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Abstract: Geosmin is a major concern in the management of water sources worldwide. Thus,
we predicted concentration categories of geosmin at three different depths of lakes (i.e., surface,
middle, and bottom), and analyzed relationships between geosmin concentration and factors such as
phytoplankton abundance and environmental variables. Data were collected monthly from three
major lakes (Uiam, Cheongpyeong, and Paldang lakes) in Korea from May 2014 to December 2015.
Before predicting geosmin concentration, we categorized it into four groups based on the boxplot
method, and multivariate adaptive regression splines, classification and regression trees, and random
forest (RF) were applied to identify the most appropriate modelling to predict geosmin concentration.
Overall, using environmental variables was more accurate than using phytoplankton abundance
to predict the four categories of geosmin concentration based on AUC and accuracy in all three
models as well as each layer. The RF model had the highest predictive power among the three
SDMs. When predicting geosmin in the three water layers, the relative importance of environmental
variables and phytoplankton abundance in the sensitivity analysis was different for each layer.
Water temperature and abundance of Cyanophyceae were the most important factors for predicting
geosmin concentration categories in the surface layer, whereas total abundance of phytoplankton
exhibited relatively higher importance in the bottom layer.

Keywords: taste-and-odor compound; off-flavor material; species distribution models; random
forest; vertical difference

1. Introduction

Globally, cyanobacterial blooms as a result of abnormal growth of algae signify prob-
lems such as nutrient over-enrichment, modified hydrology, and poor management of
water bodies [1]. These cyanobacterial blooms cause changes in various biological habitats
of water bodies through deterioration of water quality. In addition, algal and cyanobacterial
blooms degrade water quality in drinking water supply reservoirs by producing toxic and
unpleasant taste-and-odor causing secondary metabolites, which ultimately cause public
health concerns and lead to increased treatment costs for water utility companies [2]. In fact,
Dodds et al. [3] reported that, in the U.S., US$813 million is spent annually on bottled
water because of taste and odor problems, potentially linked to eutrophication, in the tap
water supply. Furthermore, the potential annual value of losses in waterfront real estate,
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recreational water usage, and spending on recovery of threatened and endangered species
due to eutrophication have been estimated to be US$2.2 billion annually for US freshwaters.

Most of the taste and odor events in drinking water caused by algal blooms are pre-
dominantly associated with microbial metabolites such as geosmin and 2-methylisoborneol
(2-MIB) [4,5]. Although these compounds are not hazardous to human health, they render
water aesthetically unpleasant and may result in subsided consumer trust [6–8]. Moreover,
these compounds are generally stable and resistant to traditional water treatment processes
like coagulation and sedimentation. Geosmin, which was first discovered in materials
isolated from actinomycetes [9], is difficult to remove completely with conventional water
treatment operations. However, unpleasant taste and odor caused by geosmin can be
detected at even a few ng/L, therefore, a separate process that can treat trace amounts is
required for its removal, such as adsorption onto powdered or granular activated carbon
(GAC) [6,10,11].

Geosmin is the major taste-and-odor compound found in rivers and reservoirs during
and after cyanobacterial blooms in Korea [5]. In fact, in 2011 and 2012, large amounts of
Anabaena were found in the North-Han River watershed located upstream of an important
water source, the Paldang Lake; a high concentration of geosmin, more than 1000 ng/L,
was observed, which caused serious discomfort to the populace of the metropolitan areas
supplied with the affected water [12,13]. As a result, the geosmin level was designated as a
drinking water quality item required to be monitored in Korea and has since been managed
below 20 ng/L [14]. The increase of geosmin in water sources is a problem not only in
Korea, but also worldwide. Ma et al. [15] reported problems in drinking water supply due
to toxins and taste-and-odor compounds caused by the outbreak of microcystis in 2007
at Lake Taihu, China. In addition, high concentrations of geosmin have been reported in
natural water sources at concentrations of 400 ng/L in Japan [16], 86 ng/L in Spain [17],
4000 ng/L in Australia [18] and 3170 ng/L in South Africa [19].

In this sense, in order to manage geosmin in the water bodies worldwide, there has
been a lot of research done to predict the occurrence or metabolite of geosmin based
on various modelling techniques. For instance, Parinet et al. [20] and Sugiura et al. [21]
compared multiple linear regressions (MLRs) and artificial neural networks (ANNs) for
metabolite production modeling. In addition, multiple studies [2,4,7,22] on metabolites
such as geosmin have used regression-based methods to relate geosmin concentrations to
abiotic factors and/or diverse phytoplankton species. Meanwhile, two-dimensional (2D)
hydrodynamic and water quality models [5] and three-dimensional (3D) hydrodynamic
ecological models [23] have been used to predict the occurrence of algal blooms and algal-
derived geosmin in Korea. However, most models developed in previous studies have
been empirical and applicable only to specific water bodies. In addition, most studies have
analyzed only particular species (e.g., cyanobacteria) in the surface layer of water bodies,
even though water body characteristics can differ significantly with depth.

Therefore, in this study, we predicted the concentration of geosmin based on various
factors including phytoplankton abundance, physicochemical factors and water quality
factors at three different depths of lakes using three different machine-learning techniques.
Our goals were as follows: (1) to select the most suitable model for predicting geosmin
concentration in lakes; (2) to compare the occurrence patterns of geosmin at three different
water depths; and (3) to identify the most important variables, in terms of environmental
factors and phytoplankton abundance, influencing the occurrence of geosmin in lakes.

2. Materials and Methods
2.1. Ecological Data

The mean annual temperature and the total amount of annual precipitation in the Han
River watershed, which includes Uiam lake, Cheongpyeon lake and Paldang lake during
the last 10 years was 10.5 ◦C and 1319 mm, respectively. Almost 70% of the total annual
precipitation occurs from June to September (Korea Meteorological Administration, http:
//www.kma.go.kr/ (accessed on 17 September 2021)). The morphometric and hydrological
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characteristics of the three lakes are indicated in Table 1. The data for the phytoplankton
community and the environmental variables were obtained from the Basic Environmental
Research Program (Investigation of causes of off-flavor material production by harmful
algae and management strategy) operated by the Han River Watershed Management
Committee (HRWMC) and the Ministry of Environment (MOE), Korea. Samples were
surveyed monthly at three major lakes (Uiam, Cheongpyeong, and Paldang lakes) located
in the North-Han River watershed area from May 2014 to December 2015 (Figure 1).
We conducted samplings 400 m upstream of the dam and samples were collected from
three different layers (i.e., surface, middle, and bottom layers). Because of different water
depth in the three lakes, the sampling interval among the three layers was different (Uiam
lake: 8 m, Cheongpyeong lake: 13 m, and Paldang lake: 10 m). Some data could not be
measured due to freezing of lakes (Uiam lake: January to February 2015; Cheongpyeong
lake: November 2014 to February 2015, and December 2015; Paldang lake: December 2014
to February 2015) or missing surveys (April 2015).

Table 1. Information of morphometric and hydrological characteristics in three lakes in the study.

Factors
Lakes

Uiam Cheongpyeong Paldang

Watershed area (km2) 7709 9921 23,800
Total storage (106 m3) 80 185.5 244

Effective storage (106 m3) 57.52 82.6 18
Inflow (106 m3/year) 5323 6837 17,020

Outflow (106 m3/year) 5322 6836 16,988
Dam height (m) 23 31 29

Residence time (day) 7.3 9.3 12.9

Figure 1. Locations of the study sites (•) in the Han River watershed of South Korea.

Phytoplankton and environmental variables were surveyed according to the sampling
protocol of HRWMC [12]. Water samples at each layer for the identification of phyto-
plankton species and measurement of cell densities were taken using a Van Dorn sampler
(Halltech Environmental Inc., Guelph, ON, Canada) and stored in Whirl-Pak bags (250 mL),
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then fixed with Lugol’s solution (2% final concentration). Cell density was measured
using a microscope (Axiostar plus; Zeiss, Jena, Germany) with a Sedgwick-Rafter count-
ing chamber at 200–400× magnification. Phytoplankton were identified to the species
level [24–26].

Water temperature, pH, DO, conductivity, and turbidity were measured in situ using
a water quality logger (YSI-6600D, YSI Inc., Yellow Springs, OH, USA). Other variables,
such as BOD, SS, TOC, TN, TP, and chlorophyll-a, were analyzed in the laboratory us-
ing standard methods [27] (Table 2). Geosmin was determined using Head Space-Solid
Phase MicroExtraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS;
450-GC, 320-MS, Bruker, Billerica, MA, USA) [14]. A Polydimethylsiloxane (PDMS) fiber
(47525-U, Supelco, Sigma-Aldrich, St. Louis, MO, USA) was used for the SPME, helium
was the carrier gas, and a VF-5MS column 30 m in length and 0.25 mm in diameter was
used for separation. Geosmin concentrations <1 ng/L were considered not detectable (ND).

Table 2. Summary of 19 variables used in the prediction model (units, methods of measurement and abbreviations).

Variables Abbreviation Units Methods

Independent
variables

Cyanophyceae Cyan cell/mL -
Chrysophyceae Chry cell/mL -

Bacillariophyceae Baci cell/mL -
Dinophyceae Dino cell/mL -

Cryptophyceae Cryp cell/mL -
Clorophyceae Chlo cell/mL -

Total abundance Total cell/mL -

Water Temperature Temp ◦C

Multimeter in the field
Conductivity Cond µS/cm

Turbidity Turb NTU
pH pH -

Dissolved Oxygen DO mgO2/L

Chemical Oxygen Demand COD mgO2/L CODMn
Biochemical Oxygen Demand BOD mgO2/L Membrane Electrode Method

Total Phosphorous TP mg/L Ascorbic acid analysis
Total Nitrogen TN mg/L Ascorptiometric analysis

Suspended Solid SS mg/L GF/C
Chlorophyll a Chl-a µg/L Ascorptiometric analysis

Dependent
variables Geosmin - ng/L HS-SPME

2.2. Data Analysis

Geosmin concentration was categorized into four groups based on the boxplot method
(A: <25%, B: 25–50%, C: 50–75%, D: >75%) (Table 3). To predict geosmin concentration
categories based on phytoplankton abundance and environmental variables, we applied
three representative machine learning techniques such as multivariate adaptive regres-
sion splines (MASR), classification and regression trees (CART), and random forest (RF)
(Figure 2). These three different models were chosen by considering model complexity and
error [28]. All the machine learning techniques were trained and tested based on 10-fold
nested cross-validation (training:test = 9:1). [28]. A total of 47 samples from three lakes
were used to construct the model.

Table 3. Categories of geosmin concentration were defined based on the boxplot method. The
numbers in parenthesis (n) indicate the number of sampling sizes.

Category A (≤25%) B (25–50%) C (50–75%) D (>75%)

Range of geosmin (n) ≤4 (45) 4–6 (28) 6–10 (34) >10 (34)
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Figure 2. Flow chart of the modeling procedures to predict geosmin concentration categories based
on phytoplankton abundance and environmental variables.

After the learning process, each model’s performance was tested based on accuracy
and area under an ROC curve (AUC) which was widely applied in ecology e.g., [29]. The
accuracy computed the correct prediction rate between predicted and observed data [30].
AUC measures a model’s overall performance [30], and ranges from 0 to 1. As a rule of
thumb, AUC values above 0.90 indicate excellent, values between 0.80 and 0.90 indicate
good, values between 0.70 and 0.80 indicate fair, and 0.60–0.70 and the values below 0.60 in-
dicate fail according to this model [31]. In each prediction model, the relative importance of
independent variables for predicting geosmin concentration was evaluated using minimum
description length (MDL), which measures the ability of an attribute to compress data [32].
The MDL values were rescaled to range from 0 to 100 to compare the relative importance
of each environmental factor. Importance values provided by the algorithm were averaged
after 10 repetitions. The prediction models were run in the R computing environment
(https://cran.r-project.org/ (accessed on 8 July 2021)) with packages earth [33], rpart [34],
and CORElearn [35] for the MARS, CART, and RF models, respectively.

To remove the effect of unit differences [36], all of the independent variables were
normalized to the standard deviation of each variable using Formula (1) after natural log
(ln (x + 1)) transformation.

(x − avg)/stdev, (1)

where x is a response variable, avg is the average of a response variable, and stdev is the
standard deviation of a response variable. Before analyzing the data, all the outlier and
extreme values by sampling error were deleted using the boxplot method [37].

3. Results
3.1. Relations between Geosmin and Phytoplankton Abundance and Environmental Variables

Species richness and abundance of phytoplankton communities showed clear seasonal
dynamics at the three different depths of each lake (except in winter, when data could
not be collected due to freezing conditions) (Figure 3). Species richness and abundance
of phytoplankton communities were highest at all depths between August and October,
and especially in the surface layer during most of the sampling period. Meanwhile, the
abundance of phytoplankton communities was the highest in the surface layer of Paldang
lake in August 2015 (21,624 cells/mL). The changes of species richness and abundance of
phytoplankton communities in Uiam Lake was a significant positive correlation among
three layers except for the species richness in the middle and bottom layer (r > 0.50, p < 0.05),
whereas Cheongpyeong Lake significantly correlates with species richness only between
the surface and bottom layers (r = 0.70, p < 0.05).

https://cran.r-project.org/


Int. J. Environ. Res. Public Health 2021, 18, 10303 6 of 13

Figure 3. Temporal dynamics of the species richness and abundance of phytoplankton communities
in three lakes—Uiam (a,d), Cheongpyeong (b,e), and Paldang (c,f)—from May 2014 to December 2015.
Gray bars indicate data loss/missing data due to freezing conditions or missing survey.

Geosmin concentration showed a similar pattern to that of phytoplankton commu-
nities, and was higher in summer (June to October) than other periods (Figure 4). In
particular, the concentration of geosmin in Paldang Lake exhibited very high values of
394 ng/L and 80 ng/L, respectively, in August and July 2014, but all the rest showed a
concentration below 40 ng/L. Meanwhile, the monthly average geosmin concentration
was highest in the upper layer (18 ng/L) among three different depths, and the concentra-
tion decreased toward the bottom layer (7 ng/L). The changes of geosmin concentrations
showed a significant positive correlation among three layers in Cheongpyeong Lake and
Paldang Lake (r > 0.64, p < 0.05), and positively correlated between middle and bottom
layer in Uiam Lake (r = 0.92, p < 0.05).

Figure 4. Temporal variation of geosmin at three different water depths in three lakes—(a) Uiam,
(b) Cheongpyeong, (c) Paldang lake—from May 2014 to December 2015. Gray bar indicates data
loss/missing due to freezing conditions or missing survey.
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We used Spearman’s rank correlation to evaluate the relationship of geosmin concen-
tration with phytoplankton abundance and environmental variables (Figure 5). Geosmin
concentration in the surface layer of the total lake (sum of the three lakes) was positively
correlated with the abundance of Cyanophyceae (r = 0.44, p < 0.05) and Chlorophyceae
(r = 0.32, p < 0.05), while the abundance of Bacillariophyceae (r = 0.39, p < 0.05), Dino-
phyceae (r = 0.34, p < 0.05), Chlorophyceae (r = 0.30, p < 0.05), and total phytoplankton
(r = 0.42, p < 0.05) showed a positive correlation with geosmin concentration in the bottom
layers of total lake (sum of the three lakes). Meanwhile, geosmin concentration was neg-
atively correlated with the DO of the surface (r = −0.79, p < 0.05) and middle (r = −0.76,
p < 0.05) layers in Paldang, and positively correlated with the water temperature in the
surface layer of all lakes (Uiam lake r = 0.54, Cheongpyeong lake r = 0.59, Paldang lake
r = 0.82, p < 0.05).

Figure 5. Correlation between geosmin and phytoplankton abundance and environmental variables.
The color gradient (from −1 to 1) indicates Spearman’s correlation coefficients. The darker red indi-
cates a higher positive correlation (p < 0.05), and darker blue indicates a higher negative correlation
(p < 0.05). The numbers in parenthesis indicate the number of sampling sizes. Abbreviation of each
variable indicated in Table 2. SU: surface layer, MI: middle layer, BO: bottom layer, and Total lake:
pooled sample in each layer from three lakes.

3.2. Prediction of Geosmin Concentration

To predict the geosmin concentration categories, we used three different SDMs—MARS,
CART, and RF—according to environmental variables and phytoplankton abundance
(Table 4). The RF model performed best in terms of both environmental variables and
phytoplankton abundance (AUC > 0.910, accuracy > 0.680); in particular, the prediction
of the category with the highest geosmin concentration with environmental variables
showed the highest predictive power (AUC: 0.969, accuracy: 0.872). The prediction of the
category with the highest geosmin concentration was more predictable in all three SDMs
than the prediction of four categories. Meanwhile, MARS exhibited the worst predictive
performance in the prediction of four categories (AUC: 0.623, accuracy: 0.447) and the
prediction of highest geosmin concentration (AUC: 0.780, accuracy: 0.745) when only
phytoplankton abundance data were used.
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Table 4. Comparison of the predictive performance of three different models with different combi-
nations of independent variables (environmental variables and phytoplankton abundance). CART:
classification and regression tree, MARS: multivariate adaptive regression splines, and RF: random
forest. Categories (A–D) of geosmin concentration are given in Table 3.

Dataset Model
Environmental

Variables
Phytoplankton

Abundance

AUC Accuracy AUC Accuracy

Four categories (A–D)
MARS 0.724 0.553 0.623 0.447
CART 0.761 0.617 0.713 0.574

RF 0.974 0.809 0.934 0.681

Category with highest
geosmin concentration (D)

MARS 0.904 0.809 0.780 0.745
CART 0.790 0.830 0.816 0.787

RF 0.969 0.872 0.914 0.851

The RF model, which had the highest predictive power with environmental variables
and phytoplankton abundance data among the three SDMs, was applied to the three
different water layers (Table 5). All three different layers were well predicted by RF models
using environmental variables and phytoplankton abundance (prediction accuracy > 0.610).

Table 5. Prediction accuracy of geosmin concentration in three different water layers using random
forest model. Categories (A–D) of geosmin concentration are given in Table 3.

Dataset Layer
Environmental

Variables
Phytoplankton

Abundance

AUC Accuracy AUC Accuracy

Four categories (A–D)
Surface 0.974 0.809 0.934 0.681
Middle 0.976 0.766 0.923 0.745
Bottom 0.981 0.787 0.937 0.617

Category with highest
geosmin concentration (D)

Surface 0.969 0.872 0.914 0.851
Middle 0.967 0.851 0.906 0.787
Bottom 0.981 0.830 0.920 0.830

The sensitivity analysis was conducted to evaluate the contribution of environmental
variables and phytoplankton abundance in predicting the geosmin concentration categories
using the MDL values in the RF model (Figures 6 and 7). The relative importance of
environmental variables and phytoplankton abundance was different for each layer. The
abundance of Cyanophyceae exhibited relatively higher importance in its contribution to
the prediction of the four categories in all three layers, particularly so in the surface layer
(Figure 6). Among environmental variables, temperature was the most important variable
for the prediction of the four categories in the surface layer, whereas chlorophyll and pH
were the most influential variables for the prediction of the four categories in the middle
and bottom layers, respectively. Meanwhile, abundance of Bacillariophyceae was the most
influential variable for the prediction of the four categories in the middle layer, and total
abundance showed relatively higher importance in the bottom layer.
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Figure 6. Relative importance (%) of environmental variables (a–c) and phytoplankton abundance
(d–f) in predicting the four categories (A–D) of geosmin concentration in three different depths.
Surface layer (a,d), Middle layer (b,e), and Bottom layer (c,f). Abbreviation of each variable indicated
in Table 2.

Figure 7. Relative importance (%) of environmental variables (a–c) and phytoplankton abundance
(d–f) in predicting category with highest geosmin concentration (D) in three different depths. Surface
layer (a,d), Middle layer (b,e), and, Bottom layer (c,f). Abbreviation of each variable indicated in
Table 2.

In addition, when only the category with highest geosmin concentration was pre-
dicted, a similar pattern as that for the prediction of the four categories was observed.
Cyanophyceae was the most influential variable in the surface and middle layers (Figure 7).
In the bottom layer, total phytoplankton abundance showed relatively high importance.
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Among environmental variables, temperature was relatively important in the surface and
bottom layers, whereas DO was the most influential variable in the bottom layer (Figure 7).

4. Discussion

In the process of proliferation, some algae produce various types of toxin materials
and metabolites that cause earthy/moldy taste and odor such as geosmin and MIB [4,8]. Al-
though they are not toxic at concentrations that can occur in water and fish and neither has
been associated with serious health effects, they can cause tap water to smell and taste un-
pleasant [7]. In fact, Ömür-Özbek and Dietrich [38] reported that taste-and-odor problems
became an issue after surface waters were used as drinking water sources in many places
such as Europe, the Americas, and Japan [39,40]. Taste-and-odor metabolites cannot be re-
moved by conventional water treatment operations such as coagulation and sedimentation.
Thus, advanced water treatment processes like granular activated carbon (GAC) or ozone,
which incur high financial costs, are used to remove these compounds [5,6,8]. Therefore,
taste-and-odor compounds have been the subject of major interest in water management
of water supply sources [3]. In this study, we analyzed the change in geosmin concentra-
tion at three different depths in the North-Han River watershed and its relationship with
environmental variables and phytoplankton abundances using three different SDMs.

Geosmin concentration in the North-Han River watershed from May 2014 to
December 2015 was categorized into four groups based on the boxplot method (Table 3),
and the concentration of geosmin in group D, which shows the highest concentration, was
found to be in the range of 10 ng/L or more. Taste-and-odor compounds such as geosmin
can be detected by human noses at 5–10 ng/L, although this varies from individual to
individual [41]. Accordingly, the drinking water quality standard in Japan has set the
acceptable concentration of geosmin at 10 ng/L or less [42], whereas Korea manages its
geosmin concentration below 20 ng/L [14].

Of the SDMs, each modeling approach used in the analysis of ecological data has its
strengths and weaknesses, and seemingly only small differences exist in the accuracies of
the models [28,43]. In this study, multiple criteria, such as accuracy and AUC, were applied
to solve these problems and to select the most suitable model for predicting geosmin
concentration categories. Indeed, the predictive performances of the three SDMs were
different (Table 4). Among the three SDMs in this study, the RF model showed the highest
prediction power for the geosmin categories in terms of both environmental variables
and phytoplankton abundance. In particular, the AUC value of the RF model at all layers
showed above 0.9 (Table 5), indicating that it was an excellent model according to Swets [31].
Similarly, Harris and Graham [2] reported that the RF model was the best-suited model
for the prediction of geosmin concentration under 20 ng/L. As a prediction model, RF is a
powerful tool for the analysis of ecological data due several advantages it possesses, such
as high classification accuracy, a novel method of determining variable importance, and
the ability to model complex interactions among predictor variables [44,45].

Cyanobacteria blooms mainly cause abnormal growth of phytoplankton, but can
seriously affect drinking water supply due to cyanobacteria metabolites such as toxins and
taste substances [2]. In our results, geosmin concentrations were shown to be high dur-
ing the summer, when phytoplankton abundance increased due to cyanobacteria blooms
(Figures 4 and 5). Generally, Anabaena spp., major blue-green algae, are the most repre-
sentative species producing geosmin worldwide [46]. In particular, cyanobacteria such as
Anabaena, Aphanizomenon, Oscillatoria, and Microcystis are the main group of microorgan-
isms that are responsible for the earthy-musty odor in drinking water, and are mostly found
as surface scum and benthic mat in eutrophic waters [47–50]. In particular, according to
previous studies [51,52], A. circinalis had proliferated and had been observed in the form of
scum in the surface layer of Paldang Lake after July 2014; consequently, the concentration
of geosmin had rapidly increased. After August 2014, however, the geosmin concentration
had sharply decreased due to the dilution effect caused by the confluence of upstream and
seasonal rain, combined with the flushing effect caused by the opening of the dam [53,54].
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Meanwhile, temporal changes in both the phytoplankton community and geosmin
concentration according to depth were different for each lake (Figures 3 and 4). The
change in geosmin concentration has been shown to be positively related to the amount
of A. spiroides [55]. This was reflected in our study, in that the relative importance of
Cyanophyceae abundance was highest in the RF model for predicting the categories of
geosmin concentration (Figures 6 and 7). The relative importance of temperature was also
the highest among the environmental factors in the surface layer of the lake in this study
(Figures 6 and 7), because the decrease of water temperature had the greatest effect on the
reduction of A. spiroides. The dominant period of Cyanophyceae can be determined by
the trophic state and water temperature of the lakes, and low water temperature in winter
is a major contributor to the extinction of Cyanophyceae [56–58]. Furthermore, turbidity,
which was relatively high in terms of importance in the bottom layer, exhibited such high
importance due to its relationship with the light environment for algae growth [4]. These
depth-variable environmental variables are likely to be the key factors driving changes in
the composition of the phytoplankton community [59].

5. Conclusions

In this study, the RF method demonstrated the best predictive power for geosmin
concentration categories in the surface layer of lakes among the three machine-learning
techniques (MARS, CART, and RF). Therefore, in the RF model approach for the further
analysis (i.e., estimating the geosmin concentration categories with environmental vari-
ables and phytoplankton abundance at different lake depths), the model showed higher
prediction in case of only predicting the highest geosmin concentration category compared
with predicting four categories based on the boxplot. The sensitivity analysis of the model
showed that temperature and Cyanophyceae abundance were highly important in the
prediction of geosmin concentration categories in the surface layer, whereas total phyto-
plankton abundance was important for predicting geosmin concentration categories in the
bottom layer.
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