
© The Author(s) 2018. Published by Oxford University Press. Page 1 of 12
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2018, 1–12

doi: 10.1093/database/bay097
Original article

Original article

Document triage for identifying protein–protein

interactions affected by mutations: a neural

network ensemble approach

Ling Luo, Zhihao Yang*, Hongfei Lin and Jian Wang

College of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China

*Corresponding author: Tel: 86-0411-84706009-3926; Fax: 86-0411-84671713; Email: yangzh@dlut.edu.cn

Citation details: Luo,L., Yang,Z., Lin,H. et al. Document triage for identifying protein–protein interactions affected by
mutations: a neural network ensemble approach. Database (2018) Vol. 2018: article ID bay097; doi:10.1093/database/bay097

Received 2 February 2018; Revised 19 August 2018; Accepted 21 August 2018

Abstract

The precision medicine (PM) initiative promises to identify individualized treatment

depending on a patients’ genetic profile and their related responses. In order to help

health professionals and researchers in the PM endeavor, BioCreative VI organized a PM

Track to mine protein–protein interactions (PPI) affected by genetic mutations from the

biomedical literature. In this paper, we present a neural network ensemble approach to

identify relevant articles describing PPI affected by mutations. In this approach, several

neural network models are used for document triage, and the ensemble performs better

than any individual model. In the official runs, our best submission achieves an F-score

of 69.04% in the BioCreative VI PM document triage task. After post-challenge analysis,

to address the problem of the limited size of training set, a PPI pre-trained module is

incorporated into our approach to further improve the performance. Finally, our best

ensemble method achieves an F-score of 71.04% on the test set.

Database URL: https://github.com/lingluodlut/BioCreativeVI-PM-Track

Introduction

The precision medicine (PM) initiative promises to identify
individualized treatment depending on a patients’ genetic
profile and their related responses. In order to help health
professionals and researchers in the PM endeavor, one goal
is to leverage the knowledge available in the scientific pub-
lished literature and extract clinically useful information
that links genes, mutations and diseases to specialized treat-
ments (1). Proteins and their interactions are the building
blocks of metabolic and signaling pathways regulating cel-
lular homeostasis (2). Therefore, understanding how allelic

variation and genetic background influence the function-
ality of these pathways is crucial for predicting disease
phenotypes and personalized therapeutical approaches.

Despite previous studies in protein–protein interaction
(PPI) (3, 4) and mutation extraction (5), no one has inves-
tigated how to combine these efforts in order to help
assessing and curating the clinical significance of genetic
variants, an essential step toward PM. Thus, the PM task in
BioCreative VI focuses on identifying and extracting from
the biomedical literature PPIs affected by genetic mutations
(PPIm) (6). This challenge consists of two subtasks. The

http://creativecommons.org/licenses/by/4.0/
https://academic.oup.com/
https://github.com/lingluodlut/BioCreativeVI-PM-Track

Page 2 of 12 Database, Vol. 2018, Article ID bay097

first subtask is document triage that focuses on identifying
relevant PubMed citations describing PPIm. The second
subtask is relation extraction. Participants in this task will
be expected to build automated methods that are capable of
extracting experimentally verified PPIm. For the challenge,
we participated in the first subtask (document triage).

Automatic document triage is a fundamental step for
text mining and has received much attention. In the pre-
vious works, the state-of-the-art traditional machine learn-
ing methods [such as support vector machine (7), Naive
Bayes (8) and maximum entropy (9)] depend on effective
feature engineering, which is still a labor-intensive and skill-
dependent task. Recently, deep learning methods, which
are representation learning methods that compose simple
but non-linear modules to obtain multiple levels of rep-
resentation (10), have become prevalent in the machine
learning research community. For the document triage task,
several neural network-based deep learning methods [e.g.
convolutional neural network (CNN) (11), recurrent neural
network (RNN) (12) and combination of them (13)] have
been proposed and exhibit promising results. Furthermore,
above-mentioned methods have also been used to classify
the biomedical literature, e.g. classifying PPI articles (14, 15)
and prioritizing Comparative Toxicogenomics Database-
relevant articles (16, 17). Compared with the traditional
machine learning methods, the key advantage of deep learn-
ing methods is that these layers of features are not designed
by human engineers, and therefore, the least feature engi-
neering is needed. However, these deep learning methods
generally require a large collection of manually labeled
examples while creating one is time consuming and expen-
sive, especially in the biomedical domain.

In this paper, we propose a neural network ensemble
approach for the BioCreative VI PM document triage task.
In this approach, five individual neural network models
[i.e. LSTM (long-short term memory), CNN, LSTM-CNN,
recurrent CNN (RCNN) and hierarchical LSTM (HieL-
STM)] are used for document triage. To address the prob-
lem of the limited size of training set, a PPI pre-trained mod-
ule with the existing labeled PPI corpora is incorporated
into each neural network model. Afterwards, the ensem-
ble model is built by combining five models’ results with
three different alternatives (i.e. majority voting, weighted
majority voting and a logistic regression classification) to
further improve the performance. In addition, we explored
the effect of additional features [such as part of speech
(POS) and named entity recognition (NER) features] for the
neural network models in the PM document triage task.
Experimental results show that our approach achieves a
better performance (an F-score of 71.04%) than the method
of the team ranking first (an F-score of 69.06%) in the
BioCreative VI PM task.

In the rest of this paper, first, our approach is described in
detail, including the features, five individual neural network
models, the PPI pre-trained module and the methods of
model ensemble. Then, the experimental results are pre-
sented and discussed. Finally, some concluding remarks and
directions for further research are offered.

Materials and methods

In this section, our approach for the BioCreative VI PM
document triage is described. The processing flow of our
method is shown in Figure 1. Firstly, some preprocessing
steps including text sentence splitting, tokenization and
lowercasing are performed. Secondly, a word embedding
is learned with large amounts of unlabeled data with the
fastText tool (18). Moreover, the additional features (i.e.
POS and NER embeddings) are introduced into the model.
Then with the embeddings as input, five neural network
models are trained by the PM training set. Additionally,
a PPI pre-trained module with the existing labeled PPI
corpora is incorporated into each neural network model.
Finally, the results from these models are combined by
three different alternatives (i.e. majority voting, weighted
majority voting and a logistic regression classification). The
process is described in details in the following sections.

Text preprocessing

First, article titles and abstracts are extracted from the data
set. The extracted text is then split into the sentences, tok-
enized using the Stanford CoreNLP tool (19) and converted
to lowercase. Note that the tokenization of the Stanford
CoreNLP tool does not split text into segments at the
dash (−) character. However, in the biomedical articles,
two protein entity names are always combined into one
token using dash character to express their interaction,
such as ‘Utp6–Utp21 interaction’, ‘CheA–CheY binding
interactions’ and ‘CHD7–CHD8’. To recognize the proteins
in the PPI, we broke the text into separated segments at
the dash character (e.g. ‘Utp6–Utp21’ is split into three
tokens: ‘Utp6’, ‘–’ and ‘Utp21’). The processing can slightly
improve the performance of our model.

Features

Distributed word embedding is currently widely used in the
field of natural language processing (NLP), especially based
on the deep learning methods (20). The word embedding
is used as the basic feature in our models. Moreover, to
investigate the effects of traditional features (such as POS
and named NER features), these features are also added
into the models as additional features. All embeddings are

Database, Vol. 2018, Article ID bay097 Page 3 of 12

Figure 1. The processing flow of our method.

parameters of the neural network model, and they can be
optimized when the model is trained. Details of each of
features are presented as follows.

Word embedding

Word embedding, also known as distributed word rep-
resentation, can capture both the semantic and syntactic
information of words from a large unlabeled corpus and
has attracted considerable attention from many researchers
(20). Compared with the bag-of-words representation,
word embedding is low dimensional and dense. In recent
years, several tools, such as word2vec (21) and fastText
(18), have been widely used in the field of NLP. To achieve
a high-quality word embedding, we downloaded a total
of 1 322 107 MEDLINE abstracts from the PubMed
website with the query string ‘protein’ as the unlabeled
data. Then the data and the PPI and PM corpora (a total
of 25 134 abstracts and the details are described in the
section ‘Experimental data sets and settings’) provided in
the related BioCreative document triage tasks were used to
train word embedding by the fastText tool as pre-trained
word embedding.

Additional features

Because of the complexity of the natural language and the
specialty of the biomedical domain, some linguistic and
domain resource features are often employed in traditional
machine learning methods for the biomedical document
triage (15, 22). We also explored the effect of the additional
features (i.e. POS and NER features) for our neural network
models. The POS information of each token was generated
by the Stanford CoreNLP tool (19). In addition, NER tags
(such as gene, chemical, disease and mutation entities)
generated by the PubTator tagger (23) were also used as
a feature. The NER feature of each token was encoded

in BIO (Begin, Inside, Outside) tagging scheme, such as
‘CHD8\B-gene interacts\O with\O CHD7\B-gene,\O a\O
protein\O which\O is\O mutated\O in\O CHARGE\
B-disease syndrome\I-disease.\O’. In our experiments, the
dimensions of the POS and NER embeddings are both five
and they were initialized randomly.

Description of the models

In this section, we describe in details the five individual
neural network models (i.e. LSTM, CNN, LSTM-CNN,
RCNN and HieLSTM) used in our ensemble and a PPI
pre-trained module. The architectures of all models are
illustrated in Figure 2.

LSTM

An RNN model, namely LSTM (24), is designed by incorpo-
rating a memory cell with the gating mechanism to enable
learning of long-range dependencies. Given a document, the
model predicts the label probability of the document. The
architecture of the LSTM model is illustrated in Figure 2A.
Firstly, through feature processing the document is repre-
sented as a sequence of vectors X = [x1,. . .,xt,. . .,xn] where
n is the length of the document. Next, the vectors are
given as input to an LSTM layer. For the t-th word in the
document, the LSTM layer takes as input xt and produces
the hidden state ht based on the following formulas:

it = σ
(
W(i)xt + U(i)ht−1 + b(i)

)
(1)

ft = σ
(
W(f)xt + U(f)ht−1 + b(f)

)
(2)

ct = ft ∗ ct−1 + it ∗ tanh
(
W(c)xt + U(c)ht−1 + b(c)

)
(3)

ot = σ
(
W(o)xt + U(o)ht−1 + V(o)ct + b(o)

)
(4)

ht = ot ∗ tanh (ct) (5)

Page 4 of 12 Database, Vol. 2018, Article ID bay097

Figure 2. The neural network architectures of our models. (A) The LSTM model. (B) The CNN model. (C) The LSTM-CNN model. (D) The RCNN model.

(E) The HieLSTM model. (F) The PPI pre-trained module.

where σ is the element-wise sigmoid function and ∗ is the
element-wise product. {W(.), U(.), V(.)} is the weight matrix
set. {b(.)} is the bias vector set.

Then, the sequence of vectors h1:n output from all LSTM
cells at each time step are combined into a single vector
D by a max pooling layer. The vector could be considered
as the semantic representation of the document. At last, a
classification layer with softmax function is used on this
document vector to compute the predictive probabilities of
the document types.

CNN

In the CNN model, a convolution operation is applied
to produce local features. The architecture of the CNN
model is illustrated in Figure 2B. Given an input sequence
X = [x1,. . .,xt,. . .,xn], a fixed size k window approach is
used to capture each element’s context information. Then,
a matrix operation, as shown in formula (6), is applied to
each successive window in the sequence:

C = ReLU
(
W(con) • Xt:t+k−1 + b(con)

)
(6)

where W(con) is the transformation matrix that is the same
across all windows in the document and b(con) is the bias
vector. ReLU is the rectified linear unit function (25), and C
is the convolutional layer result.

In our CNN model, two consecutive small convolu-
tional layers (window size, k = 3) are stacked to extract

convolutional features. For the document, one convolution
operation extracts n-gram features over tokens where n is
window size 3. Two consecutive convolutional layers can be
in fact seen as how to best combine these different 3-gram
features. Afterwards, a max pooling layer is used to extract
global features from the convolutional layer. The next layer
is a fully connected layer to an output layer with a softmax
function.

LSTM-CNN

In general, CNN is capable of extracting local informa-
tion, and LSTM can capture long-range dependencies. So
we combined the two neural network architectures into a
model, namely LSTM-CNN. The architecture of the LSTM-
CNN model is illustrated in Figure 2C. The intuition behind
this model is that the LSTM layer can firstly capture the
global context for each token and then the CNN layer can
further extracts n-gram features over the tokens. The model
mainly consists of two parts: a bidirectional LSTM (BiL-
STM) layer and a convolution layer. Firstly, a document is
represented as a sequence of embeddings. Next, the embed-
dings are given as input to a BiLSTM layer. In the BiLSTM
layer, a forward LSTM computes a representation of the
sequence from left to right, and another backward LSTM
computes a representation of the same sequence in reverse.
These two distinct networks use different parameters, and
then the representation of a word is obtained by concatenat-
ing its left and right context representations. Then, a tanh

Database, Vol. 2018, Article ID bay097 Page 5 of 12

(i.e. the hyperbolic tangent) function on top of the BiLSTM
is used to learn higher features. Next, the features are fed
into a convolution layer as shown in formula (6), and a
max pooling layer is used to extract global features from
the convolution layer. Afterwards, the features are fed into
a fully connected layer. Finally, a classification layer with a
softmax function is used to predict the probabilities of the
document types.

RCNN

Similar with the LSTM-CNN model, Lai et al. (13) pro-
posed an RCNN for document classification. In the model,
the recurrent structure is applied to capture the contextual
information as much as possible when learning word repre-
sentations of documents, which may introduce considerably
less noise compared to a conventional window-based neural
network. Moreover, the model can reserve a large range of
the word ordering when learning representations of articles.

The architecture of our RCNN model is illustrated in
Figure 2D. In our implementation of the RCNN model, a
BiLSTM is used to capture the contexts. We define c(l)

t as the
left context of t-th word and c(r)

t as the right context of t-th
word in the document. The vector xt is the word embedding
of the t-th word. Then the left context c(l)

t and the right
context c(r)

t are calculated using the following formulas:

c(l)
t = LSTMl

(
xt−1

)
(7)

c(r)
t = LSTMr

(
xt+1

)
(8)

where LSTMl is a forward LSTM computes a represen-
tation of the sequence from left to right and LSTMr is
another backward LSTM computes a representation of the
sequence in reverse. Then, the final representation of word
wt =

[
c(l)

t ; xt; c(r)
t

]
is the concatenation of the left context

vector c(l)
t , the word embedding xt and the right context

vector c(r)
t . After the representation of word wt is obtained,

a tanh activation function is applied and the result yt is
fed into the next layer. Finally, a max pooling layer is also
employed that automatically judges which features in the
document play key roles, and a softmax function is used to
classify documents.

HieLSTM

Recently, Yang et al. (26) proposed a hierarchical attention
network (HAN) for document classification. The model
is designed to capture two basic insights about document
structure. First, since documents have a hierarchical struc-
ture (words form sentences, sentences form a document),
a document representation is constructed by first building
representations of sentences and then those are aggregated

into a document representation. Second, it is observed that
different words and sentences in a document are differen-
tially informative.

Similar with HAN model, we developed a HieLSTM
model that has a hierarchical structure of documents using
LSTMs. The architecture of our HieLSTM model is illus-
trated in Figure 2E. The hierarchical model mainly con-
sists of a word encoder and a sentence encoder. For the
word encoder, it is the same as LSTM model descripted
above. Given a sentence, firstly through feature process-
ing the sentence is represented as a sequence of vectors
W = [w1,. . .,wt,. . .,wl]. Next, the vectors are given as input
to an LSTM layer. Then the sequence of vectors output
from all LSTM cells at each time step are combined into
a single vector st by the max pooling layer. The vector
could be considered as the semantic representation of the
sentence. For the sentence encoder, a document vector can
be obtained in a similar way of the word encoder. After a
sequence of sentence vectors S = [s1,. . .,st,. . .,sm] is obtained
by the word encoder, a BiLSTM layer is used to encode the
sentences. Then the output of the BiLSTM layer at the last
time step is used as the whole document representation to
classify the document into different types.

PPI pre-trained module

In practice, the performances of deep learning models often
depend on the labeled training corpus scale. The model
often achieves the better performance on the large corpus
than the small one. In this challenge, the training set pro-
vided by the organizers of the BioCreative VI PM document
triage task is not large and consists of 4082 annotated
PubMed articles (title and abstract) (27). However, auto-
matic PPI article classification has been addressed in the
previous BioCreative challenges [i.e. BioCreative II (Protein
Interaction Article Subtask1) (28), BioCreative II.5 (Article
Classification Task) (29) and BioCreative III (Article Clas-
sification Task-BioCreative III) (4)]. In these challenges, the
document triage task is a binary classification (true/false) of
articles whether containing PPI annotations. These corpora
consist of a total of 19 642 annotated PubMed articles (title
and abstract). Although PPI described in these articles is
not always PPIm, our intuition is that these PPI corpora
are helpful to improve the model performance since the
PPIm-relevant article should be the PPI-relevant article
and the PPI-irrelevant article should be the PPIm-irrelevant
article. With this assumption, we propose a PPI pre-trained
module to improve the performances of our neural net-
works models.

For the PPI pre-trained module, an attention-based BiL-
STM model is built to identify PPI-relevant articles. The
architecture of the PPI pre-trained module is illustrated in

Page 6 of 12 Database, Vol. 2018, Article ID bay097

Figure 3. The architecture of our model with the PPI pre-trained mod-

ule.

Figure 2F. Concretely, given a document, through feature
processing the document is represented as a sequence of
vectors. Next, the vectors are given as input to a BiLSTM
layer. Then the sequence of vectors h1:n output from all
LSTM cells at each time step are combined into a single
vector v by an attention layer using the following formulas:

ui = tanh
(
W(a)hi + b(a)

)
(9)

αi = exp(ui)∑
i exp(ui)

(10)

v =
∑

i

αihi (11)

Afterwards, the features are fed into two consecutive fully
connected layers. Finally, a classification layer with a soft-
max function is used to identify PPI-relevant articles.

After the attention-based BiLSTM model is trained on
the BioCreative PPI corpora, the model removing the last
classification layer is used as the PPI pre-trained module
to be incorporated into each individual neural network
model (denoted as the PPIm model) described above. As
shown in Figure 3, given a document, we define DPPIm as
the representation vector of the document learned by the
PPIm model and DPPI as the representation vector of the
document learned by the PPI pre-trained module. Then, the
final representation of the document D = [DPPIm; DPPI] is
the concatenation of the two vectors.

Model ensemble

In our experiments, three alternatives (majority voting,
weighted majority voting and a logistic regression classi-
fication) are investigated to combine the results of the five
individual models into an ensemble.

For the weighted voting method, we define the decision
of the t-th classifier as dt,j ∈ {0, 1}. The ensemble result then
chooses class J that receives the highest number of votes:

T∑
t=1

wtdt,J = C
max
j=1

T∑
t=1

wtdt,j (12)

where wt is the weight of classifier t,
∑

wt = 1 and dt,j is
1 or 0 depending on whether classifier t chooses j or not.
We found the best setting of weights via brute force grid
search, quantizing the coefficient values in the interval [0,
1] at increments of 0.1. The search was evaluated on our
development set to avoid overfitting.

When the weights of all classifiers are set to 1 in the
formula (12), the weighted majority voting becomes the
majority voting. The ensemble result chooses class J that
receives the highest number of votes. In our experiments,
if the positive class and the negative class receive the same
number of votes, the ensemble result chooses the negative
class.

For a logistic regression classification method, the
ensemble result is produced using a logistic regression
model to estimate the conditional probability that an
instance xi belongs to a specific class yi as follows:

P
(
yi|xi

) =
exp

(
∑
j

θjxij

)

1 + exp

(
∑
j

θjxij

) (13)

where xij is the representation of j-th feature of i-th instance
and θ is the parameter. If there are N individual models,
2∗N features are produced (two features per model) with
the P-values of the negative and positive classes predicted
by the respective model. Then, the features as inputs are
fed into the logistic regression classifier to obtain the final
result.

Results and discussion

In this section, first the experimental data sets and settings
are introduced, and then the experimental results and dis-
cussion are presented.

Experimental data sets and settings

The organizers of the BioCreative VI PM document
triage task provided a corpus (DataPPIm) including the
training and test sets. The training set consists of 4082
annotated PubMed articles (title and abstract) as rele-
vant or not relevant, and the test set consists of 1427
articles (http://www.biocreative.org/tasks/biocreative-vi/
track-4/). In our experiments, we randomly selected the
10% of the training set as the development set to tune the
hyperparameters and the models were evaluated on the test
set (performances of individual models on our development
set are also provided in Supplementary Material). For the
PPI pre-trained module, we collected gold standard PPI
corpora from previous BioCreative challenges, including

http://www.biocreative.org/tasks/biocreative-vi/track-4/

Database, Vol. 2018, Article ID bay097 Page 7 of 12

Table 1. Statistics of various corpora used in our experiments

Corpus Name Positive Negative Total

BioCreative VI PM training set 1729 2353 4028
BioCreative VI PM test set 704 723 1427
BioCreative II PPI corpus 3874 2298 6172
BioCreative II.5 PPI corpus 124 1066 1190
BioCreative III PPI corpus 2732 9548 12 280
PubMed unlabeled data 1 322 107

BioCreative II, II.5 and III. Then all PPI corpora were
combined into a PPI data set (DataPPI). Then, the 10% of
the PPI data set was used as the development set to tune the
hyperparameters, and the remaining data were used to train
the PPI pre-trained model. Additionally, a total of 1 322 107
MEDLINE abstracts were downloaded from the PubMed
website with the query string ‘protein’ as the unlabeled
data. Then all the data were used to train word embedding
by the fastText tool as pre-trained word embedding. Table 1
describes the statistics of various corpora. The document
triage performance was measured with precision, recall
and F-score (F1), which were calculated by the official
evaluation scripts (https://github.com/ncbi-nlp/BC6PM).

The parameters of our models in the word embed-
ding are initialized with 50-dimensional pre-trained word
embeddings (the performances of the higher dimensional
word embeddings and the word embeddings trained by
wor2vec tool were also tested, but no better performance
was achieved. And the results are provided in Supplemen-
tary Material: ‘Performance of word embeddings’) and
other parameters are initialized at random from a uni-
form distribution. Then, all parameters of models [except
the CNN model using Adadelta (30)] are optimized using
RMSprop (31) to minimize the categorical cross-entropy
loss. Moreover, we tuned the hyperparameters on the devel-
opment set by random search (32). The main hyperparame-
ters of our models can be found in Supplementary Material:
‘Hyperparameter settings’. The number of epoch is chosen
by early stopping strategy (33) on the development set. Our
models were implemented using open-source deep learning
library keras (https://keras.io) and trained on a NVIDIA
Tesla K40 GPU.

Performance of individual models and the effect

of the PPI pre-trained module

Table 2 reports the results of individual models on the
DataPPIm test set, including the preliminary models and
the models with the PPI pre-trained module described in
the section ‘Description of the models’ (all models only
used word embedding as inputs). For the models with
the PPI pre-trained module, two variants are designed.

‘Model + PPIpre(Static)’: the model with the static PPI
pre-trained module. After the PPI pre-trained module are
trained on the DataPPI, all the parameters of the module are
kept static and only the other parameters of the model are
tuned on the DataPPIm. ‘Model + PPIpre(Tuned)’: the model
with the tuned PPI pre-trained module. Same as above but
all the parameters of the PPI pre-trained module are fine-
tuned on the DataPPIm. Moreover, the McNemar’s signifi-
cance test (34) was applied to compare the performance of
the different models. And the results are provided in Sup-
plementary Material: ‘Statistical analysis of significance’.

The results show that, among the preliminary models,
RCNN achieves the highest F-score of 68.79%, while CNN
and LSTM-CNN perform slightly better than LSTM and
HieLSTM. Additionally, we found that the combination of
CNN and LSTM (i.e. RCNN and LSTM-CNN) performs
better than any individual of them. When the PPI pre-
trained module is added into the preliminary models, all
models achieve performance improvements. The LSTM-
CNN with PPIpre(Tuned) achieves the highest F-score of
70.28%. It demonstrates that the prior PPI information
can help boost the performance of the model for identi-
fying PPIm. Compared with PPIpre(Static), higher F-scores
(average F-score improvements of 1.62 vs 0.85% over
the preliminary ones across various models) are achieved
when PPIpre(Tuned) is added. The possible reason is that
PPIpre(Static) can learn the PPI task-specific information,
while PPIpre(Tune) can learn the PPI and PPIm task-shared
feature by fine-tuning on the DataPPIm training set.

To further explore the effectiveness of our proposed PPI
pre-trained module, the LSTM model is chosen as a base-
line, and the results of several comparisons are provided in
Table 3. As can be seen from Table 3, only PPIpre (i.e. the
model proposed in the section ‘PPI pre-trained module’)
achieves a high recall and a low precision, which shows
the prior PPI information can find both most of PPIm-
relevant articles and other noisy articles. When the DataPPI

and DataPPIm training sets are simply combined to train
the LSTM model, the model performance is not improved
(67.68 vs 67.98% in F-score), while the LSTM (Pre-trained)
model achieves the improvement (0.91% in F-score). The
reason is that the size of training data is expanded but the

https://github.com/ncbi-nlp/BC6PM
https://keras.io

Page 8 of 12 Database, Vol. 2018, Article ID bay097

Table 2. Performance of individual models

Model Precision Recall F1

LSTM 58.50 81.11 67.98
LSTM+PPIpre(Static) 58.42 85.35 69.36
LSTM+PPIpre(Tuned) 58.52 86.36 69.76
CNN 59.29 80.68 68.35
CNN + PPIpre(Static) 55.57 90.63 68.90
CNN + PPIpre(Tuned) 59.35 86.08 70.26
LSTM-CNN 57.24 85.37 68.53
LSTM-CNN + PPIpre(Static) 57.17 88.35 69.42
LSTM-CNN + PPIpre(Tuned) 62.09 80.97 70.28
RCNN 61.36 78.27 68.79
RCNN+PPIpre(Static) 58.14 86.22 69.45
RCNN+PPIpre(Tuned) 57.38 88.92 69.75
HieLSTM 57.74 82.10 67.80
HieLSTM+PPIpre(Static) 56.55 87.07 68.57
HieLSTM+PPIpre(Tuned) 57.69 87.36 69.49

Note: The boldfaced numerals are the highest values in the corresponding column.

Table 3. The effect of the PPI pre-trained module

Model Precision Recall F1

LSTM 58.50 81.11 67.98
LSTM+PPIpre(Static) 58.42 85.35 69.36
LSTM+PPIpre(Tuned) 58.52 86.36 69.76
LSTM(Combined Data) 63.51 72.44 67.68
LSTM(Pre-trained) 63.80 74.86 68.89
Only PPIpre 50.76 95.03 66.17

Note: ‘LSTM(Combined Data)’ denotes the DataPPI and DataPPIm training set are directly combined into a data set to train the LSTM model. ‘LSTM(Pre-trained)’ denotes the LSTM model
is first pre-trained on the DataPPI, then the parameters of the model are fine-tuned on the DataPPIm training set. ‘Only PPIpre’ denotes the result of only the PPI pre-trained module on the
DataPPIm test set.

noise is introduced into the data set as well (e.g. the positive
instance in the DataPPI may be the negative one in the
DataPPIm) when the two training sets are simply combined.
Unlike the LSTM(Combined Data), LSTM(Pre-trained) is
first pre-trained on the DataPPI, then the parameters of the
model are fine-tuned on the DataPPIm training set. There-
fore, the above-mentioned noise is not introduced. When
our PPI pre-trained module is added into the model, the F-
score is improved significantly [improvements of 1.78 and
1.38% with PPIpre(Tuned) and PPIpre(Static), respectively].
Compared with the LSTM(Pre-trained), our LSTM+PPIpre

methods can learn PPI and PPIm features by two modules
(i.e. the PPIm model and the PPI pre-trained module), while
the LSTM(Pre-trained) mixed all PPI and PPIm features
into one module. In summary, the DataPPI is helpful for the
PPIm document triage, and our PPI pre-trained method is
effective.

The effect of additional features on performance

We also investigated the effect of two additional features
(i.e. POS and NER embeddings mentioned in the section

‘Additional features’) on the performances of the prelim-
inary models and the models with PPIpre(Tuned). In our
experiments, the concatenation of the word embedding and
additional features as input is fed into the models. More-
over, Table 4 shows the results of these features’ different
combinations.

For the preliminary models, the results are somewhat
inconsistent when these additional features are added into
the models. When only POS feature is added, LSTM and
RCNN achieve a slight performance improvement (average
improvements of 0.61% in F-score across various models),
while CNN, LSTM-CNN and HieLSTM perform even
worse (an average decrease of 0.59% in F-score). When
only NER feature is added, all models except LSTM-
CNN achieve a performance improvement (an average
improvement of 0.61% in F-score). When both POS
and NER features are added, LSTM-CNN, RCNN and
HieLSTM achieve a slight performance improvement (an
average improvement of 0.65% in F-score), while LSTM
and CNN perform worse (the F-score decreases by an
average of 0.75%). Among these models, LSTM-CNN
with POS and NER features achieves the highest F-score of

Database, Vol. 2018, Article ID bay097 Page 9 of 12

Table 4. The effect of additional features on performance

Preliminary model Model + PPI pre (Tuned)

Model Precision Recall F1 � Precision Recall F1 �

LSTM 58.50 81.11 67.98 58.52 86.36 69.76
+ POS 60.06 80.97 68.97 +0.99 57.95 89.06 70.21 +0.45
+ NER 59.15 83.10 69.11 +1.13 57.67 89.20 70.05 +0.29
+POS + NER 56.94 83.95 67.85 −0.13 58.37 87.22 69.93∗ +0.17

CNN 59.29 80.68 68.35 59.35 86.08 70.26
+ POS 56.07 85.94 67.86 −0.49 57.25 87.50 69.21 −1.05
+ NER 55.72 88.49 68.39 +0.04 59.86 82.39 69.34 −0.92
+NER + POS 58.23 78.84 66.99 −1.36 59.40 84.38 69.72 −0.54

LSTM-CNN 57.24 85.37 68.53 62.09 80.97 70.28
+ POS 57.00 83.24 67.67 −0.86 61.22 80.97 69.72 −0.56
+ NER 59.29 80.26 68.20 −0.33 59.17 83.38 69.22 −1.06
+POS + NER 58.38 86.08 69.58 +1.05 56.98 89.91 69.75 −0.63

RCNN 61.36 78.27 68.79 57.38 88.92 69.75
+ POS 56.85 87.78 69.01 +0.22 57.24 85.94 68.71 −1.04
+ NER 58.54 85.23 69.40 +0.61 58.75 84.38 69.27 −0.48
+POS + NER 56.58 88.49 69.03 +0.24 59.65 82.53 69.25 −0.50

HieLSTM 57.74 82.10 67.80 57.69 87.36 69.49
+ POS 55.34 86.08 67.37 −0.43 56.88 88.64 69.29 −0.20
+ NER 57.06 85.51 68.45 +0.65 56.85 86.08 68.47 −1.02
+POS + NER 55.82 88.49 68.46 +0.66 59.21 84.94 69.78 +0.29

Note: 69.93∗ in second to last column is the high F-score achieved by the model with both POS and NER features.

69.58%. In summary, the information of POS and NER can
help boost the performance of some models and, especially,
the information of NER is more effective. However, noise
may be introduced into the models by the errors of the POS
and NER tools that leads to the decrease in performances
of some models.

For the models with PPIpre(Tuned), when the additional
features are added, most models (i.e. CNN, LSTM-CNN
and RCNN) perform worse. The plausible reason is that our
PPI pre-trained module is pre-trained without additional
features and the addition of these features makes the model
confusion. Moreover, the errors of the POS and NER tools
introduce noise into the models.

Performance of different model combinations

As described in the section ‘Model ensemble’, three alter-
natives (i.e. majority voting, weighted majority voting and
a logistic regression classification) are used to combine the
model results into an ensemble. To select the best ensemble,
we investigated the effect of these ensemble methods on the
performances of the models with PPIpre(Tuned). Moreover,
the effect of the voted assembly of the preliminary models
without the PPI module has been investigated during the
challenge (35). Note that the results in this paper and those
presented in the paper (35) are slightly different since the
organizers updated the test set after the challenge.

As can be seen from Table 5, the ensemble of five mod-
els without additional features using a logistic regression
classification achieves the highest F-score of 71.04% and
outperforms any individual model [an improvement of
0.76% in F-score than the best single model (70.28%, bold
in the penultimate column of Table 4)]. When the results
of five models with additional features are combined, the
best ensemble achieves a slight improvement (0.22% in F-
score) than the best single model with additional features
(69.93%, bold in the penultimate column of Table 4). The
reason is that, according to Table 4, since the additional
features do not contribute to the performance improvement
of five models, their ensemble could not be expected to
output a much better result. Finally, when the results of
these 10 models (5 models with additional features and 5
models without the features) are combined, the ensemble
result has no further improvement.

Performance comparison with other related

works

To further demonstrate the effectiveness of our approach,
the performance comparison between the top three results
(6) (as noted in previous section, these results and those pre-
sented in paper (6) are slightly different since the organizers
updated the test set after the challenge.) in the BioCreative
VI PM document triage task and ours is shown in Table 6.

Page 10 of 12 Database, Vol. 2018, Article ID bay097

Table 5. Performance of different model combinations

Model Method Precision Recall F1

Models +PPIpre(Tuned)

Voting 58.57 86.36 69.80
Weighted voting 59.23 87.07 70.50
Logistic regression 62.94 81.53 71.04

Models +PPIpre(Tuned) + Addfea

Voting 58.99 86.22 70.05
Weighted voting 59.23 85.65 70.03
Logistic regression 61.89 80.97 70.15

All

Voting 59.02 85.94 69.98
Weighted voting 57.65 88.35 69.77
Logistic regression 63.51 78.13 70.06

Note: Models+PPIpre(Tuned) denotes five models with PPIpre(Tuned) using the word embedding as input; Models+PPIpre(Tuned) + Addfea denotes five models with PPIpre(Tuned) using
the concatenation of word embedding and additional features as input; All denotes all the 10 models.

Table 6. Performance comparison with other related works

Method Precision Recall F1

Team 418 62.89 76.56 69.06
Team 421 60.73 79.97 69.04
Team 374 57.00 87.36 68.98
Ours (single model) 62.09 80.97 70.28
Ours (ensemble) 62.94 81.53 71.04

Table 7. The confusion matrix of our best ensemble on the

DataPPIm test set

Actual Predicted

True False

True 574 130
False 338 385

Note that the result of team 421 is the result of the ensemble
of our five preliminary models using weighted majority
voting (i.e. our best submission for the BioCreative VI
challenge). The results show that our best single model
with a PPI pre-trained module obtains a higher F-score
(70.28% in F-score) than the best result submitted in the
task (69.06% in F-score). Moreover, our best ensemble
achieves the highest F-score of 71.04%.

Error analysis

In addition, we manually analyzed the cases in which our
best ensemble fails to classify the PPIm articles correctly.
The predictions confusion matrix is shown in Table 7,
which shows that false positives account for most of the
classification error.

When analyzing incorrectly classified PPIm cases, we
observed that many articles containing strong PPIm indi-
cators are falsely identified as positive instances. These

articles have similar expressions with positives but are
actually negatives. For example, the article with PMID
(PubMed ID): 16865698 contains some strong positive
keywords (such as ‘protein’, ‘mutant’ and ‘interact’) but
does not describe PPI influenced by genetic mutations. Our
model misclassified the article as a positive one since it
contains these strong positive keywords. For false negatives,
we found that such strong positive keywords are missing
or the positive indicators do not appear in the training set
while it is difficult to accurately classify PPIm when the
expression is rare (even none) in the training set, although
the article describes PPIm. For example, the article with
PMID: 17412961 describes PPI influenced by genetic muta-
tions, but the common positive keywords (such as ‘mutant’
and ‘mutagenesis’) are replaced with other words (such
as ‘spliceosomal’ and ‘aberrant’) that rarely appear in the
training set. Our model misclassified such positive instances
as the negative ones.

To sum up, the main reason for the errors may be that
our model only depends on lexical features that may not
contain sufficient information to solve semantic ambiguities
in some cases. Even though automatic learning of high-level
features is one advantage of deep learning methods, it is
difficult for them to automatically learn the deep linguistic
knowledge from the raw articles. Therefore, incorporating
the deep linguistic analysis (e.g. syntactic and semantic anal-
ysis) into our method might further enhance our model’s
performance. It will be explored in our future work.

Conclusions

In this paper, we present a neural network ensemble
approach to automatically identify PPIm-relevant articles.
In this approach, a new PPI pre-trained module is intro-
duced to utilize the exiting PPI data. In addition, the effect
of additional features for the neural network models in the
PM document triage task is explored. The experimental
results show that (i) our PPI pre-trained module is proved

Database, Vol. 2018, Article ID bay097 Page 11 of 12

to be effective to improve the performances of the deep
learning models on the limited labeled PPIm data set and (ii)
our ensemble of the neural network models using a logistic
regression classification can achieve a further improvement.
Owing to these advantages, our ensemble achieves the state-
of-the-art performance on the BioCreative VI PM corpus
(71.04% in F-score).

Our ensemble approach exhibits promising results for
the PPIm document triage task. However, the additional
features cannot achieve an improvement for our ensemble
approach in our experiments. In the future work, we will
focus on the effective methods of incorporating the addi-
tional features to improve the performance of our ensemble
and deep linguistic analysis (e.g. syntactic and semantic
analysis) will be explored in our future work.

Funding

National Key Research and Development Program of China (No.
2016YFC0901902, funding body: Ministry of Science and Technol-
ogy of China); Natural Science Foundation of China (No. 61272373,
61572102 and 61572098, funding body: National Natural Science
Foundation of China); Trans-Century Training Program Foundation
for the Talents by the Ministry of Education of China (NCET-13-
0084, funding body: Ministry of Education of China).

Conflict of interest. None declared.

References

1. Singhal,A., Simmons,M. and Lu,Z. (2016) Text mining
genotype-phenotype relationships from biomedical literature
for database curation and precision medicine. PLoS Comput.
Biol., 12, e1005017.

2. Chatr-Aryamontri,A., Oughtred,R., Boucher,L. et al. (2017) The
BioGRID interaction database: 2017 update. Nucleic Acids Res.,
45, D369–D379.

3. Kim,S., Islamaj Doğan,R., Chatr-Aryamontri,A. et al. (2016)
BioCreative V BioC track overview: collaborative biocurator
assistant task for BioGRID. Database (Oxford), 2016, 1–13.

4. Krallinger,M., Vazquez,M., Leitner,F. et al. (2011) The protein–
protein interaction tasks of BioCreative III: classification/rank-
ing of articles and linking bio-ontology concepts to full text.
BMC Bioinformatics, 12, S3.

5. Wei,C.H., Harris,B.R., Kao,H.Y. et al. (2013) tmVar: a text
mining approach for extracting sequence variants in biomedical
literature. Bioinformatics, 29, 1433–1439.

6. Doğan,R.I., Kim,S., Chatr-Aryamontri,A., et al. (2017) Overview
of the BioCreative VI Precision Medicine Track. In: Proceedings
of the BioCreativeVIWorkshop. Bethesda, MD, USA, pp. 83–87.

7. Joachims,T. (1998) Text categorization with support vector
machines: learning with many relevant features. In: European
Conference on Machine Learning. Berlin, Heidelberg: Springer,
pp. 137–142.

8. Kim,S.-B., Han,K.-S., Rim,H.-C. et al. (2006) Some effective
techniques for naive bayes text classification. IEEE Trans.
Knowl. Data Eng., 18, 1457–1466.

9. Nigam,K., Lafferty,J., McCallum,A. (1999) Using maximum
entropy for text classification. In: IJCAI-99 Workshop on
Machine Learning for Information Filtering. Stockholm, Swe-
den. vol. 1, pp. 61–67.

10. LeCun,Y., Bengio,Y. and Hinton,G. (2015) Deep learning.
Nature, 521, 436–444.

11. Kim,Y. (2014) Convolutional neural networks for sentence clas-
sification. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha,
Qatar, pp. 1746–1751.

12. Yang,Z., Yang,D., Dyer,C., et al. (2016) Hierarchical atten-
tion networks for document classification. In: Proceedings of
the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, San Diego, CA, USA, pp. 1480–1489.

13. Lai,S., Xu,L., Liu,K. et al. (2015) Recurrent convolutional neural
networks for text classification. AAAI, 333, 2267–2273.

14. Ekbal,A., Saha,S. and Bhattacharyya,P. (2016) A deep learn-
ing architecture for protein–protein interaction article identi-
fication. Pattern Recognition (ICPR), 2016 23rd International
Conference on IEEE, 3128–3133.

15. Kim,S. and Wilbur,W.J. (2011) Classifying protein–protein inter-
action articles using word and syntactic features. BMC Bioinfor-
matics, 12, S9.

16. Kim,S., Kim,W., Wei,C.-H. et al. (2012) Prioritizing PubMed
articles for the Comparative Toxicogenomic Database utilizing
semantic information. Database (Oxford), 2012, Article ID
bas042, pp. 1–7.

17. Vishnyakova,D., Pasche,E. and Ruch,P. (2012) Using binary clas-
sification to prioritize and curate articles for the Comparative
Toxicogenomics Database. Database (Oxford), 2012, 1–9.

18. Bojanowski,P., Grave,E., Joulin,A., et al. (2016) Enriching word
vectors with subword information. Transactions of the Associa-
tion for Computational Linguistics, vol. 5, 135–146.

19. Manning,C., Surdeanu,M., Bauer,J., et al. (2014) The Stanford
CoreNLP natural language processing toolkit. In: Proceed-
ings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations. Baltimore, USA,
pp. 55–60.

20. Lai,S., Liu,K., Xu,L., et al. (2016) How to generate a good word
embedding? IEEE Intelli. Syst., 31, pp. 5–14.

21. Mikolov,T., Sutskever,I., Chen,K., et al. (2013) Distributed rep-
resentations of words and phrases and their compositional-
ity. In: Advances in Neural Information Processing Systems.
Lake Tahoe, Nevada, USA, pp. 3111–3119.

22. Lan,M., Tan,C.L. and Su,J. (2009) Feature generation and
representations for protein–protein interaction classification.
J. Biomed. Inform., 42, 866–872.

23. Wei,C.H., Kao,H.Y. and Lu,Z. (2013) PubTator: a web-based
text mining tool for assisting biocuration. Nucleic Acids Res.,
41, W518–W522.

24. Hochreiter,S. and Schmidhuber,J. (1997) Long short-term mem-
ory. Neural Comput., 9, 1735–1780.

25. Glorot,X., Bordes,A., Bengio,Y. (2011) Deep sparse rectifier
neural networks. In: Proceedings of artificial intelligence and
statistics (AISTATS). Fort Lauderdale, FL, USA, pp. 315–323.

26. Yang,Z., Yang,D., Dyer,C, et al. (2016) Hierarchical attention
networks for documentation classification. In: HLTNAACL,
pp. 1480–1489.

Page 12 of 12 Database, Vol. 2018, Article ID bay097

27. Doğan,R.I., Chatr-aryamontri,A., Wei,C.-H., et al. (2017) The
BioCreative VI Precision Medicine Track corpus. In: Proceed-
ings of the BioCreative VI Workshop. Bethesda, MD, USA,
pp. 88–93.

28. Krallinger,M., Leitner,F., Rodriguez-Penagos,C. et al. (2008)
Overview of the protein–protein interaction annotation extrac-
tion task of BioCreative II. Genome Biol., 9, S4.

29. Leitner,F., Mardis,S.A., Krallinger,M. et al. (2010) An overview
of BioCreative II.5. IEEE/ACM Trans. Comput. Biol. Bioin-
form., 7, 385–399.

30. Zeiler,M.D. (2012) ADADELTA: an adaptive learning rate
method, arXiv preprint arXiv:1212.5701.

31. Tieleman,T. and Hinton,G. (2012) Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks for Machine Learning 4 2,
26–31.

32. Bergstra,J. and Bengio,Y. (2012) Random search for hyper-
parameter optimization. J. Mach. Learn. Res., 13, 281–305.

33. Prechelt,L. (1998) Automatic early stopping using cross valida-
tion: quantifying the criteria. Neural Netw., 11, 761–767.

34. Dietterich,T.G. (1998) Approximate statistical tests for compar-
ing supervised classification learning algorithms. Neural Com-
put., 10, 1895–1923.

35. Luo,L., Yang,Z., Lin,H., et al. (2017) DUTIR at the BioCre-
ative VI Precision Medicine Track: document triage for
identifying PPIs affected by genetic mutations. In: Proceed-
ings of the BioCreative VI Workshop. Bethesda, MD, USA,
pp. 120–123.

https://dx.doi.org/arXiv \ignorespaces preprint \ignorespaces arXiv:1212.5701

	Document triage for identifying protein--protein interactions affected by mutations: a neural network ensemble approach
	Introduction
	Materials and methods
	Text preprocessing
	Features
	Word embedding
	Additional features
	Description of the models
	LSTM
	CNN
	LSTM-CNN
	RCNN
	HieLSTM

	PPI pre-trained module
	Model ensemble
	Results and discussion
	Experimental data sets and settings
	Performance of individual models and the effect of the PPI pre-trained module
	The effect of additional features on performance
	Performance of different model combinations
	Performance comparison with other related works
	Error analysis

	Conclusions

