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Abstract

Motivation: The study of RNA virus populations is a challenging task. Each population of RNA virus

is composed of a collection of different, yet related genomes often referred to as mutant spectra or

quasispecies. Virologists using deep sequencing technologies face major obstacles when studying

virus population dynamics, both experimentally and in natural settings due to the relatively high

error rates of these technologies and the lack of high performance pipelines. In order to overcome

these hurdles we developed a computational pipeline, termed ViVan (Viral Variance Analysis).

ViVan is a complete pipeline facilitating the identification, characterization and comparison of se-

quence variance in deep sequenced virus populations.

Results: Applying ViVan on deep sequenced data obtained from samples that were previously

characterized by more classical approaches, we uncovered novel and potentially crucial aspects of

virus populations. With our experimental work, we illustrate how ViVan can be used for studies

ranging from the more practical, detection of resistant mutations and effects of antiviral treatments,

to the more theoretical temporal characterization of the population in evolutionary studies.

Availability and implementation: Freely available on the web at http://www.vivanbioinfo.org

Contact: nshomron@post.tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The study of RNA virus populations is a challenging task. Each

population of RNA virus is composed of a collection of different,

yet related genomes often referred to as mutant spectra or quasispe-

cies (Lauring and Andino, 2010). This genotypic diversity is the re-

sult of the high mutation rate of RNA viruses, which surpasses that

of DNA organisms by orders of magnitude (Sanjuán et al., 2010).

This intrinsic high error-rate is largely attributed to the viral RNA

dependent RNA polymerases that replicate their genomes

(Steinhauer and Holland, 1987). Recent studies demonstrate that

this high-error rate is essential for viral adaptation and survival

(Ahlquist, 2002; Crotty et al., 2001) and can have significant impli-

cations in vaccine and antiviral efficacy (Love et al., 2010; Woo

and Reifman, 2012). Changes in the rate at which these errors

occur may affect virus infectivity, fitness and pathogenesis

(Coffey et al., 2011; Crotty and Andino, 2002; Gnädig et al., 2012;
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Graham et al., 2012). Moreover, it was shown that the diversity

within an RNA virus population enhances tissue tropism and dis-

semination, possibly by improving adaptability and mutual support

(Vignuzzi et al., 2005). These studies suggest that characterizing

RNA virus populations as a whole, rather than focusing on domin-

ant viral haplotypes (e.g. sequences shared by a significant amount

of members in the population) or consensus sequence is far more in-

formative to study pathogenesis. Currently, RNA viruses are genet-

ically characterized through a variety of techniques. The most basic

and common method involves classic Sanger sequencing of cDNA

produced by RT-PCR of total viral RNA (i.e. consensus sequencing).

Although informative, the consensus sequence is the genetic average

of all variants within the virus population and the limitations of this

method include its low resolution and ability to detect only highly

abundant variants. To increase sensitivity and obtain a small, repre-

sentative sample of viral variants in a given population by Sanger

sequencing, individual viruses can be isolated and amplified (biolo-

gical clones) (Vignuzzi et al., 2005) or RT-PCR amplicons of the

whole population can be subcloned into individual plasmids

(molecular clones) (Levi et al., 2010; Sanjuán et al., 2010). An add-

itional method is Single Genome Amplification in which viral RNA

is extracted from a sample and copied into cDNA, which in turn is

subjected to limiting dilution and PCR amplification. Thus the

obtained PCR products are the result of the amplification of one

single molecule of cDNA. These PCR products are then sequenced

directly without cloning. Nevertheless, these three methods are time

intensive and tedious. Furthermore, the limited coverage that can be

sampled (generally <100 clones and 100 K nucleotides per popula-

tion) is far from the range of variants (105–109) typically found in

virus samples. Newer high-throughput sequencing (HTS) technolo-

gies have expedited research in microbiology in general, including

virology, due to their high throughput sequence data production

(Capobianchi et al., 2013; Didelot et al., 2012; Radford et al., 2012;

Shomron, 2013). The ultra-deep coverage afforded by HTS technol-

ogies provides obvious improvements to the characterization of

RNA viruses. However, most HTS tools in virology are designed for

virus discovery, de novo assembly of unknown viral genomes, and

the characterization of viral biodiversity found in different organs,

organisms or environments (virome) (Delwart, 2013; Foulongne

et al., 2012; Hurwitz and Sullivan, 2013; Roux et al., 2012; Yin

et al., 2012). More recently, researchers have begun characterizing

the intra-host and intra-strain virus diversity and population dy-

namics for a variety of viruses of clinical or agricultural relevance.

For example, some studies addressed the temporal evolution of vari-

ants, the pre-existing presence of drug resistant mutants and the dy-

namics and emergence of escape mutations in the presence of

various types of pressure (Archer et al., 2012b; Barzon et al., 2011;

Beerenwinkel and Zagordi, 2011; Bull et al., 2011; Escobar-

Gutiérrez et al., 2012; Grad et al., 2014; Love et al., 2010; Martı́nez

et al., 2012; Selleri et al., 2012; Töpfer et al., 2013; Willerth et al.,

2010; Wright et al., 2011). However, virologists using HTS technol-

ogies for the purpose of rare variant detection, face major obstacles

when studying virus population dynamics, both experimentally and

in natural settings due to the relatively high error rates of these tech-

nologies (Archer et al., 2012a; Watson et al., 2013; Wright et al.,

2011). In order to overcome these hurdles several methods have

been proposed (Acevedo et al., 2013; Eriksson et al., 2008; Flaherty

et al., 2012; Ghedin et al., 2012; Jabara et al., 2011; Kinde et al.,

2011; Macalalad et al., 2012; Mangul et al., 2014; Schmitt et al.,

2012; Watson et al., 2013; Wilm et al., 2012; Wright et al., 2011;

Wu et al., 2014; Zagordi et al., 2011). These methods can be split

into two main categories. The first increases variant detection

fidelity by modulating the library preparation step. Schmitt et al. tag

and compare both strands of a DNA segment, efficiently pinpointing

strand-discordant variants as errors. Jabara et al., Kinde et al.,

Mangul et al. and Wu et al. use unique identifiers for each sequenced

template, facilitating the identification of PCR and sequencing intro-

duced errors and biases. Acevedo et al. used circularized genomic

RNA fragments to generate tandem repeats which originate from a

single individual within the viral population. Variants that appear in

every copy of a set of repeats are then considered true variants. The

second category includes methods that utilize post-sequencing par-

ameters in order to identify PCR and sequencing introduced errors.

Ghedin et al. utilize the calculated overall baseline error rates while

Flaherty et al. and Wilm et al. calculate these rates per sequenced

base. Watson et al. apply a two step quality based filtration prior to

variant calling and Macalalad et al. used covariation (i.e. phasing)

between variants and an expectation maximization-based quality

recalibration. Methods which aim to identify the genomes of indi-

vidual haplotypes in the population (Eriksson et al., 2008; Zagordi

et al., 2011) utilize clustering of overlapping reads and haplotype re-

construction in order to correct for sequencing errors. The perform-

ance of these methods depends upon the length of sequence reads

with long reads enabling the reconstruction of entire viral genome

sequences. Some methods (Ghedin et al., 2012; McElroy et al.,

2013; Wilm et al., 2012) also include an additional test for strand

bias (Guo et al., 2012) in order to further reduce false positive calls.

Although these second category methods demonstrate very high spe-

cificity (positions without variance are correctly identified as such),

sensitivity (pinpointing true variant positions) remains the major

limiting factor (Wilm et al., 2012). All of the aforementioned tools

focus on accurate variant detection and do not facilitate any down-

stream analysis and interpretation of the detected variants.

Moreover, although the end-users for the aforementioned tools and

methods are, for the most part, virologists studying highly diverse

viral populations, these tools require the use of unix command line

and other computational proficiencies which are not common in the

field.

In order to better integrate and utilize HTS technology in viral

population studies, we developed a computational pipeline and web

server, termed ViVan (Viral Variance Analysis). ViVan is a complete

pipeline to facilitate the identification, characterization and com-

parison of sequence variance in deep sequenced virus populations

(Fig. 1). ViVan performs per-sample allele rate analysis, translates

the detected changes into amino acid changes, compares and outputs

several informative metrics regarding each analyzed sample.

Applying ViVan on deep sequenced data obtained from samples that

were previously characterized by more classical approaches, we

achieved superior sensitivity and uncovered novel and potentially

crucial aspects of virus populations, which could not have been iden-

tified otherwise and in much shorter time scales. ViVan efficiently

identified low-frequency minority variants across the entire viral

genome and changes in population diversity that correlate with

in vitro and in vivo data of previously described mutator and anti-

mutator strains of RNA viruses. Additionally, it accurately deter-

mined dosage-dependent and drug-specific alterations in mutation

frequency associated with mutagenic, antiviral compounds. More

generally, we monitored temporal changes occurring within RNA

virus populations during experimental evolution and pinpointed

unique variable positions in viral genomes found in specific host en-

vironments that are indicative of positive selection and adaptation.

Overall, we show that ViVan allows rapid characterization of the

genetic composition and population dynamics of rapidly evolving

viral mutant spectra.
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2 Methods

2.1 Performance validation
Validation data-sets were generated and published by Wilm et al.

(2012). LoFreq (Wilm et al., 2012) version 0.6.1 was run on the

data using default parameters. Variants with a P-value lower than

0.05 were marked as positive calls, regardless of the strand-bias

P-value. VPhaser2 (Yang et al.), was ran on the data using default

parameters. In order to maximize sensitivity, all the variants found

in the raw output file (without strand-bias or FDR corrections) were

considered as positive. In the first data set, Pileup was included in

the comparison and every detected non-reference allele was

considered as a true variant.

2.2 Reproducibility confirmation
In order to test the hypothesis that the frequencies of variants de-

tected only by one replicate (non-reproducible variant; NRV) are

higher than expected in the other un-detected samples, for each

NRV we counted the number of times its frequency is higher than

the other non-reference, non-variant alleles in each replicate. If the

NRV frequency is found to be higher in >3 of the replicates

(P<0.05) we determine false negative as the reason of non-

reproducibility.

2.3 Measuring diversity of viral fidelity variants
The production and generation of DS libraries of passage 3 low

fidelity variants is described previously (Gnädig et al., 2012). The

raw data were reanalyzed for this article. (For additional details see

Supplementary Data 3).

2.4 Statistical methods
Correlation significance between samples was calculated

using Pearson’s correlation. An unpaired Student t-test was used

for comparison between samples (temporal accumulation of

variations).

2.5 ViVan pipeline
Our ViVan pipeline is composed of both established HTS data ana-

lysis tools and in-house Python scripts. The entire process, from raw

sequencing data to analysis output can be divided into several steps:

(i) quality control, (ii) alignment and Pileup, (iii) variant frequency

collection and filtering, (iv) variant annotation, (v) per-sample met-

rics and supplements and (vi) group comparison. (For additional

details see Supplementary Data 4)

2.6 Variant sites identification with allele frequency and

confidence interval estimation from deep sequence data
We have a sample with minor allele frequency (MAF) f at a

genomic locus of interest. The sequencer generates n reads

covering that locus. The ith read is denoted yi and is either 0 or 1,

where 0 is a non-mutant allele and 1 is the mutant allele. Each

read is associated with a quality score pi indicating the probability

that it is incorrect. The probability of observing a minor allele is

given by:

Pðyi ¼ 1; f Þ ¼ f ð1� piÞ þ ð1� f Þpi;

and the probability of observing a reference allele is:

Pðyi ¼ 0; f Þ ¼ 1� Pðyi ¼ 1; f Þ:

Because each yi is in fact a Bernoulli variable, we can write down the

log of the likelihood function as a sum of log-likelihood functions:

lðf Þ ¼
Xn

i¼1

h
yilog

�
Pðyi ¼ 1; f Þ

�
þ ð1� yiÞlog

�
Pðyi ¼ 0; f Þ

�i
:

The optimum of the log-likelihood function has no closed form ex-

pression, but the function can be effectively optimized numerically

to find its maximizer, denoted f̂ MLE, which is the maximum likeli-

hood estimator of the MAF f in the sample. We can then construct a

1� a confidence set using Wilks’ theorem:

CI ¼
(

f 2 ½0;1� j 2
�

lðf̂ MLEÞ � lðf Þ
�
< X2

1;1�a

)
;

where X2
1;1�a is the 1� a percentile of the chi-square distribution

with one degree of freedom. This confidence set is consistent

when the estimator is not on the boundary, and conservative when

it is.

A P-value can be similarly derived using Wilks’ theorem:

p:v: ¼ 1� FX2
1

�
2
�

lðfMLEÞ � lð0Þ
��

where FX2
1

is the cumulative distribution function of the chi-square

distribution with one degree of freedom.

This analysis is performed for every non-reference allele in every

position with sufficient coverage (set at the start of the analysis).

Fig. 1. Schematic of ViVan pipeline workflow. The analysis starts with raw se-

quence reads output by deep sequencing of a virus population sample. First,

these raw reads undergo quality trimming where low quality bases are

removed from both ends of the read. Second, these quality reads are aligned

against a user-supplied reference sequence and a pileup is produced for

each position. The pileup output is then analyzed, true variants are identified,

variant frequencies are modified and confidence intervals calculated. From

these modified significant variants, an assortment of variation metrics is

produced, including information regarding the predicted amino acid change

in each protein, the variation rates across the viral genome, transition/trans-

version rates and specific nucleotide change tables. Additionally, once variant

frequencies have been calculated, a consensus sequence is produced, utiliz-

ing the major allele in each position. This modified consensus sequence can

then be used for the alignment of the initial quality reads, hence improving

overall alignment and accuracy. Once the analysis is done for each virus se-

quence sample, a comparison is performed between groups of samples in

order to pinpoint both common and unique variants in each group
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The variation rate at position i is defined as the proportion (F) of sig-

nificant non-reference alleles (k) and is denoted Vi

Vi ¼
Xk

j¼1
Fij

The region-wide variation rate is the averaged variation rate across

all covered positions in the region (denoted n).

V ¼
Xn

i¼1

Vi

n

3 Results

3.1 Performance validation
Minority variants have been shown to be associated with various

viral features, such as viral evolution, pathogenesis and the outcome

of drug treatment (Nájera et al., 1995; Vignuzzi et al., 2005). To de-

termine how accurately our method detects low-frequency variants

in a viral population, and to demonstrate how it compares with cur-

rently available methods, we utilized published data generated by

Wilm et al. (2012). We selected three data sets: (i) simulated dengue

virus (DENV) population composed of 10 different in-silico gener-

ated haplotypes in varying rates (0.1–50%) and varying coverage

levels (50�, 100�, 500�, 1000�, 5000�, 10 000�), (ii) simulated

DENV population using six sequenced clinical samples sub-sampled

at various rates. (iii) six library replicates of DENV2 TSV01 viruses.

On each data set, we compared ViVan’s performance with LoFreq

(Wilm et al., 2012) and VPhaser2 (Yang et al., 2013). As the number

of true negatives (non-variant alleles) greatly surpasses the number

of true positives (resulting in high specificity values across methods),

we chose to focus on positive predictive values (PPVs; Rate of true

variants out of the total identified variants) instead of specificity for

performance assessment. The first data set was used to test perform-

ance as a function of sequencing coverage. In this data set, we also

tested SAMtools pileup’s (Li et al., 2009) performance in order to

mark the upper limit of sensitivity and to demonstrate the import-

ance of variant significance testing. We demonstrated that ViVan

presents a significantly higher sensitivity across coverage levels com-

pared with LoFreq and VPhaser2 (P<0.005; Fig. 2A and B), iden-

tifying 90 6 5% of the variants with frequencies <0.2% (64 and 0%

in LoFreq and VPhaser2, respectively). The PPV cost of such an in-

crease in sensitivity was found to be minor and significant only in

low coverage levels (<500�; P<0.01) with a PPV of 0.968 6 0.028

(specificity of 0.99995 6 0.00004) in 50� coverage. Calling variants

using pileup, resulted in the highest sensitivity across coverage levels,

but with a much higher cost in PPV. pileup’s PPV ranged from

0.376 6 0.022 in 50� to 0.066 6 0.00003 in 10 000� (93.4% of de-

tected variants are false). This emphasizes the need for computa-

tional variant assessment methods such as those employed by

ViVan, LoFreq and VPhaser2 in order to greatly reduce the number

of false positive calls. The second data set, which includes real

sequencing data, was used to demonstrate ViVan’s performance in

the context of coverage and quality biases (Fig. 2C). In this set, vari-

ants identified in positions that differ from the reference in any of

the six virus strains composing the simulated population were con-

sidered true variants (Table 1.)

Because the coverage in this data set was low (100�) ViVan’s

PPV was the lowest (0.983, 0.995 and 0.99 for ViVan, LoFreq and

VPhaser2, respectively). However, ViVan demonstrated the highest

sensitivity out of the three methods (0.947, 0.828 and 0.803 for

ViVan, LoFreq and VPhaser2, respectively), identifying all but one

of the variants found in the other methods (n¼208), and detecting

24 additional true, low-frequency variants at the cost of four false

positive variants. As we demonstrate using the first data-set, a cover-

age increase should compare ViVan’s PPV to the other methods’

while maintaining higher sensitivity.

The third and final data set, composed of six technical replicates

of the same sequenced DENV population, was used to test ViVan’s

reproducibility. Reproducibility was calculated as the percentage of

variants found in more than one replicate, out of the total number

of detected variants. When limiting the minimal variant rate for

Fig. 2. Performance validation of ViVan using data sets compiled by Wilm

et al. (A,B) Simulated sequencing of an in-silico generated virus population

with varying coverage levels. Performance is demonstrated using sensitivity

and the F1-score which incorporates both sensitivity and PPV

(2*(Sensitivity*PPV)/(SensitivityþPPV)). As coverage increases, low fre-

quency variants are detected and sensitivity levels rise across methods.

ViVan demonstrates high sensitivity and specificity across coverage levels

with only a minor cost in PPV, maintaining an overall F1-score higher than

the other methods. SAMtools pileup’s decline in F1-score is the result of a de-

crease in PPV as coverage increases. (C) Simulated virus population, using

sub-sampling of clinical samples with known variant locations. Comparing

true positive variant calls between methods, ViVan demonstrated the highest

sensitivity, identifying all but one of the variants detected by the other meth-

ods, and detecting 24 additional low-rate variants. (D) Reproducibility ana-

lysis using six libraries replicates of the same virus population.

Reproducibility was defined as % of variants detected in more than one repli-

cate. ViVan demonstrates high reproducibility in the higher frequency levels

(>0.5%) which decreases as frequencies drop. This decrease in reproducibil-

ity is due to detection of extremely low frequency variants by ViVan only in

some of the replicates and may be alleviated by sufficient coverage

Table 1. Performance comparison on simulated virus population:

ViVan LoFreq VPhaser2 SAMTools pileup

True positives 231 219 196 244

False positives 4 1 2 1399

True negatives 31918 31921 31920 30523

False negatives 13 25 48 0

sensitivity 0.947 0.898 0.803 1.000

specificity 1.000 1.000 1.000 0.956

PPV 0.983 0.995 0.990 0.149

NPV 0.999 0.998 0.995 1.000

F1-Score 0.965 0.944 0.887 0.259

Simulated DENV population using six sequenced clinical samples sub-

sampled at various rates was used to demonstrate ViVan’s performance in the

context of real sequencing data

Because the coverage in this data set was low (100�) ViVan’s PPV was the

lowest. However, ViVan demonstrated the highest sensitivity out of the three

methods, identifying all but one of the variants found in the other. This

dataset also highlights the need for sequencing-error aware methods in order

to reduce false positive calls such as the ones produced by naı̈ve pileup.
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detection, we see that ViVan demonstrates the highest reproducibil-

ity (>91.7%) among methods in variants with frequencies >0.5%.

Lower variant frequencies thresholds resulted in lower reproducibil-

ity across tools, with ViVan detecting the highest number of variants

but at the cost of lower reproducibility (Fig. 2D). We suspected that

this decrease in reproducibility is due to coverage limitation and in

fact represents false negative calls in extreme low frequency variants

in the disagreeing replicates in oppose to false positive calls in the

replicate with detected variant. We therefore reviewed the allele fre-

quencies in the variants not reproduced and found that the majority

of them (93/133) did demonstrate a higher frequency than expected

in the disagreeing replicates (P<0.05; For more details see Methods

section), suggesting that they are in fact true variants. Simply put,

ViVan managed to detect extreme low coverage variants in some of

the replicates, which, given sufficient coverage, would have been

reproduced in the other samples as well. This demonstrates that

ViVan maintains high reproducibility (88.4%) even in low variant

rates, given sufficient coverage (Fig. 2D).

3.2 Identifying differences in population diversity and

mutagen effects
Although HTS could be a less labor-intensive approach to quantify-

ing diversity than more classic methods involving Sanger sequencing

or biochemical incorporation assays, the relatively high error rate of

the technology might prove to be too great to distinguish between

subtle differences in the genetic diversity of populations. To test

whether ViVan can detect such differences, we deep sequenced wild

type CVB3 virus and two well-characterized low fidelity mutator

strains, I230F and F232Y, that were shown by classical assays to

generate 3-fold more mutations than wild type (Gnädig et al.,

2012). By molecular cloning, wild type virus was found to have a di-

versity measure of 0.00043 mutations/nucleotide, while the low fi-

delity variants presented roughly 3-fold more (0.00123 mutations/

nucleotide each) (Fig. 3a). When all minority variants identified by

ViVan were taken into account, regardless of their frequency (no

cut-off threshold), the diversity of all three virus populations were

significantly higher. Wild type virus, in particular, had higher than

expected frequencies of 0.00107 mutations/nucleotide in the region

previously sequenced by Gnädig et al., and 0.000996 mutations/nu-

cleotide across the entire genome. These data suggest that the higher

sensitivity of HTS identifies more extremely low-frequency variants

than would otherwise be detected by other available methods.

Indeed, when cut-off thresholds of 0.005 or 0.01 were set, ViVan

generated more conservative mutation profiles that more closely

resembled previously reported values for wild type and low fidelity

variants obtained by molecular clone sequencing(Gnädig et al.,

2012; Levi et al., 2010). Being able to identify subtle changes in

population diversity is important for RNA viruses, because the nat-

urally high mutation frequencies of these viruses confer susceptibil-

ity to conditions that further increase mutation rates above a

maximal threshold. This increased mutation rate may result in ex-

tinction, also termed lethal mutagenesis (Bull et al., 2007; Vignuzzi

et al., 2005).

Chemical agents inducing mutations, i.e. mutagens, are being

explored as possible antiviral agents (Crotty and Andino, 2002;

Graci and Cameron, 2008). An improved characterization of the ef-

fect of RNA mutagens and the genetic modulations they induce may

facilitate their development as antiviral drugs. With this in mind, we

used ViVan to compare virus progeny from cells infected with CVB3

and treated with known mutagens, with an untreated control infec-

tion. The drugs tested were ribavirin (R, 400mM), 5-azacytidine

(AZC, 300mM) and 5-fluorouracil (FU, 150mM). Each base analog

is known to induce different types of mutations, with biases that can

be considered genetic signatures of treatment: ribavirin promotes G

to A and C to U transitions (Crotty et al., 2000), 5-AZC promotes G

to A transitions and G to C, C to G and C to A transversions, and 5-

FU promotes U to C and A to G transitions (Grande-Pérez et al.,

2002) (Fig. 3b). Using our pipeline to quantify the mutational bias
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Fig. 3. Monitoring population diversity and mutational profiles. (a) The diver-

sity (mutations/nucleotide site) of wild type CBV3 and low fidelity variants

I230F and F232Y as previously determined by molecular clone sequencing of

a capsid coding region (Gnädig et al), were determined by deep sequencing

across the same region (capsid) or across thewhole genome (genome), set-

ting a minimal rate threshold (>0.005 or >0.01) or without a threshold (no

cut-off) (b) Transition and transversion biases resulting from mutagen drug

treatment. HeLa cells were infected with CVB3 and treated with the mutagens,

5-AZC, 5-FU or ribavirin (R) or left untreated (control). The frequency (% of

total virus population) presenting specific transitions and transversions in

deep sequence data were classified by ViVan. (c) Dose-dependent effects of

mutagen treatment detected by deep sequencing. HeLa cells were infected

with CVB3 with increasing concentrations of ribavirin (0, 100, 200 and

400mM) and the dose dependent increase in the frequency (% of total virus

population) of specific transition (C>U, G>A, U>C, A>G; dashed lines)

and transversion (labeled ‘others’; solid lines) were determined by ViVan
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across the entire viral genome, the untreated sample revealed that

transition mutations are more common than transversions, as ex-

pected, and that the most commonly occurring transition mutations

were A to G and U to C, as previously reported (Levi et al., 2010).

For treatment with AZC, a significant increase in G to A transitions

and in the three transversions, particularly for C to G, was observed.

The deep sequence profile for FU treatment revealed the most com-

monly induced mutations to be the expected U to C and A to G tran-

sitions. Finally, the ribavirin treated population also presents the

expected G to A and C to U transitions with the highest frequencies.

Another aspect of mutagenic drug treatment that can be readily

demonstrated by ViVan is dosage-dependence, characterization of

which would normally require classic sequencing of hundreds of

molecular clones (Levi et al., 2010). We compared a CVB3 sample

without treatment, with infected samples treated with three concen-

trations of ribavirin (100, 200 and 400mM). The results confirmed a

dose-dependent increase in the ribavirin-associated transition muta-

tions (C to U and G to A) compared with the other transition (A to

G and U to C) and transversion mutations, which showed no dose

dependent effect (Fig. 3c).

3.3 Comparing between samples in evolutionary

studies: identifying population-specific acquired

mutations that correlate with phenotypic differences
For biologists interested in RNA virus evolution, a primary goal is

to identify genotypes and mutations undergoing positive selection

that would represent adaptive mutations to the experimental condi-

tions, requiring comparison between numerous samples and con-

trols. Precise comparison of viral population composition is difficult

to carry out using common technologies as it requires either an im-

mense amount of whole-genome sequencing of individuals from

each population to be compared, or prior knowledge regarding the

expected gene or allele targeted by selection. In order to demonstrate

ViVan’s efficiency in pinpointing these functional mutational hot-

spots in viral populations, we analyzed deep sequence data of sam-

ples produced in a previously published experimental evolution

study (Coffey and Vignuzzi, 2011). In this work, wild type chikun-

gunya virus that normally cycles between mosquito and mammalian

hosts, was adapted to either only mammalian host cells, or cycled

between mammalian and mosquito cells (Coffey and Vignuzzi,

2011). We Applied ViVan on three sequenced samples: the initial

virus population (stock virus); following seven passages in HeLa

cells (p7 HeLa); and after alternating passages between HeLa cells

and mosquito C6/36 cells (p7 alt). In the original study using

molecular cloning data (Coffey and Vignuzzi, 2011), mammalian-

host adapted virus presented the highest amount of genetic diversity

compared with the initial starting population, while mammalian-

mosquito passage had an intermediate diversity. Analysis with

ViVan corroborated these observations. Setting a diversity threshold

of >0.005 we found that the stock virus had a total of 305 minority

variants. This diversity increased to 443 after serial passage in HeLa

cells, and 419 when alternating between HeLa and C6 cells. In the

original article, the presence of a more or less diverse set of neutral-

izing antibody-resistant variants was used as a surrogate for overall

genetic diversity that could not be measured by classic sequencing.

With our new approach, we were able to ascertain the variant rate

across the entire E2 sequence containing these epitopes, detecting

variants in extreme low rates. In correlation with the measured

neutralizing antibody escape in the original studies, we noticed a

significantly higher total variance in the p7 HeLa mammalian

cell passaged E2 protein (1.6603) when compared with the mamma-

lian-insect alternating passage (1.4262) (one tailed t-test,

P¼0.00004) and the starting stock virus (1.3587) (one tailed t-test,

P¼0.00018). Another powerful feature of the ViVan pipeline, is the

ease with which it allows comparing and identifying minority vari-

ants in one group of samples that are common to that group and not

found in a second group of samples. In analyzing this batch of sam-

ples, we assessed all the positions across the viral genome in which

there was a significant variant in the alternating passage sample that

had cycled through mosquito cells, which was not found in any of

the other samples (that encountered only mammalian cells) above a

rate of 0.001. We detected 396 such variants (Table 2 and

Supplementary Data 1). Interestingly, only nine variants had fre-

quencies above 1% of the total population, and the variant exhibit-

ing the highest rate (62%), was an aspargine to lysine change,

position 112 of the non-structural protein 4 (nsp4). It is tempting to

speculate that this mutation in the nsp4 polymerase may represent a

mechanism of adaptation to retain replicative capacity in disparate

hosts.

3.4 Comparing between samples in evolutionary

studies: monitoring temporal changes and emerging

variants during virus evolution
As RNA virus populations adapt to an environment, new mutations

will amplify and eventually dominate the population to change the

consensus sequence if the selective pressures remain constant over

the long-term. However, with HTS technology the emergence of

such mutations would expectedly be detectable long before

Table 2. Chikungunya alternating passages unique mutations

Feature (gene) Genome position Reference allele Read coverage Variant allele Amino acid position Amino acid change Variant rate

nsp4 6001 C 233 902 A 112 N>K 0.62075

E1 10380 A 116 688 C 129 synonymous 0.18479

nsp4 5950 C 112 016 U 95 synonymous 0.07434

nsp4 6843 A 82 162 G 393 D>G 0.02060

nsp3 4919 A 172 536 C 282 synonymous 0.01508

E2 9701 G 294 074 C 387 G>A 0.01431

nsp4 5910 G 95 074 U 82 R> I 0.01418

nsp2 2234 U 77 920 C 185 F>L 0.01384

6K 9967 A 179 958 U 53 S>C 0.01082

Using our pipeline, we were able to collect all the positions carrying any variant allele with a frequency >0.1% from every sequenced sample (the starting virus

population (passage 1), eight cycles in Hela cells and alternating passages between Hela cells and mosquito C6 cells) and pinpoint unique positions across the viral

genome in which variants were found only in the alternating passages positions. One of these variant positions, found in the viral polymerase protein (nsp4) dem-

onstrated a high variant allele rate which may suggest functional relevance for survival in alternating host passages.
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dominating the viral population, a significant improvement to both

experimental and clinical studies. As an example, the detection of

low-frequency adaptive variants in an RNA viral population prior

to and during antiretroviral drug treatment could result in more

optimized HIV treatment protocols (Nájera et al., 1995). To valid-

ate ViVan in characterizing genome-wide temporal changes during

virus evolution, we sequenced samples infected by three different

coxsackie virus variants [WT, the A372V high fidelity, antimutator

strain and the S299T low fidelity, mutator strain (Levi et al., 2010)]

at three different time points (1, 60 and 120 replication cycles in

HeLa cell culture), with each series performed as biologically inde-

pendent triplicates. As with any RNA virus, we expected rapid gen-

eration of mutations throughout the viral population. We analyzed

the variant rate for each sample and performed group comparisons

based on time point and virus strain. The results demonstrated a sig-

nificantly higher variation rates in the later passages, when compar-

ing passage 1 against both passage 60 and 120, and comparing

passage 60 against passage 120 (one tailed t-test, maximal

P¼0.00016). This significant accumulation of mutations across

viral genome was observed in all three coxsackie virus strains tested

(Fig. 4) and is indicative of the temporal accumulation of variants in

the sequenced viral population, regardless of the strain’s intrinsic

replication fidelity. Further highlighting the sensitivity of this pipe-

line, the high fidelity A372V variant and the low fidelity S299T vari-

ant, respectively maintained lower and higher diversity throughout

the 120 replication cycles and in all triplicate series. We then asked

which variants specifically demonstrated a constant increase in rate,

as passages progressed, that could be indicative of positive selection

and could help elucidate functional determinants throughout a gen-

ome. For this purpose, we reviewed the accumulated changes in

each coxsackie virus variant (WT, A372V, S299T) over the three

time points. Using ViVan, we were able to collect all the positions

across each variant’s genome which demonstrated a progressive in-

crease in variant allele frequency. We then reviewed all the variants

that either (i) accumulated in more than one population, or (ii) accu-

mulated at the highest rate. Out of the four variants that accumu-

lated in all three virus variants (Table 3), three occurred within viral

capsid proteins VP3 and VP4, consistent with the higher evolution-

ary rates of viral structural proteins and the localization of many re-

ceptor binding and antigenic epitopes within the VP3 protein

(Carson et al., 1997, 2011). The fourth variant occurred within the

viral polymerase (3D; S452P).

Interestingly, the only accumulated variant in the viral 3B pro-

tein was found in five different population sets (all of the A372V

populations and two of the WT). Out of the variant positions,

common to more than one population and having a rate >5% in

passage 120 (n¼11; Table 4), seven were within viral capsid pro-

teins, two in 3D, one in 3A and one in 3B. The 3D mutations are the

known natural fidelity variants of the polymerase (Levi et al., 2010):

S299T, known to decrease viral replication fidelity, and A372V,

known to increase viral replication fidelity. By passage 120, the

S299T variant, accumulated to 5 and 1% of the A372V and WT

populations, respectively. A372V accumulated in all three WT

populations with an average rate of 37% at passage 120.

These observations suggest that viral populations may fine tune

their mutation rates during their infection cycles by generating

mixed populations of fidelity variants, so as to increase adaptability

(fidelity decrease) while maintaining genetic integrity (fidelity

increase).

4 Discussion

It is becoming increasingly clear that studying only the consensus se-

quence of an RNA virus insufficiently summarizes the viral popula-

tion. Often, increases in fitness and changes in adaptability are

observed without changes in the consensus sequence (Coffey et al.,

2008; Sanz-Ramos et al., 2008). This hints that minority variants

within the viral population are responsible for this effect. Virus di-

versity represents a pool of randomly generated minority variants,

available for adaptation and gradually amplified in frequency

through selection. Only with the advent of HTS has studying such

minorities become feasible but we are missing standard validated

tools to mine, analyze and compare this information from multiple

samples. Currently available tools require a high degree of computa-

tional savoir-faire, and for more detailed RNA virus population ana-

lysis, the user must write additional scripts.

Our computational pipeline has several advantages over other

methods. We use a robust algorithm, based on each variant allele’s

initial rate and read qualities, to differentiate between sequencing-

introduced errors and actual population variants, facilitating accur-

ate variant assessment even at extremely low rates. Another advan-

tage of the pipeline is the set of different outputs we provide for

analysis (Fig. 1, Supplementary Data 2). First, we provide a table of

the synonymous and non-synonymous changes for each significantly
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Fig. 4. Temporal accumulation of variants found in viral populations. The total

number of minority variants found in each CVB3 strain (wild type WT, high fi-

delity A372V and low fidelity S299T) was calculated for each sequenced pas-

sage (1, 60 and 120 replication cycles). Variation rates (the average

proportion of variant alleles across covered bases in the genome

sequence) 6 SEM are shown, from three biological replicates, (P<0.0001)

Table 3. Allele rate change throughout replication passages

Protein AA

position

AA

change

Number of

Population

Samples

Virus variants

VP3 204 A>V 8 WT 372 299

VP4 17 N>D 6 WT 372 299

VP4 20 G> S 6 WT 372 299

3D 452 S> P 6 WT 372 299

3B 6 V>L 5 WT 372

VP2 138 D>N 4 WT 299

VP4 21 N>D 4 WT 372

VP4 15 R>G 4 372 299

2B 11 N>D 4 372 299

VP4 23 I>T 4 372 299

Implementing our method on one of the CVB wild-type samples, and re-

cording the changes throughout the passages (1, 60 and 120), the positions

demonstrating the highest increase in variant allele rate was detected. Out of

the top 10 most changing positions, only four were non-structural, one syn-

onymous in the viral protease (3C) one nonsynonymous in 2B and two non-

synonymous in the viral polymerase (3D). The polymerase variants were then

recognized as variants already known to modulate viral replication fidelity.
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variable position, organized by gene and position for the whole viral

genome. Second, we provide a battery of metrics including nucleo-

tide substitution matrix, transition/transversion frequencies and

variant allele rates. We also include the consensus changes found to

be different from the original reference, enabling reconstruction of

the genuine consensus for a given sample. Third, we provide three

files with pairwise comparisons supplying the mutations found to be

different or common among samples. These outputs are rapid and

powerful, enabling comprehensive analysis of large data sets.

Importantly, we have made ViVan available and accessible for users

without computational proficiency in the virology community

through an easy-to-use web server, enabling a complete analysis

given raw deep sequencing data.

Using low fidelity CVB3 variants that generate subtle, yet bio-

logically confirmed, differences in mutant composition, we showed

that detected variation frequencies correlated with the mutation fre-

quencies obtained by molecular cloning in the original paper

(Gnädig et al., 2012). We also showed that sequence analysis of

mutagen treated virus populations can identify the specific transi-

tion/transversion footprints for three different mutagens, as well as

reveal dose-dependent effects. The increased ease and sensitivity of

this approach could help identify new compounds with antiviral mu-

tagenic activity and distinguish statistically significant changes that

would otherwise be overlooked by classic methods. This may help

answer the debate as to whether mutagens such as ribavirin have

mutagenic activity at physiological concentrations, as in the treat-

ment of chronic HCV infection (Dusheiko et al., 1996).

In addition to comparing samples from different environmental

conditions, we determined the sensitivity of the pipeline in detecting

temporal changes in minority variant composition within the same

virus population. We serially passaged wild type coxsackie, as well

as naturally occurring high (A372V) and low (S299T) fidelity strains

in a cell line to which the virus is already well adapted, to favor a

general expansion of more neutral or high fitness variants in this

highly permissive environment. Gene by gene analysis of variance

corroborated with previous data on picornaviruses, where variabil-

ity and mutation is seemingly most tolerated in the structural

proteins (P1 region) and the P3 non-structural region; while the

non-structural P2 region is less variable (Kistler et al., 2007). A very

interesting and unexpected observation was the emergence of fidel-

ity altering mutations in late passages of the wild type strain that is

generally considered to be genetically stable. Unlike other fidelity

altering mutations isolated in our lab (Gnädig et al., 2012), these

two alleles exist in some CVB3 isolates (Levi et al., 2010), but the

natural emergence of fidelity variants has not been previously

observed. That they emerge within the wild type population during

longer-term experimental evolution raises the intriguing possibility

that fidelity modulation may occur in natural settings, according to

host environment. Such modulation of fidelity would be reminiscent

of environment-dependent changes in bacterial mutation rates

(Sniegowski et al., 1997). Our method is intended for high coverage

short read data, it does not incorporate information regarding vari-

ants detected on the same read and therefore does not support

haplotype reconstruction (Eriksson et al., 2008; Zagordi et al.,

2011). Our method is also limited to per-position analysis and there-

fore it cannot directly account for compensatory mutations. If one

wishes to identify such associated variants, we suggest an initial ana-

lysis using ViVan in order to identify significant variants followed

by a deeper assessment of the data in regards to adjacent variants

found within a read length of each other. The examples presented in

this work were performed using virus references matching the mo-

lecular clone (plasmid) that is later used to produce the viruses them-

selves. These references are extremely well characterized and serve

as a good template for variant analysis. In cases where such appro-

priate references are not available, we recommend either (i) an initial

ViVan run on the data and then a re-run using the modified consen-

sus sequence produced, or (ii) an initial assembly of the viral genome

using appropriate assembly tools (Bankevich et al., 2012; Simpson

et al., 2009; Zerbino and Birney, 2008) and using the assembled

genome as input for ViVan.

In this article, we have presented a new bioinformatic pipeline

for the study of HTS data. We hope this tool will help standardize

and facilitate the analysis of data this technology provides. As we

have illustrated with our experimental work, it can be used for stud-

ies ranging from the more practical, detection of resistant mutations

and effects of antiviral treatments, to the more theoretical temporal

characterization of the population in evolutionary studies. Our ana-

lysis pipeline provides an extremely low allele rate cut-off threshold

to determine statistically significant minority variants, as well as sev-

eral metrics and statistics on population diversity, transitions and

transversions bias, synonymous and non-synonymous mutation dis-

tributions, gene-by-gene and whole-genome analysis. Furthermore,

Table 4. Variant positions, common to more than one population and having a rate >5% in passage 120

Protein AA position AA change Number of

population samples

Virus variants Passage 1

average rate

Passage 60

average rate

Passage 120

average rate

VP3 234 Q>E 2 WT 0.0024 0.4682 0.6749

3D 372 A>V 3 WT 0.0010 0.0256 0.3701

VP2 137 L> P 2 372 0.0005 0.0959 0.3317

VP3 204 A>V 8 WT 372 299 0.0006 0.0462 0.2560

3A 51 T>A 3 299 0.0013 0.0125 0.2477

VP2 138 D>N 4 WT 299 0.0003 0.0116 0.2206

3B 6 V>L 5 WT 372 0.0001 0.0113 0.1498

VP4 21 N>D 4 WT 372 0.0003 0.0310 0.1493

VP4 17 N>D 6 WT 372 299 0.0011 0.0088 0.1219

VP4 15 R>G 4 372 299 0.0011 0.0036 0.0760

3D 299 S>T 2 WT 372 0.0004 0.0058 0.0626

Seven variants were within viral capsid proteins, two in 3D, one in 3A and one in 3B. The 3D mutations are the known natural fidelity variants of the polymer-

ase: S299T, known to decrease viral replication fidelity, and A372V, known to increase viral replication fidelity. By passage 120, the S299T variant, accumulated

to 5% and 1% of the A372V and WT populations respectively. A372V accumulated in all three WT populations with an average rate of 37% at passage 120.

These observations suggest that viral populations may fine tune their mutation rates during their infection cycles by generating mixed populations of fidelity vari-

ants, so as to increase adaptability (fidelity decrease) while maintaining genetic integrity (fidelity increase).
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it readily performs group sample comparisons, a feature not cur-

rently available to the scientific community interested in experimen-

tal evolution or analysis of clinical and field samples. This set of

outputs, coupled with an online web server, sets ViVan as an exten-

sive analysis tool which can be readily used by the virology

community.
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Grande-Pérez,A. et al. (2002) Molecular indetermination in the transition

to error catastrophe: systematic elimination of lymphocytic choriomeningi-

tis virus through mutagenesis does not correlate linearly with large increases

in mutant spectrum complexity. Proc. Natl Acad. Sci. USA, 99,

12938–12943.

Guo,Y. et al. (2012) The effect of strand bias in Illumina short-read sequencing

data. BMC Genomics, 13, 666.

Hurwitz,B.L. and Sullivan,M.B. (2013) The pacific ocean virome (POV): a

marine viral metagenomic dataset and associated protein clusters for quanti-

tative viral ecology. PLoS One, 8, e57355.

Jabara,C.B. et al. (2011) Accurate sampling and deep sequencing of the HIV-1

protease gene using a Primer ID. Proc. Natl Acad. Sci. USA, 108,

20166–20171.

Kinde,I. et al. (2011) Detection and quantification of rare mutations with mas-

sively parallel sequencing. Proc. Natl Acad. Sci. USA, 108, 9530–9535.

Kistler,A.L. et al. (2007) Genome-wide diversity and selective pressure in the

human rhinovirus. Virol. J., 4, 40.

Lauring,A.S. and Andino,R. (2010) Quasispecies Theory and the Behavior of

RNA Viruses. PLoS Pathog., 6, e1001005.

Levi,L.I. et al. (2010) Fidelity variants of RNA dependent rna polymerases un-

cover an indirect, mutagenic activity of amiloride compounds. PLoS

Pathog., 6, e1001163.

Deep sequencing analysis of viral population 2149

.


Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,H. et al. (2009) The sequence alignment/map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Love,T.M.T. et al. (2010) Mathematical modeling of ultradeep

sequencing data reveals that acute CD8þ T-lymphocyte responses exert

strong selective pressure in simian immunodeficiency virus-infected ma-

caques but still fail to clear founder epitope sequences. J. Virol. 84,

5802–5814.

Macalalad,A.R. et al. (2012) Highly sensitive and specific detection of rare

variants in mixed viral populations from massively parallel sequence data.

PLoS Comput. Biol., 8, e1002417.

Mangul,S. et al. (2014) Accurate viral population assembly from ultra-deep

sequencing data. Bioinformatics, 30, i329–i337.

Martı́nez,F. et al. (2012) Ultradeep sequencing analysis of population dy-

namics of virus escape mutants in RNAi-mediated resistant plants. Mol.

Biol. Evol., 29, 3297–3307.

McElroy,K. et al. (2013) Accurate single nucleotide variant detection in viral

populations by combining probabilistic clustering with a statistical test of

strand bias. BMC Genomics, 14, 501.
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