and southwest Asia including the Arabian Peninsula'®. Several species includ-
ing Bulinus globosus, B. nasutus, B. truncatus, and B. africanus serve as intermediate hosts of S. haematobium.
Additionally, bulinids also vector other parasites. Bulinus forskalii serves as an intermediate host for S. guineensis,
and B. globosus transmits S. intercalatum, both schistosome species being etiologic agent of human intestinal
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Figure 1. Shell morphology of six snail specimens (A) and arrangement of protein-coding genes (PCG) and
tRNASs of six mitogenomes (B). In part B, diagram a shows the gene arrangements of the mitogenome of B.
globosus, B. nasutus and B, ugandae whereas b shows the mitogenome of B. truncatus. Note the different position
of tRNA-Asp (red arrow). The abbreviations of BuGe, BuGc and BuGw are three specimens of B. globosus

that were collected from eastern, central, and western Kenya, respectively. BuT, BuN, and BuU represent B.
truncatus, B. nasutus, and B. ugandae, respectively. The same abbreviations are applied to all figures below and
supplementary Table 1.

schistosomiasis'®. Several Bulinus species are implicated in transmission of other members of the S. haematobium
group of species which cause schistosomiasis in domestic and wild animals'’~-*%. Moreover, bulinids can also serve
as intermediate hosts for other trematode species, particularly amphistomes, pathogens of livestock?>**. Clearly,
Bulinus snails play a crucial role in transmission of snail-transmitted diseases in the tropical world.

Better understanding all aspects of the biology of vector snails including their population genetics, distribu-
tions, basic immunobiology including susceptibility to infection, symbionts and co-infections, and response to
environmental change are critical to develop sound strategies for the future control of human schistosomiasis and
other snail-transmitted diseases of concern. One of the basic, long-standing challenges is how to accurately and
efficiently identify Bulinus species. Characters based solely on morphological traits are often difficult to discern
and subject to eco-phenotypic variation. Molecularly-based approaches have revealed that considerable genetic
variation exists within and among species and have been essential in providing a framework of objective criteria
for more rigorously delineating taxa>*’. Molecular data including partial DNA sequences from mitochondrial
cytochrome c oxidase subunit 1 (coxI) and internal transcribed spacer regions (ITS) of nuclear ribosomal DNA
(rDNA) have been provided to address questions related to population genetics and phylogenetics?***-3. These
studies have provided much-needed insights into phylogenetic relationship among species but have not always
yielded consistent results?®-?%31. More comprehensive molecular data for Bulinus snails are needed.

Complete mitochondrial genome (mitogenome) sequences have proven to be useful in addressing a broad
range of questions in evolutionary biology*>**. Mitogenomes have been reported for several molluscan species,
including multiple species of Biomphalaria®-° and one species of Oncomelania®. For the genus Bulinus, only a
mitogenome sequence for B. truncatus has thus far been reported®. This is surprising because of the magnitude
of the problems posed by S. haematobium and related species. To help fill this gap, we applied high through-put
Ilumina sequencing to determine six complete mitogenomes for Bulinus snails, five specimens collected in Kenya
and one from laboratory-reared Bulinus truncatus, originally from Egypt. The study provides basic sequence
information for designing more markers for identifying bulinid species and revealing relationships among spe-
cies, highlights some specific topics deserving additional study pertaining to understanding compatibility and
biogeography of snails and schistosomes, and provides new tools of use in studies of host use, transmission, and
control of human schistosomiasis.

Results

All six bulinid mitogenomes were comprised of 37 genes, including 13 protein-coding genes (PCG), 22 transfer
RNA (tRNA) genes and 2 ribosomal RNA (rRNA) genes. Location of the genes in the six mitogenomes was con-
served, with the only difference noted being the location of tRNA-Asp of B. truncatus relative to the other three
species (B. nasutus, B. ugandae, and B. globosus) (Fig. 1). The GenBank accession numbers of the six mitogenomes
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generated from B. truncatus, B. nasutus, B. ugandae, and three specimens of B. globosus from eastern, central, and
western Kenya, are MK414449, MK414450, MK414451, MK414452, MK414453 and MK414454, respectively.
More detailed information on gene organization for all six mitogenomes is provided in the Supplementary
Table S2 and Supplementary Fig. S1.

Heatmap analyses revealed that the most conserved gene and its gene-product (protein) was coxl whereas
atp8 showed a relatively high degree of variation (Fig. 2).

Built on the full length mitogenome sequences, a phylogenetic analysis revealed that B. globosus from eastern
and western Kenya are divergent. In our samples, B. ugandae was the species most closely related to B. globosus
(Fig. 3). As expected, B. truncatus, a member of B. truncatus/tropicus complex's, was most distantly related to
the other three Bulinus species (all members of the B. africanus species group)'®. This result was also supported
by organization of gene order of the mitogenomes (Fig. 1).

Since partial cox1 sequences have been documented for many Bulinus species, we compared coxI sequences
from our samples with those previously reported. The phylogenetic analysis shows that the four species used in
this study, representing two of the four generally elaborated Bulinus species groups, fit well within the framework
of known species already reported (Fig. 4). This analysis further highlights the considerable diversity inherent
in what might be referred to as a B. globosus species complex and the presence of a distinct, but sometimes
overlooked species, B. ugandae, often associated with Lake Victoria.

Discussion

Thirty-seven species of freshwater pulmonate snails of the genus Bulinus have been divided into four species
groups: Bulinus forskalii group (11 species), Bulinus truncatus/tropicus group (14 species), Bulinus africanus
group (10 species), and Bulinus reticulatus group (2 species)"”. Definitive evolutionary relationships among the
four species groups and delimitations of species within each group, especially within the africanus species group,
have remained elusive.

For example, there is considerable confusion regarding differentiation of B. globosus and B. africanus®. Dif-
ferences in the male copulatory organs between the two species have been noted, with the penis sheath of B.
africanus being longer and broader than the preputium, as compared to B. globosus'>*. Later studies, however,
suggested that such characters are not reliable for species discrimination®. Previous studies using limited molecu-
lar data have retrieved contradictory results. Morgan et al. (2002) grouped B. africanus with B. nasutus rather
than with B. globosus based on analysis of partial ITS sequences*'. Another study using combined coxI and ITS
sequences indicated B. africanus is clustered within a clade of B. globosus™.

In the present study, we collected B. globosus samples from eastern, central, and western Kenya (Fig. 5). At the
beginning of the work, we suspected the sample from Asao stream, a perennially flowing stream in western Kenya
might be B. africanus. As stated by Brown et al. (1981), B. africanus is widely distributed in Kenya and associ-
ated with perennially flowing streams and permanently filled dams*2. However, our phylogenetic trees based
on cox1 sequences clearly showed the west Kenya sample from Asao stream closely grouped with B. globosus
samples collected from Kisumu, about 15 km away*® (Fig. 4). In addition, coxI sequence of a snail sampled from
the eastern coastal area of Kenya clustered with sequences reported as B. globosus by others from eastern Kenya
(Fig. 4). The sample from central Kenya was more closely related to those from west Kenya and Tanzania. We
observed samples from eastern and western Kenya to be divergent, in agreement with findings based on micro-
satellite data®"**. Notably, our study also supports that B. globosus from Angola, the type locality of B. globosus",
is divergent from B. globosus from other localities®® (Fig. 4). According to these molecular data, it is likely that
there are multiple disparate lineages represented as “B. globosus”, one from the type locality, and conservatively,
at least two additional related lineages represented in Kenya alone. Pennance (personal communication), who
has collected additional relevant mitogenome sequences, has also confirmed the notion of a B. globosus “spe-
cies complex” (see also®"**). Whether these lineages should be classified into different formally named species
or subspecies, or simply highlight the existence of a single broadly distributed and highly variable species is an
interesting question deserving resolution. It bears directly on the issue of defining the full spectrum of snail
host species for S. haematobium as B. globosus in its various guises is repeatedly implicated as an excellent host
for S. haematobium and several other related schistosomes!>?’. More molecular evidence such as mitogenomes
collected from a wide range of geographic locations will help resolve the question.

Bulinus ugandae is found in Lake Victoria and associated backwaters, and north to South Sudan and Ethio-
pia. It appears to be refractory to infection with S. haematobium**, but is host for S. bovis, a parasite infecting
livestock**. Our sample collected from the Kisumu shoreline of Lake Victoria is more closely related to B. globosus
than to the other species we sampled. This agrees with a previous ITS sequence-based study suggesting that B.
ugandae is closely related to B. globosus*!.

Bulinus nasutus, a species repeatedly implicated in S. haematobium transmission in coastal East Africa, includ-
ing Kenya**, was collected from a reservoir in southern Mombasa, a coastal city of eastern Kenya. This specimen
and those reported from eastern Kenya and Tanzania by others are well clustered. As a member of the B. africanus
group, B. nasutus also grouped with B. globosus and B. ugandae (africanus group) (Fig. 4).

Bulinus nasutus, another member of the B. africanus group, also as supported by Figs. 3 and 4, has been repeat-
edly implicated in S. haematobium transmission in coastal East Africa, including Kenya*. Our cox! analysis is
suggestive of variation within this taxon as well, that may also have implications with respect to S. haematobium
transmission.

Bulinus truncatus originating from Egypt has been maintained with NTH support for decades, most recently
at the Biomedical Research Institute (BRI), Maryland, USA, and is used for routine maintenance of the life cycle
of S. haematobium (www.afbr-bri.com). Unlike the preceding three taxa we examined which were all from Kenya
and belong to the Bulinus africanus group, the B. truncatus specimen is classified to the Bulinus truncatus/tropicus
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Figure 2. Heatmaps showing the degree of identity of nucleotides (nt) (A) and amino acids (aa) (B) between

species/specimens.

group, supported by both the analysis of the whole mitogenome sequences (Fig. 3) and the coxI phylogenetic
analysis (Fig. 4). In addition, the position of tRNA-Asp revealed in this study is also different from that of B.

africanus group (Fig. 1B).
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Figure 3. A maximum likelihood (ML) phylogenetic tree with 1000 bootstrap replicates of full-length
mitochondrial genome nucleotide sequences of Bulinus species. All bootstrap values are indicated at supported
nodes.

The mitogenome sequence characterized by us is equal in length (13,767 bp) to the sequence characterized
independently from B. truncatus also obtained from BRI*®. The two mitogenomes generated by two different
sequencing methods (Nanopore*® vs Illumina) differ by 7 nucleotides (0.05%); resulting in 5 non-synonymous
replacements (one each in nad5 and nad3, three in atp6), one synonymous replacement in the start codon of
nad4 and a single pyrimidine (T, C) transition in the 16S rDNA sequence. These differences indicate a modest
level of genetic diversity in the BRI stock of B. truncatus.

It is noteworthy that the B. truncatus nad4 gene does not have a regular TAA stop codon observed from nad4
in other Bulinus species, nor does it have an incomplete stop codon punctuated by a downstream tRNA sequence.
Secondary structures, however, may mark gene boundaries in polycistronic mitochondrial RNA*. Annotation
indicated that the last complete trinucleotide codon of the 3’ terminus of the nad4 gene sequence is followed
by a single T nucleotide and, immediately downstream, by an inverted repeat. This TAACAGAATTCTGTTA
sequence likely yields a hairpin structure in the 3’ end of the gene transcript to define an incomplete stop codon
(T—), that is completed by polyadenylation of the mRNA.

A reliable taxonomy of the genus Bulinus and useful genetic markers for species identification are a funda-
mental prerequisite for fully understanding the epidemiology of Bulinus-transmitted schistosomiasis in humans
and animals. Our study provides basic data to design primers for further in-depth studies: markers derived from
different mitogenome regions can be developed for studies with objectives ranging from species differentiation
(cox1) to sequences like atp8 which may be appropriate for studies of intraspecific variation. As next generation
sequencing (NGS) becomes even more cost-effective further comparative analysis of complete mitogenomes will
follow*”*® including, as noted by Pennance (personal communication) to allow novel insights into relationships
and evolution among Bulinus species.

The perspective offered by more mitogenomes will be particularly important for the gastropod family Planor-
bidae because, in addition to containing two genera of medically relevant snails (i.e., Bulinus and Biomphalaria),
a third genus, Indoplanorbis, hosts the representatives of the Asian Schistosoma indicum group of veterinary
significance*>*. Indoplanorbis is generally considered the sister genus to Bulinus®”*! and given the support from
the fossil record for an African origin for Bulinus®, it has been considered that Bulinus-like snails originating in
Africa may have dispersed to Asia and given rise to Indoplanorbis which increasing evidence suggests is actu-
ally a complex of as many as five cryptic species*->2. This is turn supports the notion that Bulinus-transmitted
Schistosoma may have recolonized Asia using Indoplanorbis as their snail host®>%. A greater representation
of mitogenomes from Bulinus, along with needed mitogenome sequences from the various cryptic species of
Indoplanorbis would provide further insight into the Bulinus-Indoplanorbis connection and its relation to today’s
distribution of species of Schistosoma.

Additionally, the relationships between the Schistosoma mansoni species group (transmitted by Biomphalaria)
and the S. haematobium species group (transmitted by Bulinus) in sub-Saharan Africa remain enigmatic, par-
ticularly given that the two snail genera involved are not close relatives within the Planorbidae, and the arrival
of Biomphalaria to Africa is believed to have been relatively recent, long after Bulinus had originated there*'.
More precise knowledge of host use, systematic clarification of the snail groups involved, and provision of more
genomic information, to which this study contributes, will help to us appreciate the manner in which African
Schistosoma diversified.

It has been noted that gastropods display an unusually large variety of gene orders among their
mitogenomes***>**, Within the order Hygrophila, complete mitogenomes have been published for representa-
tives of only three of eight families, the Planorbidae*-2*%>>, Lymnaeidae®*-%, and Physidae*’. For Bulinus, rec-
ognized by Bouchet et al. (2017) as a member of a separate family®, the Bulinidae, mitochondrial gene order is
almost identical to representatives of the Planorbidae for which mitogenomes are available. Several phylogenetic
studies also group Bulinus within the Planorbidae, and a role in transmission of Schistosoma parasites is also
suggestive of inclusion of Bulinus in the Planorbidae?”#!*!. Planorbidae mitochondrial gene order is similar to
the Lymnaeidae except for differences in location of a few tRNAs, whereas gene order is quite different in the
Physidae®. Further studies are needed to characterize more gastropod mitogenomes, which will shed light on
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Figure 4. A ML phylogenetic tree with 1000 bootstrap replicates generated using partial coxI gene sequences.
Bootstrap values> 60 are indicated at supported nodes. Publicly available sequences utilized in this analysis are
indicated by GenBank accession number.
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Figure 5. Localities of snail samples used for the study. The maps were drawn by the first author S-MZ and
photos were taken by S-MZ.

their evolution and diversification in mollusks and at the same time, provide more genetic markers for popula-
tion genetics, evolutionary and phylogenetic studies.

Materials and methods

Specimens. Bulinus nasutus was collected from Nimbodze dam (03° 28.32” S, 39° 27.08” E), southern
Mombasa, Kenya. B. ugandae was sampled from the car-wash site in Kisumu city, Kenya (00° 05' 45.00” S, 34°
44' 57.69” E). Three B. globosus snails were collected from Mazeras quarry dam (03° 54’ 0.58” S, 39° 31' 0.72”
E) (northern Mombasa, eastern Kenya), Kwa Katiwa Dam (01° 12’ 0.00” S, 37° 16" 0.41” E) (central Kenya), and
Asao (00°19'5.50” S, 35° 0’ 24.99” E) in western Kenya, in 2013 (Figs. 1 and 5). Bulinus truncatus was obtained
from Biomedical Research Institute (BRI); it had originally been collected from Egypt decades ago (http://www.
afbrbri.com/schistosomiasis/materials-offered/) (Figs. 1 and 5). The field collected specimens were placed in
90% ethanol and stored at 4 °C until use. This study was undertaken with the approvals of the National Com-
mission for Science, Technology, and Innovation (permit number P/15/9609/4270 and P/21/9648), National
Environmental Management Authority (permit numbers NEMA/AGR/46/2014 and NEMA/AGR/149/2021),
and Kenya Wildlife Service (permit numbers KWS 0004754 and KWS-0045-03-21).

Extraction of DNA. After removing the shell, the whole body of a single live snail was ground to a fine pow-
der using mortar and pestle in liquid nitrogen. The powder was transferred to 1.5 ml tubes for subsequent DNA
extraction using a Qiagen Miniprep kit-based mtDNA enrichment method**®2. For ethanol-preserved samples,
the ethanol was replaced by distilled water. The water was changed every 12 h for 4 times. After removing shells,
individual snails were placed in a 1.5 ml tube and ground using a pestle and a CTAB method was used for DNA
extraction®.

After extraction, DNA samples were treated with RNAse A (Invitrogen) at 37 °C for 30 min and then 70 °C
for 10 min. DNA samples were further purified using SPRselect Beads (Beckman Coulter). Quality and quantity
of DNA were measured using a Nanodrop spectrophotometer and Qubit fluorometer (Invitrogen).

Preparation, amplification, and sequencing of lllumina libraries. A genomic library for each sam-
ple was prepared (KAPA Hyper Prep Kit, KAPA Biosystems, www.kapabiosystems.com). Each snail DNA was
barcoded with an adaptor. The libraries were sequenced (150 nucleotide (nt)x2 paired-end) on the Illumina
NextSeq500 platform at the UNM Biology Department’s Molecular Biology Facility (http://ceti.unm.edu/core-
facilities/molecular-biology.html)?®.
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Assembly and annotation of mitogenomes. Two complementary methods were used to assemble
mitochondrial genomes, reads baiting and iterative mapping assembly using MITOBIM® and de novo assembly
using SPAdes®>. MITOBIM is a tool developed to map reads to a related reference mitogenome and then use
these to recursively find additional reads to build the mitogenome of the target. The complete Biomphalaria
glabrata mitochondrion genome (NCBI accession NC_005439.1) was used to bait Bulinus mitochondrial reads
for genome assembly and extension until a saturation status was reached, where no further reads were found to
extend the genome assembly. The longest contig generated with SPAdes with BLASTN e-value < 10~ against the
reference mitogenome of the closely related snail Biomphalaria glabrata (Bulinus and Biomphalaria belong to
Planorbidae)**was selected as the mitogenome assembly. Output from the two methods were aligned and manu-
ally checked for consistency to generate the mitogenome sequence for each sample. To check the read support
consistency, reads were mapped to the final assembled mitogenomes and visualized using Integrated Genome
Viewer®.

The annotation of mitogenomes was conducted using MITOS2 that also includes an updated protein identi-
fication model*”*”. Both RefSeq 63 Metazoa and RefSeq 81 Metazoa, were used as reference for verification and
confirmation of gene predictions. Otherwise, MITOS2 default settings were applied (E-value exponent: 2; Final
maximum overlap: 50; fragment quality factor: 100). Moreover, we re-checked mitogenome sequences manually
using the ExPASY translate tool (http://web.expasy.org/translate/) and did BLAST to confirm the reading frames
of protein coding genes. Final annotation was based on criteria from Fourdrilis et al. (2018) that incorporate
unique aspects of mitogenome biology, including transcription as polycistronic RNA, the punctuation model
and completion of stop codons by polyadenylation of mRNA transcripts®®.

Genetic and phylogenetic analysis. Sequence alignments and percent identity of nucleotides (nt) and
amino acids (aa) were determined using Clustal Omega®. Heat-maps of pair-wise sequence identities were gen-
erated using R package ggplot2”’. All the intermediate data organization and filtering were done with in-house
bash and Perl scripts and Microsoft Excel.

Phylogenetic analyses for full mitochondrial genomes and partial cox! were done using the maximum likeli-
hood method and conducted with MEGAX"""2. Biomphalaria pfeifferi sequences were utilized as the outgroup
for both analyses. For both datasets the GTR + G + I model was selected by Akaike’s information criterion in
MEGAX". Both analyses were conducted with 1000 bootstrap replicates.

Data availability

GenBank accession numbers of the mitogenomes for B. truncatus, B. nasutus, B. ugandae, and three specimen
of B. globosus from eastern, central, and western Kenya, are MK414449, MK414450, MK414451, MK414452,
MK414453, and MK414454, respectively.
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