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A B S T R A C T   

An epidemiological model based on probabilistic cellular automaton is proposed to investigate the dynamics of 
two co-circulating infections. In the model, one of these two diseases compromises the immune response to 
future infections; however, there is vaccine against this immunosuppressive disease. The goal is to evaluate the 
impact of the vaccination coverage on the prevalence and on the cumulative deaths associated with both con
tagious diseases. The performed numerical simulations highlight the importance of vaccination on decreasing 
morbidity and mortality. The results are discussed from a public health standpoint, by taking into account 
outbreaks of measles and COVID-19.   

1. Introduction 

There are about 1400 species of infectious agents that are pathogenic 
to humans (Woolhouse and Gowtage-Sequeria, 2005) and it is not un
common to find some of them simultaneously infecting a community. 
Hence, there are several theoretical models about co-circulating path
ogens. These models are usually written in terms of ordinary differential 
equations. For instance, there are works about the interaction between 
dengue and leptospirosis (Alemneh, 2020), pneumonia and meningitis 
(Tilahun, 2019), HIV and hepatitis C (Moualeu et al., 2011), two strains 
of influenza (Zhang et al., 2013), two strains of dengue (Anggriani et al., 
2019). 

The co-circulation of infections can be viewed as a complex system, 
due to the usual large number of variables and parameters composing 
the corresponding epidemic model. Here, a model with 10 variables and 
20 parameters is proposed to study the dynamics of two co-circulating 
infections. This model is based on probabilistic cellular automaton 
(PCA), an approach that has been used in several works on ecological 
and/or epidemiological systems (Ahmed et al., 1998; Boccara et al., 
1994; Doran and Laffan, 2005; Ferreri and Venturino, 2013; Nagatani 
and Tainaka, 2018; Sfa et al., 2020; Slimi et al., 2009). 

In this work, disease-1 causes immunosuppression, which impairs 
the immune response to a subsequent disease-2 infection; however, 
vaccine against disease-1 is available. The main aim here is to investi
gate the impact of vaccination against disease-1 on the prevalence and 

on the cumulative deaths related to both diseases. 
This manuscript is organized as follows. In Section 2, the PCA model 

is introduced. In Section 3, results from computational simulations are 
presented. In Section 4, these results are discussed by considering 
measles and COVID-19 as immunity-damaging diseases. 

2. The PCA epidemic model 

Assume that each cell of a two-dimensional lattice n × n corresponds 
to an individual of the host population. The boundary condition of this 
lattice is taken as periodic, which means that the left and right edges are 
connected and the top and bottom edges are connected too; therefore, 
each individual is equivalent from a geographical point of view. Assume 
also that each individual is socially connected to the eight surrounding 
neighbors; that is, the interactions among the individuals occurs within 
a Moore neighborhood of unit radius (Wolfram, 1994). 

In this population, there occurs the co-circulation of two contagious 
diseases, called disease-1 and disease-2. Assume that, at each time step t, 
each individual is in one of the following ten health states:  

• S: susceptible to both diseases;  
• V: vaccinated against disease-1; susceptible to disease-2;  
• I1: infected by disease-1, susceptible to disease-2;  
• I2: infected by disease-2, susceptible to disease-1;  
• I12: infected by disease-1, recovered from disease-2; 
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• I21: infected by disease-2, recovered from disease-1;  
• I: infected by disease-2, vaccinated against disease-1;  
• R1: recovered from disease-1, susceptible to disease-2;  
• R2: recovered from disease-2, susceptible to disease-1;  
• R: immune to both diseases. 

The state transitions are governed by 20 probabilistic rules: 5 rules 
governing the contagion processes; 1 rule the vaccination process; 5 the 
recovery processes; 9 the death processes. When infected, vaccinated, or 
recovered individuals die, susceptible individuals replace them. There
fore, in this population, deaths are balanced by births, so that the total 
number of individuals N = n2 remains constant. Co-infections (simul
taneous infection by both diseases) are here not considered. In addition, 
recovery and vaccination lead to a full long-lasting immunity. 

The 5 state transitions related to the spreading of these diseases are: 

S + I1 + I12⟶
xP1 I1 + I1 + I12 (1)  

S + I2 + I21 + I ⟶
(1− x)P2I2 + I2 + I21 + I (2)  

R2 + I1 + I12⟶
P3 I12 + I1 + I12 (3)  

R1 + I2 + I21 + I⟶
P4 I21 + I2 + I21 + I (4)  

V + I2 + I21 + I⟶
P5 I + I2 + I21 + I (5) 

The state transitions related to vaccination against disease-1 is: 

S⟶ν V (6) 

The 5 state transitions related to recovery from these diseases are: 

I1⟶
b1 R1 (7)  

I2⟶
b2 R2 (8)  

I12⟶
β1 R (9)  

I21⟶
β2 R (10)  

I⟶
β

R (11) 

The 5 state transitions related to death caused by these diseases are: 

I1⟶
c1 S (12)  

I2⟶
c2 S (13)  

I12⟶
γ1 S (14)  

I21⟶
γ2 S (15)  

I⟶
γ

S (16) 

The 4 state transitions related to death due to other reasons are: 

R1⟶
d1 S (17)  

R2⟶
d2 S (18)  

R⟶d
S (19)  

V⟶δ S (20) 

For S-individuals: at each time step, there are a probability xP1 of a 
S-individual being infected and becoming an I1-individual and a 

probability (1 − x)P2 of being infected and becoming an I2-individual, 
with x = (i1 + i12)/(i1 + i12 + i2 + i21 + i), P1 = 1 − exp[ − k1(i1 + i12)], 
and P2 = 1 − exp[ − k2(i2 + i21 + i)]. In these expressions, i1, i2, i12, i21, 
and i are the numbers of I1, I2, I12, I21, and I-individuals in the neigh
borhood of this S-individual, respectively. For instance, if i1 = 1, i2 = 1, 
i12 = 1, i21 = 0, and i = 0, then x = 2/3, which is the proportion of 
individuals with disease-1 in the neighborhood of this S-individual; 
obviously, (1 − x) = 1/3 is the proportion of individuals with disease-2. 
Thus, the greater the number of neighbors infected by a specific disease, 
the greater the probability of the S-individual getting such a disease. 
Also, k1 and k2 are positive constants related to the infectiousness of 
disease-1 and disease-2, respectively. Note that if i1 + i12 = 0, then P1 =

0; therefore, a S-individual can get disease-1 only if there are neighbors 
with this disease. Consistently, if i2 + i21 + i = 0, then P2 = 0. Note that 
if k1(i1 + i12)→∞, then P1→1; if k2(i2 + i21 + i)→∞, then P2→1. These 
infection rules correspond to Eqs. (1) and (2), and they are applied only 
if there is at least one infected individual in the neighborhood of this 
S-individual; that is, only if i1 + i12 + i2 + i21 + i ∕= 0. If this S-individual 
is not infected either by disease-1 or by disease-2, then there is a prob
ability ν of being vaccinated against disease-1, as stated in Eq. (6). 

For I1-individuals: at each time step, there is a probability b1 of being 
cured and becoming a R1-individual. If this I1-individual remains sick, 
there is a probability c1 of dying due to disease-1. These processes of 
recovery and death are represented by Eqs. (7) and (12), respectively. 

For I2-individuals: at each time step, there is a probability b2 of being 
cured and becoming a R2-individual. If this I2-individual remains sick, 
there is a probability c2 of dying due to disease-2. These processes of 
recovery and death are represented by Eqs. (8) and (13), respectively. 

For R2-individuals: at each time step, there is a probability 
P3 = 1 − exp[− k3(i1 +i12)] of being infected by disease-1 and becoming 
an I12-individual. In this expression, k3 is a positive constant. If this 
R2-individual was not infected, there is a probability d2 of dying. These 
processes of infection and death are represented by Eqs. (3) and (18), 
respectively. 

For R1-individuals: at each time step, there is a probability 
P4 = 1 − exp[− k4(i2 +i21 +i)] of being infected by disease-2 and 
becoming an I21-individual. In this expression, k4 is a positive constant. 
If this R1-individual was not infected, there is a probability d1 of dying. 
These processes of infection and death are represented by Eqs. (4) and 
(17), respectively. 

For V-individuals: at each time step, there is a probability 
P5 = 1 − exp[− k5(i2 +i21 +i)] of being infected by disease-2 and 
becoming an I-individual. In this expression, k5 is a positive constant. If 
this V-individual was not infected, there is a probability δ of dying. 
These processes of infection and death are represented by Eqs. (5) and 
(20), respectively. 

For I12-individuals: at each time step, there is a probability β1 of 
being cured and becoming a R-individual. If this I12-individual remains 
sick, there is a probability γ1 of dying due to disease-1. These processes 
of recovery and death are represented by Eqs. (9) and (14), respectively. 

For I21-individuals: at each time step, there is a probability β2 of 
being cured and becoming a R-individual. If this I21-individual remains 
sick, there is a probability γ2 of dying due to disease-2. These processes 
of recovery and death are represented by Eqs. (10) and (15), respec
tively. 

For I-individuals: at each time step, there is a probability β of being 
cured and becoming a R-individual. If this I-individual remains sick, 
there is a probability γ of dying due to disease-2. These processes of 
recovery and death are represented by Eqs. (11) and (16), respectively. 

For R-individuals: at each time step, there is a probability d of dying. 
This process of death is represented by Eq. (19). 

Throughout a computational simulation, the health states of the N 
individuals are simultaneously updated in the end of each time step. 
Similar models based on PCA were already employed in epidemiological 
studies (Chaves and Monteiro, 2017; Ferraz and Monteiro, 2019; Mon
teiro et al., 2006; 2020a; Pereira and Schimit, 2018; Schimit and 
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Monteiro, 2009; Silva and Monteiro, 2014). Fig. 1 shows a pictorial 
representation of the model proposed in this work. 

There are 20 positive constants in this model: k1, k2, k3, k4, k5, b1, b2, 
β1, β2, β, c1, c2, γ1, γ2, γ, d1, d2, d, δ, and ν. It is infeasible to fully 
determine how each of these 20 parameters affects the dynamical 
behavior of 10 variables, which are the numbers of individuals in each 
health state. Observe that the immunosuppression caused by disease-1 
corresponds to β2 < β (the recovery probability of I21 is lower than the 
recovery probability of I) and γ2 > γ (the death probability of I21 is 
greater than the death probability of I). By defining B ≡ β /β2 and G ≡ γ2 
/γ, a compromised immunity after infection by disease-1 corresponds to 
B > 1 and G > 1. Therefore, the greater the immunosuppression, the 
higher the values of B and G. 

In this work, the influences of B and G are evaluated. Also, the 
minimum vaccination probability, denoted by νm, for eradicating 
disease-1 is determined in function of B and G for two lattice sizes n. 
These results are described in the next section. 

3. Numerical results 

Here, 17 of the 20 parameters are kept fixed. In the simulations, k1 =

k2 = k3 = k4 = k5 = 1 (thus, the infectiousness is the same for both 
diseases for S, R1, R2, and V-individuals), b1 = b2 = β1 = β = 30% (thus, 
the recovery rate is the same for I1, I2, I12, and I-individuals), c1 = c2 =

γ1 = γ = 20% (thus, the death rate is the same for I1, I2, I12, and I-in
dividuals), and d1 = d2 = d = δ = 10% (thus, the death rate is the same 
for R1, R2, R, and V-individuals). Also, n = 100 (therefore, the host 
population is composed of 10,000 individuals) and the initial condition 
is S(0)/N = 98%, I1(0)/N = 1%, and I2(0)/N = 1%. The parameters 
whose values are varied are β2 (the recovery probability of I21-in
dividuals), γ2 (the death probability of I21-individuals), and ν (the 
vaccination probability of S-individuals). 

Figs. 2 and 3 exhibit the time evolutions of the normalized infected 
subpopulations I1(t)/N (blue line), I2(t)/N (cyan line), I12(t) /N (green 
line), I21(t)/N (red line), and I(t)/N (black line) for β2 = 30% and γ2 =

20%. In Fig. 2, ν = 0%; in Fig. 3, ν = 10%. Since ν = 0% in Fig. 2, 
disease-1 is equivalent to disease-2; hence, the time evolutions of I1(t) /
N and I2(t)/N are similar, and the time evolutions of I12(t) /N and I21(t)
/N are also similar. Obviously, in this figure, I(t)/N = 0. In Fig. 3, ν =
10% > 0; therefore, I1(t)/N tends to be below I2(t)/N, and I21(t) /N 
tends to be below I12(t)/N, because the vaccine reduces the numbers of 

individuals vulnerable to disease-1. 
Note that, as time passes by, these plots tend to fluctuate around 

average values, which are denoted by I∗1/N, I∗2/N, I∗12/N, I∗21/N, and I∗/N. 
These constants are the normalized average amounts obtained in the last 
200 time steps from a total of 400 time steps. In Fig. 2, I∗1/N ≃ 0.098, 
I∗2/N ≃ 0.098, I∗12/N ≃ 0.041, I∗21/N ≃ 0.041, and I∗/N = 0; in Fig. 3, 
I∗1/N ≃ 0.070, I∗2/N ≃ 0.101, I∗12/N ≃ 0.035, I∗21/N ≃ 0.030, and 
I∗/N ≃ 0.016. Let Y be the sum of these normalized amounts; that is, Y ≡

(I∗1 + I∗2 + I∗12 + I∗21 + I∗)/N. For ν = 0%, Y ≃ 0.278; for ν = 10%, 
Y ≃ 0.252; for ν = 20%, Y ≃ 0.216; for ν = 30%, Y ≃ 0.176. Therefore, 
vaccination reduces Y. Also, in Figs. 2 and 3, n = 100; however, for n =

200, the same results are obtained. In fact, these normalized amounts do 
not depend on the lattice size n. 

Figs. 4 and 5 show how B and G affect the numbers of infected in
dividuals and the numbers of deaths due to both diseases for two values 
of ν. In these figures, Y1 = (I∗1 +I∗12)/N and Y2 = (I∗2 + I∗21 + I∗)/N; that 
is, Y1 is the normalized number of individuals infected by disease-1 and 

Fig. 1. Pictorial diagram of the proposed model. The 10 variables are inside the 
dark circles and the 20 parameters are near the lines representing the possible 
state transitions. Red lines are associated with contagion; blue lines with re
covery; green lines with death, and cyan line with vaccination. 

Fig. 2. Time evolutions of I1(t)/N (blue line), I2(t)/N (cyan line), I12(t)/N 
(green line), I21(t)/N (red line), and I(t)/N (black line) from the initial condi
tion S(0)/N = 98%, I1(0)/N = 1%, and I2(0)/N = 1%. In this simulation, n =

100, k1 = k2 = k3 = k4 = k5 = 1, b1 = b2 = β1 = β2 = β = 30%, c1 = c2 =

γ1 = γ2 = γ = 20%, and d1 = d2 = d = δ = 10%. Also, ν = 0%. Note that 
I1(t)/N→I∗1/N ≃ 0.098, I2(t)/N→I∗2/N ≃ 0.098, I12(t)/N→I∗12/N ≃ 0.041, 
I21(t)/N→I∗21/N ≃ 0.041, and I(t)/N = 0. 

Fig. 3. Time evolutions of I1(t)/N (blue line), I2(t)/N (cyan line), I12(t)/N 
(green line), I21(t)/N (red line), and I(t)/N (black line) for ν = 10%. The other 
parameter values are the same as those of Fig. 2. Note that 
I1(t)/N→I∗1/N ≃ 0.070, I2(t)/N→I∗2/N ≃ 0.101, I12(t)/N→I∗12/N ≃ 0.035, 
I21(t)/N→I∗21/N ≃ 0.030, and I(t)/N→I∗/N ≃ 0.016. 
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Y2 is the normalized number of individuals infected by disease-2, after 
the system reaching its endemic attractor. The variables M1 and M2 are 
the normalized numbers of deaths (the number of deaths divided by the 
population size N) caused by disease-1 and disease-2, respectively, 
during 400 time steps. Thus, M1 and M2 are related to mortality, and Y1 
and Y2 to infection prevalence. These four variables are affected by the 
vaccination probability ν. Figs. 4 and 5 present average values of M1, M2, 
Y1, and Y2 obtained in three simulations. They reveal that Y1, M1, and 
M2 increase with B and G; Y2 decreases with B and increases with G. 

The values of M1, M2, Y1, and Y2 in Fig. 4, for ν = 0%, are usually 

higher than the corresponding values in Fig. 5, for ν = 10%. For 
instance, for B = 3 and G = 3, M1 ≃ 9.0, M2 ≃ 13, Y1 ≃ 0.17, and Y2 ≃

0.15 for ν = 0%; and M1 ≃ 6.8, M2 ≃ 12, Y1 ≃ 0.14, and Y2 ≃ 0.15 for 
ν = 10%. 

Let respectively y(ν) ≡ Y(0) − Y(ν) and m(ν) ≡ M(0) − M(ν) be re
ductions due to vaccination ν > 0 in the percentage of sick people and in 
the normalized cumulative deaths, as compared to the case ν = 0. Recall 
that the variables Y = Y1 + Y2 and M = M1 + M2 vary with ν. From the 
numbers presented in the paragraph above, a vaccination probability of 
10% against disease-1 saved mN = [(9 + 13) − (6.8 + 12)] × N = 32000 

Fig. 4. Plots of three-dimensional surfaces of M1, M2, Y1, and Y2 in function of 
B and G, for 1 ≤ B ≤ 3, 1 ≤ G ≤ 3, and ν = 0%. The other parameter values are 
the same as those of Fig. 2. 

Fig. 5. Plots of three-dimensional surfaces of M1, M2, Y1, and Y2 in function of 
B and G, for 1 ≤ B ≤ 3, 1 ≤ G ≤ 3, and ν = 10%. The other parameter values 
are the same as those of Fig. 2. 

G.F. Puga and L.H.A. Monteiro                                                                                                                                                                                                              



Ecological Complexity 47 (2021) 100941

5

lives of sick people in 400 time steps in a population of N = 10000 in
dividuals, which corresponds to 80 lives (0.8% of the whole population) 
saved per time step. Also, the sick subpopulations were reduced in y =
[(0.17+ 0.15) − (0.14+ 0.15)] = 3%, which means 300 fewer sick in
dividuals per time step. 

Table 1 shows the values of y and m for B = 3 and G = 3 in lattices 
with n = 100 and n = 200. Note that y and m increase with ν and are not 
significantly affected by n. These results are valid for ν < νm. 

Table 2 presents the minimum vaccination probability νm, for which 
disease-1 disappears in 5 consecutive simulations within the time win
dow of 400 time steps, for n = 100 and n = 200. These minimum values 
were determined for {B,G} = {(1,1); (1,3); (3,1); (3,3)}, which are the 
corners of the surfaces shown in Figs. 4 and 5. Note that, the higher 
values of B and G, the higher the value of νm. This qualitative result is 
also obtained, for instance, for d1 = d2 = d = δ = 5% (instead of 10%). 
In this case, for n = 100, νm = 11% (instead of 33%) for B = G = 1 and 
νm = 14% (instead of 43%) for B = G = 3. Reducing d1, d2, d, and δ 
means increasing the lifetime of immune individuals, which decreases 
the vaccination effort required to eradication because such reductions 
contribute to foster a herd immunity. Hence, νm decreases by reducing 
d1, d2, d, and δ. 

The simulations reported here were performed with fictitious 
parameter values. However, realistic values for the proposed model can 
be obtained from real-world data by employing methods of parameter 
identification (see, for instance, Monteiro et al., 2020b). 

4. Discussion and conclusion 

Recovery from measles confers long-life immunity to this viral 
infection; however, the post-recovery period is usually characterized by 
a significant and prolonged immunosuppression, which can last for 
years (Mina et al., 2019; Petrova et al., 2019). As a consequence, there is 
an increased incidence of secondary infections (Mina et al., 2019; Pet
rova et al., 2019). Vaccine against measles elicits long-lasting immunity 
without reducing the pre-acquired immunity to other pathogens. 
Therefore, this vaccine decreases not only the measles mortality, but 
also the mortality to subsequent non-measles infections (Mina, 2017; 
Rodrigues and Plotkin, 2020). In the proposed model, this vaccination 
effect is reproduced, because reductions in percentages of infected 
people and in cumulative deaths increase with ν, for ν < νm, as shown in 
Table 1 and Figs. 2–5. 

Table 2 reveals that the higher the values of B and G, the higher the 
critical vaccination coverage νm to eradicate disease-1. In other words: 
the higher immunosuppression level caused by disease-1, the greater the 
efforts of public health agencies to encourage vaccination against this 
disease. 

In the model, disease-1 can emulate the role of, for instance, measles 
or even COVID-19. In fact, COVID-19, in addition to causing respiratory 
problems, cerebrovascular disorders, neurological injuries, and psy
chological distress (Mahalakshmi et al., 2021), can also suppress host 
immunity (Remy et al., 2020), which can increase the vulnerability to 
future infections as measles does. In the model, disease-2 can be any 
non-vaccine preventable infection, such as hepatitis C, or a 
vaccine-preventable infection, but with poor adherence to vaccination, 
such as hepatitis A (Johnson et al., 2019). 

In short, vaccination campaigns against measles/COVID-19 provide 
direct protection against measles/COVID-19 and also indirect benefits 
against other contagious diseases, by preserving the herd immunities of 
the host population. It is crucial that public health agencies undermine 
vaccine hesitancy and vaccine refusal. These are threats that can be 
treated by combating disinformation and fake news. 
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