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The complete mitochondrial genome of a tertiary relict evergreen woody plant
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ABSTRACT
Ammopiptanthus mongolicus is a tertiary relict evergreen broad-leaf shrub in family Fabaceae with
remarkable tolerance to desiccation and low temperature. In this study, we report the complete mito-
chondrial genome of A. mongolicus. The total genome length was 475,396bp and contained a total of
127 genes, including 79 protein-coding genes (28 novel genes, 45 known functional genes, and six
known orf genes), three rRNA genes, and 45 tRNA genes. Most of the genes were single-copy genes,
only six were duplicated and two were multi-copy. The mitochondrial genome also contained
‘promiscuous’ sequences from the chloroplast, 16 intact tRNAs of mitochondrial origin, and 29 intact
and potentially functional chloroplast-derived tRNAs. The overall GC content of the mitochondrial DNA
was 42.75%. A neighbour-joining phylogenomic analysis showed that A. mongolicus was closely related
to Medicago truncatula, which also belongs to family Leguminosae.
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Ammopiptanthus mongolicus is an evergreen shrub in
Leguminosae, which is believed to have originated from the
Tertiary period (from 65 to 2 million years ago) (Liu et al.
1995). Increasing desertification in central Asia and
anthropogenic activities (e.g. coal mining, road construction,
overgrazing and cutting for firewood) are causing
continual habitat losses and reductions in the populations of
A. mongolicus, to such an extent that the species has been
categorized as ‘endangered’ and given protected status in
China (Fu and Jin 1992). This species primarily inhabits the
desert of northwestern China where the annual precipitation
is often less than 50–100mm, and the temperature ranges
from�30 �C in winter to 40 �C in summer (Liu et al. 2013).
Given its ancient origin and survival in a persistently arid
environment, A. mongolicus can withstand drought and low-
temperature conditions through morphological and physio-
logical adaptations (Cao et al. 2009; Shi et al. 2016). Plant
mitochondria play specific roles during exposure to harsh
environments (Jacoby et al. 2012), so it is important to
sequence and annotate the mitochondrial genome (mito-
genome) of A. mongolicus. Here, we report the complete
mito-genome sequence of A. mongolicus by next-generation
sequencing. The annotated mitochondrial DNA (mtDNA)
sequence has been deposited in GenBank under accession
no. MK 683210.

In this study, A. mongolicus seeds collected from
Bayannaoer in Inner-Mongolia of China (105�12'–109�530E,
40�13'–42�280N) were germinated and grown on hormone
free MS medium in dark. The mtDNA was extracted from 100

grams of fresh young yellow aseptic A. mongolicus seedlings.
Separation of A. mongolicus mtDNA was performed using a
modified sucrose gradient ultracentrifugation method accord-
ing to Zsigmond et al. (2008). The extracted mtDNA was
sequenced by BGI (Shenzhen, China) on an Illumina HiSeq
4000 platform (Illumina, San Diego, CA) from a 500-bp
paired-end library, which generated 1637Mb raw data and 13
million 125-bp reads and deposited in the herbarium of the
Beijing Forestry University (Beijing, China).

To decrease the redundant data, filtration were conducted
on the raw data. The clean data were assembled using
SOAPdenovo (ver. 2.04), Platanus (ver. 1.2.4) and SPAES (ver.
1.2.4) by ORI-GENE (Beijing, China). Multiple Velvet assemblies
were constructed using different pairwise combinations of K-
mer lengths and expected coverage values (Grewe et al.
2014; Zhu et al. 2014). The resultant mitochondrial contigs
were scaffolded into a single chromosome with either the
paired-end or mate-pair library using SSPACE 3.0 (Boetzer
et al. 2011). Remaining gaps in the A. mongolicus mito-gen-
ome assembly, which were caused by long mononucleotide
repeats (10–20 bp in length), were finished by Sanger
sequencing. Features were annotated manually based on the
output of NCBI-BLASTN and -BLASTX searches to custom
databases. The tRNA genes were annotated using tRNA scan-
SE (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and Eddy
1997).

The A. mongolicus mito-genome was assembled into a sin-
gle, circular-mapping molecule of 475,396 bp with 42.75% GC
content, which is comparable to the mtDNA sequences of
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other Leguminosae. The mito-genome contained a total of
127 genes, including 79 protein-coding genes, three rRNA
genes inferred to have been present in the ancestral flower-
ing plant mito-genome, and 45 tRNA genes. Among the 79
protein-coding genes, 28 were novel genes, 45 were genes
with known functions and six were known orf genes. The
tRNA genes encoded 16 intact tRNAs of mitochondrial origin,
and 29 intact and potentially functional chloroplast-derived
tRNAs.

To examine the phylogenetic evolution of the A. mongoli-
cus mitochondria, a neighbor-joining analysis was applied for
18 plant mito-genomes (including A. mongolicus) based on
the translated amino acid sequences of eight common pro-
tein-coding genes (cob, cox1, cox3, nad6, nad9, rps12, rps3,
rps4) and rooted with the one-celled algae,
Chaetosphaeridium globosum. The topology of the resulting
tree was consistent with the representatives in Angiosperm
Phylogeny Group APG III. In the phylogenetic tree, the algae
and mosses were sisters of land plants, and gymnosperms
Cycas taitungensis and Ginkgo biloba were sisters of the other
Angiospermae. Within the Leguminosae clade, A. mongolicus
was evolutionarily closest to Glycine max, and Medicago

truncatula was a sister of A. mongolicus (Figure 1). Each of
these relationships had 100% bootstrap support.
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