
Active Sites in a Heterogeneous Organometallic Catalyst for the
Polymerization of Ethylene
Damien B. Culver, Rick W. Dorn, Amrit Venkatesh, Jittima Meeprasert, Aaron J. Rossini,
Evgeny A. Pidko, Andrew S. Lipton, Graham R. Lief,* and Matthew P. Conley*

Cite This: ACS Cent. Sci. 2021, 7, 1225−1231 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Heterogeneous derivatives of catalysts discovered by
Ziegler and Natta are important for the industrial production of
polyolefin plastics. However, the interaction between precatalysts,
alkylaluminum activators, and oxide supports to form catalytically
active materials is poorly understood. This is in contrast to
homogeneous or model heterogeneous catalysts that contain resolved
molecular structures that relate to activity and selectivity in
polymerization reactions. This study describes the reactivity of
triisobutylaluminum with high surface area aluminum oxide and a
zirconocene precatalyst. Triisobutylaluminum reacts with the
zirconocene precatalyst to form hydrides and passivates −OH sites
on the alumina surface. The combination of passivated alumina and
zirconium hydrides formed in this mixture generates ion pairs that
polymerize ethylene.

■ INTRODUCTION

Ziegler and co-workers discovered that mixtures of triethyla-
luminum and zirconium acetylacetonate polymerize ethylene
to high-density polyethylene under mild conditions in 1953,
and two years later Natta reported that TiCl4 and Et2AlCl
mixtures polymerize propylene to stereoregular products
(Figure 1a).1,2 Derivatives from these initial discoveries
evolved to heterogeneous catalysts used industrially that
account for a majority of the polypropylene (PP, ∼50 millions
tons) and polyethylene (PE, ∼100 million tons) produced per
year. A key question related to the initial Ziegler−Natta
solution catalysts was how the metal and the activator interact
to form active organometallic species for polymerization
reactions. This question becomes more difficult to address
considering that most Ziegler−Natta catalysts are significantly
more active when supported on MgCl2.

3 Reactions of
Cp2TiCl2 (Cp = cyclopentadienyl) with Et2AlCl provided
preliminary evidence for the formation of ionized organo-
metallic active species in polymerization reactions.4 Cp2TiCl2/
Et2AlCl mixtures are not particularly active in polymerization,
but the serendipitous discovery of methaluminoxane (MAO)
activators resulted in soluble metallocene catalysts that have
activities approaching those of heterogeneous Ziegler−Natta
catalysts.5 The isolation of reactive Cp2ZrMe(THF)+ estab-
lished that cationic organometallic zirconium species are active
in polymerization reactions,6 and the design of efficient
activators to form cationic organometallics led to general
strategies that allowed for explicit molecular design of the

active site in polymerization reactions (Figure 1b).7,8 These
activators play important roles in generating catalysts that
regulate molecular weight properties of the polymer and in
copolymerization reactions in solution.9−11

Strategies to form cationic organometallic species on
heterogeneous supports, the more important industrial class
of catalysts for polymerization reactions, usually involve
formulations containing a high surface area oxide, an excess
of alkylaluminum (or MAO), and a metallocene precatalyst
(Figure 1c).12,13 Complications arising from the low quantity
of active sites present in these catalysts prevent a detailed
structural understanding of the active site. However,
complementary studies of organometallics supported on
oxides, which are likely important in these heterogeneous
catalysts, arrived at similar conclusions as studies in solution.
Tetraalkyl zirconium complexes supported on silica have low
activity in polymerization reactions, but alumina supports
provide much higher activities.14,15 The origin of this support
effect was not clear until solid-state NMR studies showed that
Cp*2ThMe2 (Cp* = pentamethylcyclopentadienyl) reacts with
Al2O3 to form [Cp*2ThMe][Me-AlOx] ion pairs,16,17 which
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also occurs in reactions of organozirconium complexes
supported on Al2O3 or SiO2/Al2O3.

18 This model suggests
that preformed organometallics interact with an appropriate
oxide to form electrophilic ion pairs that are active in
polymerization reactions, a strategy employed by several
groups to understand these catalysts (Figure 1d).19−23 Though
compelling, these model systems differ significantly from
heterogeneous catalysts used for most industrial applications
because they are derived from precatalysts containing
preformed M−R groups and do not contain a large excess of
alkylaluminum required in commercial polymerization reac-
tions with metallocene chloride precatalysts.
This study describes the generation and characterization of

the catalytically active sites in a ternary 1,1′-dibutylzirconocene
dichloride (Cpb2ZrCl2, 1)/triisobutylaluminum (AliBu3)/
Al2O3 catalyst for the polymerization of ethylene (Figure
1d).24,25 This mixture is complex and results in a network of
reactions in solution and on the surface of Al2O3 to ultimately
form catalytically active [Cpb2Zr-H][H-AlOx] ion pairs on the
AliBu3-passivated Al2O3 surface. The formation of ion pairs
relates this catalytic mixture to the solution organometallic
catalysts and well-defined heterogeneous catalysts shown in
Figure 1.

■ RESULTS AND DISCUSSION

A mixture of 1, AliBu3, and Al2O3 at a Zr/Al molar ratio of 1:12
([Zr] = 150 μmol gAl2O3

−1) is very active in ethylene
polymerization (8.4 × 107 gPE molZr

−1 h−1) and produces a
modestly narrow distribution of high molecular weight PE (Mn
= 90.8 kg mol−1; Đ = Mw/Mn = 4.25). ICP-OES analysis of the
isolated solid catalyst after washing shows that only 0.65 μmol
of Zr gcat

−1 is present, indicating that most of the metallocene
does not adsorb to the alumina surface. Omitting 1, AliBu3, or

Al2O3 from the reaction mixture results in negligible
polymerization activity (see the Supporting Information).
AliBu3 and Al2O3 are expected to form a complex mixture of

hydrolyzed alkylaluminum species bound to the Al2O3
surface,26 some of which may activate 1 similar to MAO in
solution. The reaction of Al2O3 calcined at 600 °C (∼3 −OH
nm−2, 0.93 mmol −OH gAl2O3

−1) with excess AliBu3 in pentane

forms 0.86 mmol of isobutane gAl2O3

−1 indicating that most of
the −OH groups on alumina react with AliBu3. Isobutene (0.19
mmol gAl2O3

−1) and HAliBu2 also form in this reaction.
The 13C cross-polarization magic angle spinning NMR

(CPMAS) spectrum of AliBu3/Al2O3 contains signals at 26 and
18 ppm for the Al−iBu fragment (Figure S7). 1H−27Al dipolar
recoupled insensitive nuclei enhancement polarization transfer
(D-RINEPT) experiments recorded under fast MAS (νr = 50
kHz) show that 1H NMR signals from the Al−iBu fragment are
near Al(IV) and Al(VI) sites on the Al2O3 surface (see the
Supporting Information for details). This result is consistent
with a high coverage of Al−iBu groups on the Al2O3 surface.
DFT studies of a hydrated (110) Al2O3 surface containing 3
−OH nm−2 show exergonic adsorption and grafting of AliBu3
onto the surface to form tetrahedral (AlO)2Al

iBu(O-
(AlOx)2) shown in Figure 2a (see Supporting Information
for details). Though a distribution of tetrahedral (
AlO)2Al

iBu(O(AlOx)2) is likely present on the alumina
surface, the structure of these sites has little influence on
catalysis because 1 reacts with AliBu3/Al2O3 to form inactive
polymerization catalysts, showing that MAO-type sites are not
present on AliBu3/Al2O3.
AliBu3/Al2O3 is clearly not involved in the activation of 1 but

is undoubtedly relevant to formation of active sites in this
catalyst. Polymerization activity is recovered when AliBu3/

Figure 1. Evolution in the understanding of the Ziegler−Natta catalyst for olefin polymerization, showing key discoveries for homogeneous (top)
and heterogeneous (bottom) catalysts (a). Current strategy to activate metallocenes in solution (b). Current strategy used industrially to form
activated metallocenes on surfaces (c). Formation of well-defined sites on oxides with preformed organometallics, and the objective of this study to
determine the active site structure in a model industrial catalyst for polymerization of ethylene (d).
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Al2O3 is contacted with a mixture of 1 and AliBu3 (Zr/Al =
1:12). Removal of excess AliBu3 from the solid catalyst prior to
polymerization results in a catalyst that produces narrow
molecular weight distributions of polymer (Đ = 2.37; Figure
2a) close to the expected value characteristic of single-site
behavior (Đ = 2).
Under typical polymerization conditions, AliBu3 is present at

sufficient excess to fully saturate the Al2O3 surface and react
with 1. Indeed, the reaction of 1 with 12 equiv of AliBu3 in
deuterated methylcyclohexane (C7D14) at typical concentra-
tions for polymerization reactions forms a mixture of
isobutene, ClAliBu2, HAl

iBu2, Cp
b
2Zr(μ-H)3(Al

iBu2)(Al
iBu3)

(2), and Cpb2Zr(μ-H)3(Al
iBu2)3(μ-Cl)2 (3, Figure 2b). The

1H NMR spectrum of this mixture at −40 °C (2:3 ≈ 4:1)
contains Zr−H signals at −0.98, −1.32, and −1.72 ppm for 2
as well as the Zr−H signals for 3, which was previously
reported.27 2 can be independently generated by mixing
[CpbZrH2]2 (4) with equimolar AliBu3 and HAliBu2.
The formation of 2 involves Zr−Cl for Al−iBu exchange to

form ClAliBu2 and Zr−iBu intermediates that undergo β-H

elimination to form Zr−H species and isobutene. Reactions of
Zr−H with Al−Cl regenerate Zr−Cl and form HAliBu2 that is
needed to form 2 and 3. The large excess of AliBu3 facilitates
exhaustive exchange with the metallocene to ultimately form
Cpb2ZrH2, which is trapped by HAliBu3 and AliBu3 to form 2.
Figure 2a summarizes the polymerization activity of 2, 3, or

4 in the presence of AliBu3/Al2O3. 2 reacts with AliBu3/Al2O3
to form active polymerization catalysts with similar activities
and polymer properties as in situ catalysts, but 3 does not form
active polymerization catalysts when contacted with AliBu3/
Al2O3, showing that the alkylaluminum activator can
dramatically affect polymerization productivities. 4 also reacts
with AliBu3/Al2O3 to form an active polymerization catalyst
(1.2 × 107 g PE molZr

−1 h−1; Đ = 2.75). The slightly lower
activity of 4/AliBu3/Al2O3 is probably related to the higher Zr
loading in this material (7.6 μmol Zr gcat

−1), which is beneficial
for mechanistic studies. This collection of data indicates that
AliBu3 reacts with 1 to form 2, which is activated by AliBu3/
Al2O3 to form the ionized [Cpb2Zr-H][H-AlOx/Al

iBu3] shown
in Figure 2C.
[Cpb2Zr-H]

+ sites in 4/AliBu3/Al2O3 are expected to insert
vinyl halides and undergo fast β-halide elimination to form
unreactive [Cpb2Zr-X]

+.28,29 Quantification of the products in
this reaction correlates with the amount of zirconium sites
capable of olefin insertion. The reaction of 4-d2/Al

iBu3/Al2O3
(62% Zr−D) with excess cis-dichloroethylene forms cis/trans-
vinyl chloride-d1, vinyl chloride, isobutene, and a small amount
of ethylene (Figure 3a). An excerpt of the 1H NMR spectrum
of this reaction mixture is shown in Figure 3b. On the basis of
the 1H NMR peak integrals, 1.8 μmol g−1 of vinyl chloride-d1
form in this reaction, indicating that 23% of Zr-D+ present in
4-d2/Al

iBu3/Al2O3 are active in olefin insertion reactions; this
value is higher than suspected for heterogeneous polymer-
ization catalysts formed in the presence of alkylaluminum
activators but significantly lower than the active site counts for
cationic metallocenes in solution.30

The unlabeled products probably form by the successive
reactions of Zr−D+ with cis-dichloroethylene shown in Figure
3c. Following β-chloride elimination, the surface-bound Zr−
Cl+ (∼0.02 nm−2) is alkylated by a nearby Al−iBu (∼3 nm−2)
that regenerates a Zr−H+ and forms isobutene. Subsequent
reaction of Zr−H+ and cis-dichloroethylene results in the
formation of vinyl chloride and Zr−Cl+. This scenario is
consistent with the 1:1 ratio of isobutene: vinyl chloride-d0
obtained from the 1H NMR spectrum in Figure 3b.
Deuterium is an NMR-active quadrupolar isotope (spin I =

1). Solid-state 2H NMR spectra show characteristic broad
powder patterns that are a result of interactions between the
nuclear electric quadrupole moment, eQ, and the electric field
gradient (EFG) tensor V, eq 1. The line shape of a 2H MAS
NMR spectrum at the slow exchange limit is described by the
quadrupolar coupling constant (CQ, eq 2) and the asymmetry
parameter (η, eq 3). Terminal M−D are expected to have η =
0, bridging M−D−M that deviate from linearity is expected to
have η ≠ 0, and CQ is expected to increase as the effective
nuclear charge increases.31 Thus, 2H MAS NMR is capable of
distinguishing between a variety of possible Zr−D structures in
4-d2/Al

iBu3/Al2O3.

=V

V

V

V

0 0

0 0

0 0

11

22

33 (1)

Figure 2. Polymerization activity of (AlO)2Al
iBu(O(AlOx)2),

formed from the reaction of AliBu3 with Al2O3, with 1 or products
of the reaction of 1 and excess AliBu3 (a). The aluminum originating
from the AliBu3 is shown in red. Products formed in the reaction of 1
with excess AliBu3 and the independent synthesis of 2, the major
product in this reaction mixture (b). Generation of [CpbZr-H][H-
AlOx/Al

iBu3] that is consistent with polymerization activity data (c).
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Figure 4 shows 2H MAS NMR spectra for 4-d2, monomeric
(C5Me5)2ZrD2,

32−34 [(C5Me5)2ZrD][DB(C6F5)3],
35 and 4-d2/

AliBu3/Al2O3. The CQ and η values extracted from this data are
consistent with the expectations mentioned above. The 2H
MAS NMR spectrum of 4-d2 is shown in Figure 4a and
contains two sets of peaks assigned to the terminal Zr−D at 5.3
ppm with a CQ of 50 kHz and η = 0, and the bridging Zr−D−
Zr at −3.3 ppm with a CQ of 44 kHz and η = 0.3, close to
values reported for [Cp2ZrD2]2.

36 The magnitude of CQ for the
Zr−D in (C5Me5)2ZrD2 (CQ = 44; η = 0, Figure 4b) is similar
to 4-d2, indicating that neutral Zr−D are characterized by small
CQ values. The 2H MAS NMR spectrum of [(C5Me5)2Zr-
D][DB(C6F5)3], shown in Figure 4c, contains a signal for the
Zr−D+ at 9.3 ppm with a CQ of 111 kHz (η = 0) and a signal at
0.7 ppm (CQ = 105; η = 0) for the D−B(C6F5)3. Both
(C5Me5)2ZrD2 and [(C5Me5)2ZrD][DB(C6F5)3] also contain
a sharp signal with a narrow CQ ≈ 20 kHz for sp3 C−D bonds
that are under fast rotational exchange on the 2H NMR time
scale, indicating that some deuterium is incorporated into the
C5Me5 ligand.

37

The 2H MAS NMR spectrum of 4-d2/Al
iBu3/Al2O3 obtained

at 18.8 T at 15 kHz spinning and −20 °C is shown in Figure

4d. This spectrum contains signals at 2.0 and 7.5 ppm. The
signal at 2.0 ppm (CQ = 32 kHz, η= 0.2) is also present in
AliBu3/Al2O3 and is assigned to the natural abundance 2H
signal from AliBu3/Al2O3, but could also be a result of H/D
exchange between 4 and Al−iBu groups that occurs in the
synthesis of 4-d2/Al

iBu3/Al2O3. The signal at 7.5 ppm has CQ
of 129 kHz and η of 0.35 is suggestive of a bridging Zr−D+ site
and supports the formation of [Cpb2Zr−D][D−AlOx] as the
active species in 4-d2/Al

iBu3/Al2O3. However, the signal for
the [D−AlOx] site is not present in the spectrum in Figure 4d.
An expansion of the 2H MAS spectrum recorded at −20 °C
and −100 °C is shown in Figure 4e. The spectrum at −100 °C
contains a signal at 1.9 ppm for the surface AliBu3/Al2O3 (CQ =
30 kHz, η = 0.3), which is slightly broader than the signal

Figure 3. Reaction of 4-d2/Al
iBu3/Al2O3 with cis-dichloroethylene to

form reaction products (a). Excerpt of the 1H NMR spectrum from
4.6−5.4 ppm (b). The symbols above each signal in (b) correspond to
∼ = 13C satellite from cis-dichloroethylene; * = ethylene; $ = vinyl
chloride; + = trans-vinyl chloride-d1; # = cis-vinyl chloride-d1.
Proposed mechanism that accounts for formation of vinyl chloride-
d1 and vinyl chloride-d0 (c).

Figure 4. 2H MAS NMR spectrum of dimeric [Cpb2ZrD2]2 (a),
monomeric Cp*2ZrD2 (b), [Cp*ZrD][DB(C6F5)3] (c), and 4-d2/
AliBu3/Al2O3 recorded at −20 °C (d). Expansion of the 2H MAS
NMR spectrum from 45 to −40 ppm of 4-d2/Al

iBu3/Al2O3 recorded
at −20 °C (top) and −100 °C (e). Experimental spectra are shown in
black, and simulations are shown in red, blue, or orange. Zr−H/H−Al
exchange consistent with the 2H MAS NMR data (f).
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recorded at −20 °C. This spectrum also contains signals at 9.3
ppm (CQ = 150 kHz, η = 0), similar to the chemical shift of the
Zr−D+ in [(C5Me5)2Zr−D]+ and assigned to the terminal Zr−
D+ of the cationic [Cpb2Zr−D]+ fragment in 4-d2/Al

iBu3/
Al2O3, and 5.3 ppm (CQ = 100 kHz, η = 0.5) assigned to the
anionic [D−AlOx] fragment in 4-d2/Al

iBu3/Al2O3.
These results are consistent with the exchange process

shown in Figure 4f. At −20 °C, the 2H NMR signals for
[Cpb2Zr−D][D−AlOx] undergo site exchange that results in
average chemical shifts, reduced CQ, and perturbed η values
that depend on the motion these two sites, which accounts for
the observation of only one 2H NMR signal in 4-d2/Al

iBu3/
Al2O3 at −20 °C. Similar behavior was encountered in
metallocenium [MeB(C6F5)3] ion pairs,38 suggesting that the
[D−AlOx]

− anions are weakly coordinated to the zirconium
deuteride cation in 4-d2/Al

iBu3/Al2O3. At −100 °C, this
exchange process is slow on the 2H NMR time scale, and
individual signals for [Cpb2Zr−D][D−AlOx] in 4-d2/Al

iBu3/
Al2O3 are obtained. −100 °C is cold enough to slow the
exchange between the active sites in 4-d2/Al

iBu3/Al2O3 but not
cold enough to slow rotation in the sp3 C−D bonds in AliBu3/
Al2O3 (CQ ≈ 170 kHz). The CQ and η values for the [Cpb2Zr−
D]+ fragment in 4-d2/Al

iBu3/Al2O3 are in agreement with the
trends observed in the representative molecular zirconium
deuterides shown in Figure 4.
The bridging Zr−D−Al in 4-d2/Al

iBu3/Al2O3 is similar to
other cationic zirconium hydrides containing bridging Zr−H−
E (E = B(C6F5)3, HAlR2) in solution.39−41 In many cases,
displacement of the bridging hydride by ethylene is slow
relative to chain growth in olefin polymerization reactions in
solution.42−45 DFT studies of [Cp2ZrMe][MeAlOx], formed
from the reaction of Cp2ZrMe2 with fully dehydroxylated
alumina, showed that the metallocenium fragment is more
weakly coordinated to certain sites on the alumina surface than
a typical [MeB(C6F5)3] weakly coordinating anion.46 This
study, and the dynamics of 4-d2/Al

iBu3/Al2O3 from the 2H
MAS NMR data reported here, suggests that [D-AlOx]

− is also
bound more weakly to the [Cpb2Zr-D]

+ fragment than typical
bridging hydrides in solution and is consistent with the high
polymerization activity of 4/AliBu3/Al2O3.

■ CONCLUSION
The combination of 1, AliBu3, and Al2O3 results in active
catalysts for the polymerization of ethylene that approach
single-site behavior under appropriate conditions. Excess
AliBu3 is essential in this mixture to rapidly react with the
−OH sites on Al2O3 and to activate 1 to form 2.47 Both of
these reactions result in unexpected reaction products that play
critical interconnected roles that lead to the formation of active
sites in this catalyst. The distribution of (AlO)2Al

iBu(O-
(AlOx)2 present in AliBu3/Al2O3 are not capable of reacting
with 1 to form active sites. This result is surprising given the
well-known ability of partially hydrolyzed alkylaluminums to
activate metallocene precatalysts in solution.5 However, the
Al−iBu groups in AliBu3/Al2O3 are critical because they
prevent the reaction of −OH on Al2O3 with the zirconium
hydrides formed by the reaction of AliBu3 and 1. Passivation of
−OH groups on Al2O3 with Al

iBu3 allows 2 to react with Lewis
sites still present on the passivated Al2O3 surface48,49 and is
similar to the reactions of Cp*2ThMe2 with fully dehydroxy-
lated alumina reported over 35 years ago.17 The data presented
here connects a typical ternary heterogeneous catalyst
formulation relevant to industry to well-defined organo-

metallics supported on oxides and homogeneous metallocene
catalysts. This understanding gives a simple model to guide
catalyst formulations that may result in heterogeneous catalysts
for the synthesis of advanced polyolefin materials using a more
rational structure−property optimization strategy.
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