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Abstract
This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an

exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the for-

mulation of the energy equation. This model can predict the effects of thermal relaxation

time on the boundary layer. Similarity approach is utilized to normalize the governing bound-

ary layer equations. Local similarity solutions are achieved by shooting approach together

with fourth-fifth-order Runge-Kutta integration technique and Newton’s method. Our compu-

tations reveal that fluid temperature has inverse relationship with the thermal relaxation

time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A compar-

ison of Fourier’s law and the Cattaneo-Christov’s law is also presented. Present attempt

even in the case of Newtonian fluid is not yet available in the literature.

Introduction
Heat transfer phenomenon is involved in wide ranging industrial and engineering processes
including nuclear reactor cooling, space cooling, energy production, biomedical applications
such as magnetic drug targeting, heat conduction in tissues etc. and many others. Heat conduc-
tion law proposed by Fourier [1] has been the basis to predict the heat transfer behavior in
diverse practical situations. One of the major shortcomings of this model is that it produces a
parabolic energy equation which means that an initial disturbance would instantly affect the
system under consideration. To overcome this paradox, several modified versions of the Four-
ier’s law have been introduced (see for instance [2–4] and refs. therein). Cattaneo [5], in his
famous article, amended the Fourier’s law with the inclusion of relaxation time for heat flux
which is defined as the time required to establish steady heat conduction once a temperature
gradient is imposed. A material invariant formulation of the Cattaneo’s model was presented
by Christov [6] through the consideration of Oldroyd’s upper-convected derivative. Straughan
[7] used Cattaneo-Christov model to investigate thermal convection in an incompressible flow.
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Structural stability and uniqueness of the Cattaneo-Christov equations were discussed by Ciar-
letta and Straughan [8]. Han et. al. [9] used Cattaneo-Christov law to explore the slip flow and
heat transfer of viscoelastic fluid bounded by a stretching plate. Mustafa [10] computed both
analytical and numerical solutions for rotating flow of Maxwell fluid with the consideration of
Cattaneo-Christov heat flux.

The purpose of this paper is to study the boundary layer flow of upper-convected Maxwell
(UCM) fluid induced by exponentially stretching sheet using Cattaneo-Christov heat flux
model. Maxwell fluid is a popular viscoelastic fluid that can give the influence of fluid relaxa-
tion time. On the other hand, the study of viscous flow and heat transfer above stretching sur-
faces has been widely addressed research area due to its abundant applications in chemical and
manufacturing processes including polymer extrusion, continuous casting of metals, extrusion
of copper wires, die forging, paper production and several others. Several interesting boundary
layer flow problems involving the stretching surfaces have been addressed in recent years [11–
14]. The present work is motivated towards the influence of thermal relaxation time on the vis-
coelastic flow due to exponentially stretching surface. Some recent boundary layer flow prob-
lems involving Maxwell fluid can be found in refs. [15–27]. The equations are first simplified
through boundary layer approximations and then local similarity solution is obtained by a
numerical procedure. Emphasis is given to the role of relaxation time for heat flux on the
boundary layers.

Problem Formulation
Consider the steady two dimensional incompressible flow of upper-convected Maxwell (UCM)
fluid over an elastic sheet located at y = 0. The sheet is stretched in its own plane with the veloc-
ity UwðxÞ ¼ U0e

x=L. A variable surface temperature distribution of the form Tw ¼ T1 þ T0e
Ax=2L

[15] is considered in which T0 denotes the heating/cooling reference temperature. This is rea-
sonable since in extrusion process, the material properties and in particular the elasticity of the
extruded sheet is being pulled out by a constant force. Invoking the boundary layer approxima-
tions, the equations governing the two-dimensional flow and heat transfer of incompressible
UCM fluid are expressed as below:
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where u and v denote the velocity components along the x—and y—directions respectively, v is
the kinematic viscosity, λ1 is the fluid relaxation time, T is the local fluid temperature and q is
the heat flux which satisfies the following relationship [3].
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in which λ2 is the relaxation time for heat flux,V is the velocity vector and k is the thermal con-
ductivity. Eliminating q from Eqs (3) and (4), we obtain the following (see Christov [3] and Han
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et al. [6])
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where α (= k / ρcp) is the thermal diffusivity. The boundary conditions are imposed as below:

u ¼ UwðxÞ ¼ U0e
x=L; v ¼ 0; T ¼ TwðxÞ ¼ T1 þ T0e

Ax=2L at y ¼ 0;

u ! 0; T ! T1 as y ! 1:
ð6Þ

Using the following similarity transformations [15]
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ffiffiffiffiffiffiffiffi
U0

2nL

r
ex=2Ly; u ¼ U0e

x=Lf 0; v ¼ �
ffiffiffiffiffiffiffiffi
nU0

2L

r
ex=2Lðf þ Zf 0Þ; y ¼ T � T1

Tw � T1
; ð7Þ

Eq (1) is identically satisfied and Eqs (2)–(6) take the following forms
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where L1 ¼ l1U0e
x=L=L is the non-dimensional fluid relaxation time, L2 ¼ l2U0e

x=L=L is the
non-dimensional thermal relaxation time and Pr = v / α is the Prandtl number.

It is important to point out through the Eqs (8)–(10) that when Λ1 = 0, the case of Newto-
nian fluid is obtained. Further Λ2 = 0 corresponds to the case of classical Fourier’s heat conduc-
tion law.

1. Numerical method
We employ the shooting method with fifth order Runge-Kutta procedure for the numerical solu-
tion of the present problem. First of all we reduce the Eqs (8) and (9) and boundary conditions
(10) into a system of 1st order ODEs by making a substitution (x1, x2, x3, x4, x5) = (f, f’, f”, θ, θ’).
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This yields the following:
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Eq (11) subject to the initial conditions Eq (12) are integrated numerically using fifth-order
Runge Kutta method through suitable choice of the unknown initial conditions u1 = f”(0) and
u2 = θ’(0). The values of these conditions are then iteratively estimated through Newton’s
method such that solutions satisfy the boundary conditions at infinity (given in Eq (10)) with
the error less than 10−5.

2. Results and discussion
Physical interpretation to the behavior of the embedded parameters is assigned in this section.
In Table 1 we presented the numerical values of wall temperature gradient for different values
of embedded parameters. We notice that θ’(0) is directly proportional to the dimensionless
relaxation time Λ1. However it appears to decrease upon increasing the fluid relaxation time.
Notably, the value of θ’(0) is negative when A = −1.5 revealing the reverse flow near the wall
which will be explained later. There is a significant growth in the wall temperature gradient
θ’(0). When A is incremented. When A enlarges, this leads to larger a surface temperature and
hence larger heat transfer rate from the sheet.

Fig 1 illustrates the effects of non-dimensional fluid relaxation time on the hydrodynamic
boundary layer. An increase in Λ1 may be regarded as increase in fluid viscosity. This increased
viscosity opposes the fluid motion and consequently the velocity decreases. It is also clear that
velocity profiles are tilted towards the stretching wall when Λ1 is increased which means that
boundary layer thickness is an increasing function of Λ1. The obtained results are in accor-
dance with the results of Han et al. [6] in which linearly stretching sheet was considered.

Fig 2 portrays the behavior of Prandtl number Pr on the thermal boundary layer with and
without the consideration of thermal relaxation time. The behavior of Pr on θ is qualitatively
similar in both the cases i.e. the temperature and thermal boundary layer thickness both are
found to decrease upon increasing Pr. Notably the variation in temperature θ is similar in mag-
nitude in both Fourier and Cattaneo-Christov heat flux models. Physically, the Prandtl number
Pr is inversely related with the thermal diffusivity α. As Pr enlarges, one anticipates less thermal
effect to penetrate into the fluid. Due to this reason the thermal boundary layer becomes thin-
ner when Pr is increased. The thinner thermal boundary layer leads to a steeper temperature
profile indicating larger wall slope of temperature function.
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In Fig 3 the impact of temperature exponent A on the temperature profile is sketched. This
Figdepicts an interesting phenomenon of “Sparrow-Gregg hill (SGH)” for negative tempera-
ture exponent A in which temperature θ first approaches to a maximum and then exponen-
tially descends to zero when η is increased. This means that for some negative A, one expects
reverse heat flow in the vicinity of the sheet. This result is consistent with the findings of
Magyari and Keller [7] for the Fourier heat conduction law. With an increase in positive/

Table 1. Computational results of wall temperature gradient θ’(0) for different values of parameters.

Pr Λ1 Λ2 θ’(0)

A = −1.5 A = 0 A = 1.5

0.7 0.5 0 0.235311 -0.395729 -0.84128

0.5 0.378077 -0.431201 -1.14357

1 0.535309 -0.47125 -1.42710

0 0.5 0.440075 -0.474096 -1.22415

0.5 0.378077 -0.431201 -1.14357

1 0.334957 -0.402024 -1.08247

1 0.5 0 0.333441 -0.512599 -1.06969

0.5 0.532307 -0.570367 -1.46365

1 0.755562 -0.635466 -1.82605

0 0.5 0.608711 -0.622927 -1.55096

0.5 0.532307 -0.570367 -1.46365

1 0.480170 -0.532685 -1.39552

doi:10.1371/journal.pone.0137363.t001

Fig 1. Effect of Λ1 on f’(η).

doi:10.1371/journal.pone.0137363.g001
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Fig 2. Effect of Pr on θ(η).

doi:10.1371/journal.pone.0137363.g002

Fig 3. Effect of A on θ(η).

doi:10.1371/journal.pone.0137363.g003
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negative temperature exponent parameter A, we observe a sharp growth in wall slope of tem-
perature function.

Fig 4 displays the influence of Λ1 on thermal boundary layer. Stronger viscous force associ-
ated with the larger Λ1 resists the flow and enhances the temperature. This leads to the conclu-
sion that temperature in viscoelastic fluid is greater than the viscous fluid. In Fig 5 the effect of
non-dimensional thermal relaxation time Λ2. on the temperature distribution is sketched. We
observe that temperature θ has inverse relationship with the thermal relaxation time. We also
notice that temperature θ approaches the free stream condition at shorter distances above the
sheet for bigger Λ2. Notably, the variation in temperature θ with thermal relaxation time is of
similar magnitude in Newtonian and Maxwell fluids.

Fig 6 presents the wall temperature gradient as a function of relaxation time Λ2 at different
values of Λ1. θ’(0) linearly increases with an increment in Λ2 whereas it appears to decrease
when Λ1 is increased. Fig 7 plots θ’(0) against the Prandtl number with the variations in Λ1 and
Λ2. This Fig is complementing the numerical results of θ’(0) given in Table 1. The profiles of
θ’(0) are nearly a straight line revealing that heat transfer rate grows linearly when Pr is aug-
mented. We observe that θ’(0) approaches to zero for vanishing Prandtl number.

3. Concluding remarks
Cattaneo-Christov heat flux model is used to describe the heat transfer in viscoelastic flow
induced by an exponentially stretching sheet. The major points of this study may be summa-
rized as under:

1. Hydrodynamic boundary layer is thinner in viscoelastic fluid when compared with the vis-
cous fluid.

Fig 4. Effect of Λ1 on θ(η).

doi:10.1371/journal.pone.0137363.g004
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Fig 5. Effect of Λ2 on θ(η).

doi:10.1371/journal.pone.0137363.g005

Fig 6. Effect of Λ1 and Λ2 on–θ’(0).

doi:10.1371/journal.pone.0137363.g006
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2. Temperature and thermal boundary layer thickness are decreasing functions of relaxation
time Λ2.

3. Interesting Sparrow-Gregg Hills (SGH) for the temperature distribution exist for negative
temperature exponent A.

4. The behaviors of parameters in Cattaneo-Christov model are qualitatively similar to those
in Fourier’s heat conduction law.

5. The present consideration for the Newtonian fluid case can be recovered by choosing
Λ1 = 0.
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