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More than 200 cases of lipoprotein glomerulopathy (LPG) have been reported since it was

first discovered 30 years ago. Although relatively rare, LPG is clinically an important cause

of nephrotic syndrome and end-stage renal disease. Mutations in the APOE gene are

the leading cause of LPG. APOE mutations are an important determinant of lipid profiles

and cardiovascular health in the population and can precipitate dysbetalipoproteinemia

and glomerulopathy. Apolipoprotein E-related glomerular disorders include APOE2

homozygote glomerulopathy and LPG with heterozygous APOE mutations. In recent

years, there has been a rapid increase in the number of LPG case reports and some

progress in research into the mechanism and animal models of LPG. We consequently

need to update recent epidemiological studies and the molecular mechanisms of LPG.

This endeavor may help us not only to diagnose and treat LPG in a more personized

manner but also to better understand the potential relationship between lipids and

the kidney.
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INTRODUCTION

Since it was first described in 1989 (1), lipoprotein glomerulopathy (LPG) (OMIM: 611771)
has been characterized as a rare glomerular disorder leading to nephrotic syndrome and/or
kidney failure (2). LPG is characterized clinically by proteinuria and elevated concentrations of
triglyceride-rich lipoproteins and their remnants, and histologically characterized by lamellated
lipoprotein thrombi in glomerular capillary lumina lacking foam cells. The familial occurrence
of LPG has been frequently recognized. LPG is primarily associated with heterozygous APOE
mutations in the low-density lipoprotein–receptor binding site or around it (3). As a “Mendelian
disease” caused by a “single gene” with dominant inherited disease of incomplete penetrance, it
also provides a disease model to explore pathogenic roles of APOE in some common diseases,
such as Alzheimer’s disease, type III hyperlipoproteinemia (HLP), and coronary artery disease
(2). Trending evidence suggests that APOE gene mutations play an important role by potentially
increasing the affinity of lipoproteins for the glomerular capillary wall or by enhancing the
tendency of mutant apolipoproteins to form aggregates when concentrated. If left untreated,
the disease usually progresses to end-stage kidney disease. Lipid-lowering medications, especially
fibrates, were found to improve both clinical manifestations and histological alterations. In
recent years, there has been a rapid increase in the number of LPG cases reported, and
some progress in research into the mechanism and animal models of LPG. We consequently
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need to update recent epidemiological studies and the molecular
mechanisms of LPG. Using “lipoprotein glomerulopathy” or
“lipoprotein nephropathy” as key words, we retrieved data
from the PubMed, Wanfang (China National Knowledge
Infrastructure) and J-STAGE (online platform for Japanese
academic journals) databases for literature review (Figure 1). The
purpose of this review is to update the epidemiology and clinical
features of lipoprotein glomerulopathy, discuss its pathogenesis,
summarize current therapeutic options, and present personal
perspectives for future research.

HISTORY OF LPG

At the 1988 annual meeting of the Japanese Society of
Nephrology, Saito et al. first reported the cases of 2 patients
who had similar clinical features of renal impairment and
glomerular capillary lipoprotein deposition (4) (Figure 2). In
1989, he described the case in the English literature for the
first time. The absence of involvement of other organs and
the characteristic morphology of the renal lesions could clearly
distinguish this disease from other disorders of lipid metabolism.
With the presence of lipoproteins in the glomerular deposits
and abnormalities in serum lipid levels resembling the pattern
observed in type III hyperlipoproteinemia (HLP), this disorder
was named “lipoprotein glomerulopathy.” Type III HLP is a
condition characterized by the elevation of both cholesterol
and triglycerides, accumulation of incompletely catabolized
triglyceride-rich lipoproteins, plamar xanthoma, and rapidly
progressive atherosclerosis (5). Type III HLP has always been
found in individuals who are homozygous for apoE mutations
(apoE2/2) and rare in heterozygous state. In 1991, Oikawa et al.
reported abnormally elevated levels of apoE in patients with LPG
(6). In the report, the levels of lipoprotein components, plasma
apolipoprotein profiles, and apoE isoforms were checked in 6
patients. Common features included proteinuria (1.6–10 g/d),
normal lecithin-cholesterol acyltransferase (LCAT) activity, type
III HLP-like lipoprotein profiles, and significantly higher levels
of plasma apoE (>10 mg/dL) compared with the control patients
with hyperlipidemic nephrotic syndrome without lipoprotein
thrombi, or type IIb hyperlipoproteinemia without renal disease.
All the patients had rare apoE isoform patterns (E2/3 in five
cases and E4/4 in one case). These findings showed the first
evidence that apoE hyperlipoproteinemia was associated with the
apoE isoform and lipoprotein metabolic derangement. Familial
occurrence of LPG was later recognized, as introduced in the
below epidemiology section (7, 8). It was suggested that LPG

Abbreviations: LPG, Lipoprotein glomerulopathy; LCAT, Lecithin-cholesterol

acyltransferase; LDLR, Low-density lipoprotein receptor; HSPG, Heparan sulfate

proteoglycan; HLP, Hyperlipoproteinemia; LRP, LDL receptor-associated protein;

GVHD, Graft-versus-host disease; FcRγ, Fc receptor gamma chain; CML,

carboxymethyllysine; HNE, hydroxynonenal; MDA, Malondialdehyde; aHUS,

Atypical hemolytic uremic syndrome; PPAR, Peroxisomal proliferator-activated

receptor; LPL, Lipoprotein lipase; HMG-CoA, β-hydroxy-β-methylglutaryl-CoA;

RAASi, Renin-angiotensin-aldosterone system inhibitor; HELP, Heparin-induced

extracorporeal lipoprotein precipitation; MN, membranous nephropathy; IDL,

Intermediate density lipoprotein; VLDL, Very low-density lipoprotein; HDL,

High-density lipoprotein; TC, Total cholesterol; TG, Total triglyceride.

may be an inherited disease in which abnormal lipoproteins
composed of APOE mutants accumulate within the glomeruli.
This finding was supported by observations of mutations named
APOE Sendai (Arg145Cys) in 1997 and APOE Kyoto (Arg25Cys)
in 1998. A total of 17 APOE variants associated with LPG have
been identified to date, highlighting DNA analysis of the APOE
gene as one of the most important tools for identifying LPG.
These 17 mutations were retrieved from published case reports
by manually literature searches, among which 13 have been
included in the HGMDdatabase (includingAPOEKyoto, Tokyo-
Maebashi, Sendai, Guangzhou, Okayama, Modena, Las Vegas,
Osaka or Kurashiki, Hong Kong, Chicago, Tsukuba, E1, and
Kanto, Additional File 1).

Although it was initially assumed that this disease was
restricted to East Asia, several cases have been reported in
individuals of European ancestry. With the increased awareness
of this disease, several patients with nephrotic syndrome of
previously “unrecognized” cause have been grouped into LPG in
recent years. The total number of reported LPG cases increased
to over 200 hundred (details below).

EPIDEMIOLOGY

The total number of patients was estimated to be<80 in 2011 (9).
Due to increased awareness and the advance of genetic testing
technology, the number of cases increased to ∼150 by June 2019
(10). By an updated literature review, we estimated that the
reported number would be at least 274 up to the beginning of
the year 2022.

LPG showed significant regional and familial aggregation. The
majority of cases were reported in Japan and China (Figures 3, 4).
It is mainly distributed in southwestern and southeastern China
and in central and north-central Japan (11). Some hot spots of
gene mutations have been described, suggesting a founder effect
of the gene mutation. APOE Sendai (Arg145Pro) was mainly
observed in north-central Japan, particularly in Yamagata and
Miyagi (12), whereas it has not been reported in China. APOE
Kyoto (Arg25Cys) was reported as the most frequent mutation
in LPG throughout the world, including in southwestern China,
Japan, France and the USA. However, a report in 2014 showed
that 35 patients within 31 unrelated Han families with biopsy-
proven LPG resided in a small county of Sichuan Basin in
southwest China, indicating regional clustering with the same
genetic background. It was thus suggested that the descendants of
APOE Kyoto in this area were derived from a single founder. In
contrast, APOE Guangzhou and Tokyo-Maebashi were reported
to be dominant in cases from the southeast area of China
(7, 8, 11, 13). The association of APOE Kyoto between the
Sichuan Basin and other areas is still difficult to explain. It
may be possible that APOE Kyoto spread from China across
multiple countries worldwide because it is historically known
that the international population mobility of Chinese was more
frequent than that of Japanese in ancient times (11). This theory
may be similar to the idea that LPG cases may have emigrated
along with tea culture to expand from China (11). Several other
APOE variants have recently been reported inWestern countries,
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FIGURE 1 | Flowchart of the literature review and case screening.

including the United States, Russia, Italy, Brazil, and France.
Other APOE variants associated with LPG have been detected
across the world (14–20). Although many of the reported cases
were reported to be sporadic, some studies reported familial
clustering, supporting its genetic component with a single gene
inheritance mode (21–23). But perhaps most of the family
members lack of symptomatic signs or genetic testing, making
them undiagnosed. No heritability studies have been documented
to date. One of the largest pedigree was reported in 2008, in which
5 cases in 3 generations were observed (8). Another large pedigree
with 3 cases in 2 generations was reported in 2014, together with
additional 17 pedigrees with LPG (7).

Apart from humans, interestingly, an observational study
in 2016 reported that a captive squirrel (Sciurus vulgaris)
spontaneously developed LPG-like disease. This was the first
time that LPG-like disease was observed in an organism other
than humans. The kidney pathology of squirrels is similar to

that of human LPG, but genetic mutations have not been
determined (24).

As the majority of the reports on the epidemiology of
LPG were based on case reports, to systemically update
this information, we conducted a literature review using the
search item “lipoprotein glomerulopathy” from various databases
(PubMed, China National Knowledge Infrastructure, and J-
STAGE) from 1988 to January 2022. A total of 274 LPG cases
were identified, and the epidemiological details can be found in
Additional File 1.

According to updated statistics, China and Japan have a
comparatively higher prevalence of LPG, with 207 and 47
patients, respectively. There is still lack of precise epidemiological
studies in LPG. Based on the current meta data from literature
review, it was estimated that the prevalence of LPG is about 3.74
per 10 million in Japan and 1.43 per 10 million in China. Surely,
it may be underestimated. As mentioned above, the areas most
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FIGURE 2 | Milestone of LPG research in clinical and basic aspects.

affected by LPG were located in southwestern and southeastern
China and central and northeastern Japan. A total of 20 cases
have been reported in other countries and territories. Among all
the cases, there were 137 males and 137 females, with an average
age of diagnosis of 35 years old (from 7 to 72 years). In terms of
age of onset, a total of 188 patients had documented information.
There were 8, 23, 112, 42 and 3 cases with age of onset ≤10, 11–
17, 18–45, 46–65, and >65. It suggested that about 60% of the
cases were diagnosed in young adults (18–45 years old) (13).

With regard to specific mutation distribution, APOE Kyoto,
APOE Tokyo-Maebashi and APOE Sendai are the three
major observed forms, with 53, 13, and 14 reported patients,
respectively. In China, the Sendai mutant has not yet been
reported. The Kyoto mutant is mainly diagnosed in Sichuan
Province in southwest China, while the Tokyo-Maebashi variant
is mainly diagnosed in Beijing, suggesting that LPG patients
in the same region may share a common genetic ancestor;
demonstrating the “founder effect.”

PATHOGENESIS

The precise pathogenesis of LPG is still not well-understood.
Several lines of evidence suggest that alterations in apoE structure
and function play a fundamental role in the pathogenesis of
LPG. It has long been hypothesized that defective lipoproteins are
prone to deposit in the kidney. Indeed, all the patients reported
to date were found to have heterozygous mutations in the
APOE gene, along with elevated serum concentrations of apoE

lipoproteins and the presence of apoE in the glomerular deposits.
Disturbances in kidney structure or function may also be pivotal
in the formation of lipoprotein aggregates, as the disease is
kidney specific without other organs obviously affected. However,
the recurrence of LPG after renal transplantation suggests that
renal abnormalities may not be necessary for the development of
the disease.

APOE Gene and apoE Function
The APOE gene is located on chromosome 19q13.2 and
comprises 4 exons with 3,603 base pairs, which are evolutionarily
conserved in a variety of terrestrial and marine vertebrates (25)
(Figure 5). The apoE protein is a 34 kDa circulating glycoprotein
of 299 amino acids, with an additional 18 amino acids as a signal
peptide. This protein can be synthesized by several cell types,
in which hepatocytes account for the majority. High quantities
can also be observed in brain, i.e., by astrocytes and glial cells
in the cerebral cortex and by neurons in the frontal cortex and
hippocampus (26).

The amino acid sequence of apoE can be simply divided
into three parts: the N-terminal (AA 1–199), the hinge region
(AA 200–215), and the C-terminal (AA 216–299). There are two
important binding regions in the N-terminal sequence that have
overlapping gene sequences, the low density lipoprotein receptor
(LDLR) binding region (27, 28) (142–150) (29) and the heparin
sulfate glycoprotein (144–147) binding region (30). Most APOE
mutations associated with LPG are observed in these two regions.
Other regions with functional significance included four helix
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FIGURE 3 | Worldwide distribution of LPG cases. China and Japan are the two countries with the most reported cases of LPG, but the spectra of APOE mutation in

patients in these two countries are different. In China, APOE Kyoto is the major mutant, while in Japan, APOE Sendai is the most commonly one. The APOE Sendai

mutation has not been reported in China thus far.

regions (AA 20–160), a lipid insertion sequence (244–272) and
a homo-oligomerization region (248–299) (31–34), which have
been investigated less.

As the ligand for the LDL receptor family and heparan sulfate
proteoglycans (HSPG), apoE associates with triglyceride-rich
lipoproteins in mediating clearance of their remnants (Figure 6).
When exogenous lipids enter the bloodstream from intestinal
villi, new chylomicrons are formed to obtain apoC and apoE from
high-density lipoprotein (HDL). Some chylomicrons are utilized
by body tissues, while the remaining chylomicrons enter the liver
through interactions with apoE and LDL receptor-associated
proteins (LRP).

ApoE is also important in endogenous lipid metabolism.

Hepatocytes secrete VLDL containing apoE, and these VLDL are

converted into IDL. The subsequent metabolism of IDL can be

divided into two pathways, through interactions between apoE
and LRP or metabolism into LDL (35–37). The degradation of
both IDL and VLDL is partially dependent on apoE. This may

explain why their concentrations are elevated in the blood of
patients with LPG.

APOE Mutations in LPG
Two coding variants in the human APOE gene, rs429358
(Cys130Arg) and rs7412 (Arg176Cys), define the apoE protein
as three isoforms (E2, E3, and E4) (38), among which E3 is the
most common isoform, and they are different in the amino acid
residues at residues 112 and 158: both cysteine—apoE2, both
arginine—apoE4, and one cysteine—apoE3 (the wild type). It
has been confirmed that different subtypes are associated with
different predispositions to human diseases (39). The affinity
between the E2 subtype and the low-density lipoprotein receptor
(LDLR) is only 1% of that of the E3 subtype, resulting in lipid
clearance disturbances and type III HLP. The E4 subtype is
mainly associated with diseases of the central nervous system,
such as Alzheimer’s disease (34, 40–42). However, in LPG, the
most common subtype was reported to be E3/E3 or E3/E4 (3, 9).
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FIGURE 4 | Distribution of patients with different APOE mutations. The four plots represent the distribution of patients with different APOE mutations in China (left) and

Japan (right). For better illustration, each image is shown at the bottom enlarged. The size of each circle represents the number count of people. It can be observed

that geographical clustering of LPG cases according to APOE mutation types, suggesting a founder effect. (A) Patients with LPG were mainly concentrated in the

southwestern and southeastern regions in China, and the central and northeastern regions in Japan. (B) APOE Kyoto was frequently found in southwestern China,

and south Japan. (C) APOE Tokyo-Maebashi was dominant in cases from Beijing in China, and the central Japan. (D) APOE Sendai was not reported in China, and

distributed most in central Japan.

In 1991, abnormally elevated levels of apoE were observed in
patients with LPG for the first time (6), followed by the discovery
of the mutation APOE Sendai in 1997. Further APOE mutation
has been suggested to be the most important etiologic factor
in the pathogenesis of LPG (43, 44). Supporting evidence was
obtained from animal models. In 2000, by introducing the APOE
Sendai mutation into APOE-deficient mice, it was observed that
both increased lipid levels and LPG-like renal pathology in the
mice (45). Several other variants of APOE associated with LPG
have been identified since then. A similar cause-effect of the
APOE Kyoto mutation in LPG can also be observed in APOE-
deficient mice, further supporting that a single genemutation can
cause LPG (46).

To date, a total of 17 APOE gene variants associated with

LPG have been reported. Eight of these mutations reside in the

LDLR binding region (140–150 sites), among which 5 reside in

the HSPG binding region (144–147 sites). Another hot spot is

located in the region spanning AA 150–180, where 5 mutations

have been reported (25, 33), but few functional studies have been

conducted. More recently, a case report suggesting a 28-year-old

man presenting with severe proteinuria and hyperlipidemia had

compound heterogeneous mutations of the APOE gene inherited
from his mother (p.Arg50His) and father (APOE Kyoto). Each
his parents with a heterogeneous mutation had normal kidney
function without proteinuria (47). This is the first time that the
combination of the 2 mutations was identified in the same case as
an autosomal recessive genetic disorder. It seemed that the case
showedmuch severe phenotype. But further precise investigation
on both genetic and disease mechanisms will be needed. Since the
patient carried APOE Kyoto mutation, and the new p.Arg50His
variant has not been verified functionally pathogenic, therefore,
this mutation is not listed in our pathogenic mutations of LPG.
We assume that a dominant effect of APOE Kyoto cannot
be totally rule out. Apart from this, a case was reported to
have a combination of APOE Kyoto and APOE Hong Kong

(Asp230Tyr) mutations (48). But as co-segregation analysis was
not taken, it was difficult to confirm the significance of the
respective mutation. There was also a case report of a 51-year-
old Japanese woman who had 2 mutations within the same
allele (a combination of APOE Chicago (Arg147Pro) and APOE5
(Glu3Lys) inherited from her mother. But her mother did not
have any phenotypes (49). These data suggested LPG may be
far complicated than previously speculated. Additional genetic
studies may be needed, i.e., from a hypothesis-free whole genome
sequencing in large cohorts.

ApoE Mutation-Related Factors Leading to
LPG
Reduced Structural Stability of apoE Protein
Normal apoE protein is highly helical and has the capability
to be transformed between different tertiary structures to
bind lipids or proteins. In 2013, it was found that different
mutated proteins [APOE Chicago (Arg147Pro), APOE Sendai
(Arg145Pro), APOE Osaka or Kurashiki (Arg158Pro)] showed
different protein structural stabilities (50). Of note, the common
resultant characteristic of these three mutations was that arginine
was replaced by a proline residue. It is universally suggested
that proline residues may breakdown a transmembrane helix.
Insertion of a proline residue in themiddle of an α-helix is known
to destabilize it by over 3 kcal/mol, effectively disrupting the
helix (51, 52). These mutated apoE proteins all exhibited reduced
helicity, leading to decreased structural stability evidenced as
protein denaturation even at the physiological temperature of
37◦C. When the hydrophobic surface is exposed, apoE may be
more prone to aggregate and form large lipoprotein granules
(50). Along with this idea, it was also confirmed that similar
structural and functional changes can be observed in three other
non-proline-substituted mutants [APOE Kyoto (Arg25Cys),
APOE Tsukuba (Arg114Cys), and APOE Las Vegas (Ala152Asp)]
(53). In vitro, all three mutated proteins showed decreased
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FIGURE 5 | Representative mutation distributions of the apoE protein. (A) Seventeen mutations of the APOE gene leading to LPG have been located, most of which

are concentrated at amino acid sites 140–180. This region contains various important apoE functional domains, including the LDLR binding domain and HSPG binding

domain. “Hot spot” mutations suggested that the change in the binding ability of the apoE mutant to LDLR and HSPG is an important factor in LPG pathogenesis. (B)

ApoE mutation sites were labeled in the amino acid sequence diagram of apoE protein. It showed that hot spot of apoE mutation is among AA 140–160.

stability and an increased tendency to aggregate. Likewise, a
study in Alzheimer’s disease showed that the decreased structural
stability of apoE may contribute to the formation of neurotoxic
fibrils (54).

Reduced apoE Binding Capacity to Different

Receptors
ApoE mutations may also contribute to reduced binding
capacities to receptors (55, 56). It was observed that the binding
ability of apoE Kyoto and apoE Sendai to LDLR was significantly

reduced to just 10 and <5%, respectively, compared to the wild
type (57, 58). The decrease in the apoE binding ability contributes
to impaired degradation of lipoprotein and accumulation. This is
consistent with the observation that hyperlipidemia is common
in LPG, especially with increased VLDL and IDL. However, the
binding capacity of apoE2 to LDLR was <1% of the normal
value (33, 59), while apoE2-induced type III HLP only had
dyslipidemia without pathological kidney changes, indicating
that impaired LDLR binding abilities may not be the determining
factor in kidney damage. Although the APOE Sendai mutation
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FIGURE 6 | Summary and proposed mechanisms of LPG. (A) The mutated apoE protein is known to cause LPG through three main mechanisms. (a) The mutant

protein tends to aggregate, and the aggregated macromolecules are more likely to drive the formation of lipoprotein thrombi. (b) The mutant protein loses its ability to

bind to LDLR, making it difficult to eliminate. (c) The mutated protein retains the ability to bind to HSPG, which allows it to bind to endothelial cells. For the above

reasons, the mutated apoE protein aggregates into macromolecules on the surface of endothelial cells without being cleared. (B) In addition to APOE mutation, it is

speculated that intrinsic glomerular features may interact with apoE variants and lipoprotein abnormalities, which exacerbate the induction of LPG. For example,

tortuous glomerular capillaries are conducive to the formation of thrombi. The negatively charged base membrane and the positively charged mutant protein may

attract each other. (C) FcRγ deficiency may also lead to LPG because it affects the phagocytic function of macrophages.

decreased the binding ability of apoE with LDLR to <5%, it
decreased its binding ability with HSPG to 66% (57). It was
suggested that the retained HSPG binding activity could enable
apoE-rich lipoproteins to enter and attach to the Disse space
(60, 61), which is pivotal in the initial rapid clearance step for
lipoproteins. Heparan sulfate proteoglycans (HSPGs), which are
also abundant in the space of Disse, may play an important
role in mediating this enhanced binding. When apoE arrived
and aggregated in the Disse space, they would normally enter
the liver through interaction with LDLR, but the mutated apoE
lost the LDLR binding ability, so they could not enter the liver
to be metabolized (62, 63). Since HSPG is highly expressed
in the glomerular basement membrane (64, 65), it may play
a role in the renal deposition of lipoprotein. Concordant with
this hypothesis, evidence has shown that the binding ability of
products is enhanced in apoE Chicago to glomerular capillaries

and in apoE Kyoto to human umbilical vein endothelial cells
(16, 66).

Other Predisposing or Synergic Factors
Leading to LPG
Functional Deficiency of the Fc Gamma Receptor

(FcγR) and Macrophages
As some individuals carryingAPOEmutations are asymptomatic,
it is speculated that some other factors may further contribute to
LPG (21). Two clinical reports noted the recurrence of LPG in the
transplanted kidney. Sustained inflammation induced by chronic
graft-vs. host disease (GVHD) might be a predisposing factor
(19, 67, 68). By injecting donor spleen cells into recipient mice
for 2–4 months, it was observed that GVHD could induce LPG-
like changes in Fc receptor gamma chain (FcRγ)-deficient mice,
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with hematuria, proteinuria, renal capillary lumen thrombosis
and interstitial mononuclear cell infiltration. It was shown
that macrophages from FcRγ-deficient mice had a decreased
ability to clear LDL (69). Macrophages possess several different
pathways in recognition and clearance of modified (oxidized)
LDL, including scavenger receptors and FcRs (70, 71). Supporting
this, a drastic decline of scavenger receptor CD36 was observed
in LPG. It was speculated that partial reduction of modified
(oxidized) LDL uptake by macrophages could result in the
lipoprotein deposition in the kidney during the long course of
chronic GVHD.

More direct evidence was obtained from humanized mice.
When the APOE3 genotype or APOE Sendai mutation was
introduced into FcRγ and APOE double-knockout mice, both
strains of mice developed lipoprotein thrombosis, and the mice
with APOE3 showed more lipoprotein thrombus in the kidney
than those with the APOE Sendai genotype. This observation was
absent in mice with wild-type APOE. Introduction of APOE3
in both FcRγ-deficient mice and FcRγ wild-type mice showed
lipoprotein thrombosis, whereas the phenotype was much more
severe in FcRγ-deficient mice (72). These results indicated
macrophage impairments derived from FcRγ deficiency (73–75)
were insufficient for the development of LPG, since the FcRγ

deficient mice with normal murine apoE showed no lipoprotein
thrombosis. However, under conditions with xenogeneic apoE,
especially human apoE3, the FcRγ deficient mice may develop
severe LPG.

It was also observed that a small amount of apoE can be
produced by macrophages, which was considered to play a role in
suppressing hyperlipidemia and arteriosclerosis. Because it was
showed that expression of macrophages producing apoE Sendai
in mice that received a bone marrow transplant protected against
atherosclerosis while induced LPG (76–78). It was thus suggested
that macrophages may play various roles in apoE related
lipoprotein metabolism. Both hyperactivity or suppression can
be an important factor in different types of renal lipidosis. LPG
depend upon suppression of macrophages. ApoE derived from
macrophages is affected by its mutation and may regulate disease
activity. Functional studies are still needed in the future.

Renal Intrinsic Factors May Promote Glomerular

Lipoprotein Deposition
The above data is insufficient to explain why lipoprotein is
specifically deposited in glomerular capillaries in LPG, which
is different from other diseases such as atherosclerosis. In
particular, because lesions are localized to glomeruli, intrinsic
glomerular factors may interact with apoE variants and
lipoprotein abnormalities to induce LPG. There might be some
special factors in the glomeruli. Mutated apoE protein may
present different electric charges compared to normal proteins,
and therefore, they exhibit a higher affinity for negatively
charged glomerular basement membranes (9). It is suggested
that the presence of highly conserved acidic residues within
the lipoprotein receptor (LR) modules and the positively
charged region of apoE (residues 136–150) may support the
hypothesis that ligand–receptor recognition is due to electrostatic
interactions, so a change in electron charge might enhance the

bonding (79). The tortuous structure of glomerular capillaries
might also contribute to lipoprotein deposition.

Oxidative Stress May Dampen Kidney Damage
It has long been believed that hyperlipidemia may play a
detrimental role in kidney pathology directly or indirectly
through inflammation, ROS production, endogenous
electrical stress and other pathways (80, 81). Among these
pathways, oxidative stress may be of special importance, as
carboxymethyllysine (CML), hydroxynonenal (HNE)-protein,
and malondialdehyde (MDA)-lysine were reported to be found
in the kidney of a patient with LPG (68). These substances
are the products of lipid peroxidation. These aldehydes may
cross-link covalently with matrix tissue proteins and further alter
structure and function. They may also have direct impact on
parenchymal cells by cross-linking cell surface proteins to reduce
intracellular responses (82–84). As the antioxidant domain of
APOE overlaps with the LDLR binding region (85), mutations
in the LDLR binding domain may shed unfavorable effects on
its antioxidant capacity. Moreover, the roles of oxidative stress
and hyperlipidemia in LPG are indirectly supported by clinical
evidence that some patients experience remission after treatment
with the antioxidant probucol and the lipid-lowering drug
fenofibrate (10, 86).

Other Mechanisms
There have been reports that no APOE mutations were found
in a number of LPG patients (87). Possible explanations include
changes in other unknown genes, mutations in introns or
regulatory sequences, epigenetics, and environmental influences.

For example, a recent study showed that a defect in HDL
receptor named scavenger receptor class B type 1 (SR-B1) was
associated with LPG-like lesions in atherosclerotic mice, the
severity of which can be alleviated using probucol (88).

Factors affecting CKD progression, such as fibrosis, apoptosis,
local tissue injury, and infiltration of immune cells, may also be
involved in LPG.

These data support a complex etiology of LPG, and additional
pathogenic factors warrant further elucidation.

CLINICAL AND PATHOLOGICAL
MANIFESTATIONS

Diagnostic Criteria Proposed by Japanese
Nephrologists
In 2006, a single set of diagnostic criteria for LPG was proposed
by Japanese nephrologists (2). The criteria were mainly based on
four items.

• different levels of proteinuria;
• dilatation of glomerular capillary lumina with pale-stained

substances on light microscopy;
• fingerprint-like concentric lamellar structure in

electron microscopy;
• Type III HLPs with high apoE concentrations are usually

associated with a heterozygous apoE phenotype, E2/3 or E2/4,
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by means of isoelectric focusing electrophoresis (IEF), but
sometimes with an uncommon type, e.g., E1/3 or others.

It was suggested that although genetic testing was not necessary
for definitive diagnosis, it should be performed in patients with
suspected LPG whenever possible to confirm the diagnosis.

Clinical Manifestation of Glomerular
Disease Is Always Non-specific
Initially, LPG may cause no symptoms. Symptoms and signs are
due to the buildup of waste products and fluid retention in the
body (49, 89, 90). In general, nephrotic syndrome may be present
in ∼70% of patients (91). However, the levels of proteinuria
may vary significantly among different patients. The 24 h urinary
protein levels reported ranged from 0.5 to 24 g/24 h (92, 93).
Without proper treatment, CKD will progress (2, 14, 94–96),
and approximately half of patients will develop end-stage kidney
disease over 1–27 years.

Elevated Serum ApoE and Hyperlipidemia
One of the most characteristic laboratory indicators of LPG is
elevated serum apoE levels. It was reported that patients with
LPG had a mean serum apoE concentration of 11.14–17.1 mg/dL
(3.9–71.0 mg/dL), approximately twice the upper level of the
normal population (2, 7, 23, 97, 98).

Another characteristic is overt dyslipidemia, with a
predominance of triglycerides, mostly >6 mmol/L (15, 16, 91).
In a few cases, VLDL levels were reported to be elevated (∼4–6
mmol/L) (99, 100). Hyperlipidemia in LPG is similar to that in
familial type III HLP. Type III HLP, first recognized in 1967,
is caused by homozygous apoE2 mutations. The mutation was
reported to weaken the binding force between apoE2 and LDL
receptors (101, 102). Although both diseases are associated with
the APOE gene, LPG and type III HLP show obvious differences.
In type III HLP, atherosclerotic cardiovascular disease and
xanthomatosis are common (103, 104), but they are rare in LPG.

Great Phenotypic Heterogeneity and
Genotype-Phenotype Correlations
We further checked the clinical manifestations of LPG by
systematic literature review. An additional file shows this in more
detail (seeAdditional File 2). The mean value of plasma albumin
for the reported cases was 29.3 g/L (SD = 6.2 g/L, ranging from
12 to 47 g/L), and the mean 24-h urinary protein level was
4.5 g/d (SD = 3.4 g/d, ranging from 0.8 to 24 g/d). Nephrotic
range proteinuria and nephrotic syndromewere key features. The
mean creatinine was 129.2 µmol/L (SD = 177.5 µmol/L, and
ranging from 21.2 to 1859 µmol/L), the mean urea nitrogen was
8.1 mmol/L (SD = 5.52 mmol/L, and ranging from 2.7 to 39.9
mmol/L), and the mean eGFR was 81.6 ml/min/1.73 m2 (SD =

32.5 ml/min/1.73 m2). Of these patients, 38.7% had CKD1, 35.5%
had CKD2, 18.7% had CKD3, 3.2% had CKD4, and 3.9% had
CKD5. In terms of blood lipids, the average triglyceride level of
these patients was 3.4 mmol/L (SD = 2.0 mmol/L, ranging from
0.7 to 20.6 mmol/L) (reference range 0.6–1.7 mmol/L), which
is approximately twice the normal upper limit. Total cholesterol
was 6.8 mmol/L (SD= 2.4 mmol/L, and ranging from 2.8 to 22.9

mmol/L) (reference range 2.8–5.2 mmol/L), LDL was 3.6 mmol/L
(SD = 1.4 mmol/L, and ranging from 1.2 to 10.6 mmol/L)
(reference range 2.1–3.1 mmol/L), and HDL was 1.4 mmol/L (SD
= 0.7 mmol/L, ranging from 0.5 to 8.8 mmol/L) (reference range
0.9–1.6 mmol/L). Most of the patients had significantly elevated
serum apoE, with a mean of 12.1 mg/dL (SD = 6.7 mg/dL, and
ranging from 3.1 to 42.3 mg/dL). Great fluctuations of standard
deviations suggested great clinical heterogeneity of LPG.

We collated the clinical information of the cases with the
top four APOE genotypes (Kyoto, Tokyo-Maebashi, Sendai and
Osaka or Kurashiki) (Table 1). The age of onset for patients
with APOE Tokyo-Maebashi seemed to be younger than that
of other mutants. Patients with APOE Sendai appeared to have
the lowest urinary protein and blood lipid levels. Patients with
APOEKyoto had themost severe renal manifestations. There was
few clinical prognostic information available for LPG. However,
according to literature review and case reports, some of the cases
with LPG will progress to ESKD. These reported ESKD caused
by LPG can be observed in several APOE genotypes including
Kyoto, Tokyo-Maebashi, Osaka or Kurashiki, Guangzhou, and
Sendai. And the reported APOE phenotypes were E2/3 and E3/3
(7, 8, 105–107). Thus, it still difficult to predict prognosis based
on mutation types.

Extrarenal Manifestations and Other
Complications
Other complications rarely have been reported. Known
comorbidities included splenomegaly, thalassemia,
psoriasis, abdominal aortic aneurysm, pleural effusion, and
neurofibromatosis type I (14, 67, 99, 108, 109). However, there
is no evidence of a direct link between LPG and these diseases.
The only related extrarenal manifestation of LPG that has been
confirmed is intravascular coagulation (110). It was reported
that a 50-year-old white man had severe proteinuria with
high lipid levels and a kidney pathology of LPG. He also had
hypertension and coronary heart disease. The patient’s heart
failure was speculated to be due to cardiac amyloidosis secondary
to multiple myeloma. For this reason, cardiac biopsies were
requested and showed that small blood vessels in the endocardia
were filled with eosinophilic substances, which were similar
to those in the kidney. A more recent case reported that a
21-year-old Malaysian-Swiss male with LPG developed atypical
hemolytic uremic syndrome (aHUS). Aggregation of apoE
was suggested by the authors as a risk factor in initiating the
occurrence of aHUS in his case (107). Regardless, the etiology
was unclear and may be difficult to determine.

Pathological Manifestations in the Kidney
The most typical pathological appearance of LPG under light
microscopy is the dilatation of the glomerular capillary lumen
filled with eosinophilic granular and vacuolar thrombosis
(Figure 7). The thrombus is positive for oil red O or Sudan red
and negative for silver or PAS staining, indicating the presence
of a lipid component in the thrombus (14, 22, 110–112). Using
immune-electron microscopy, it has been found that lipids
are surrounded by apoE and that the thromboid material is
composed of lipoproteins (113). Othermanifestations under light
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TABLE 1 | Genotype and phenotype information based on meta data.

APOE Kyoto APOE

Tokyo-Maebashi

APOE Sendai APOE Osaka or

Kurashiki

P-value

Total number of cases 53 15 13 6

Age 38.1 (34.5–38.1)

(n = 53)

20.0 (10–41)

(n = 15)

31.7 ± 18.9

(n = 13)

32.0 ± 8.7

(n = 6)

0.142

Albumin (g/L) 26.4 (26.4–26.4)

(n = 48)

31.5 ± 9.1

(n = 16)

NA 27.1 ± 9.4

(n = 5)

0.024

Serum creatinine (µmol/L) 98.1 (98.1–98.1)

(n = 46)

72.0 (43.5–90.5)

(n = 13)

79.6 (37.1–256.4)

(n = 5)

NA 0.000

eGFR 79.0 (79.0–79.0)

(n = 46)

82.0 (59.7–156.5)

(n = 15)

91.9 ± 27.0

(n = 12)

105.7 ± 27.1

(n = 5)

0.303

TC (mmol/L) 7.0 (7.0–7.0)

(n = 53)

6.0 (4.9–7.1)

(n = 14)

5.8 ± 1.6

(n = 13)

5.3 ± 2.8

(n = 6)

0.012

TG (mmol/L) 3.5 (3.5–3.5)

(n = 53)

2.8 ± 1.7

(n = 14)

1.7 (1.5–3.8)

(n = 13)

2.6 ± 1.0

(n = 6)

0.031

24 h UPRO (g) 5.1 (3.8–8.8)

(n = 16)

2.8 ± 1.6

(n = 10)

1.6 (1.0–2.2)

(n = 11)

7.4 ± 4.7

(n = 5)

0.006

Data are presented as mean ± SD for normalized data or median (25th-75th percentile) for non-normally distributed data.

Due to missing information for some case reports, n in the bracket represents the amount of data.

NA means data unavailable.

microscopy include swelling of endothelial cells and vacuolar

degeneration with a small number of lipid droplets in podocytes.
In the advanced stages of the disease, the mesangial cells and

stroma are thickened, and there may be uneven insertion, leading
to thickening of the basement membrane and the formation of
the dual-track sign and eventually glomerular sclerosis. Epithelial

vacuoles and granular degeneration may be observed in renal
tubules in the early stages. Similar to other glomerulopathies, as
the disease progresses, renal tubule atrophy, interstitial edema,

monocyte infiltration and fibrosis, and thickening of the arteriole
wall will be common (21, 114). A study also reported that CD68+
foam cells were present in patients’ kidneys, further suggesting
that macrophages may be involved in the pathogenesis of LPG.

The most common deposits are apoE and apoB in

immunofluorescence, which might be taken as supporting
evidence for the diagnosis of LPG. In the previous literature,
however, immunoglobulin and complement, such as IgM,
IgA, and C3 depositions, may be observed in mesangial and
capillary walls in many cases, and scattered C1q deposits were
also reported (16, 23, 48, 114, 115). However, most of these
depositions were suggested to be non-specific, and no specific
pathology pattern has been described until now.

Under electron microscopy, lipoprotein thrombosis is
characterized by a fingerprint-like concentric lamellar structure,
sometimes referred to as a sand stone structure (2). Some other
pathological descriptions include glomerular telangiectasis, filled
with protein material covered with lipid vacuoles, and lamellar
vacuoles of varying sizes, with a network of vacuoles separated
by high electron density bands. Lysosomes of endothelial cells
and podocytes were increased, and lipid vacuoles were also
found in the cytoplasm and lysosomes. Podocytes showed diffuse
and complete foot process effacement with the accumulation
of electron-dense material in the mesangium and glomerular
basement membrane. The glomerular basement membrane

FIGURE 7 | Representative pathological findings in a case with LPG. (A)

Immunofluorescence study: the deposition of apoE is present mainly in the

capillary lumina. (B) Light microscopy: Dilated capillary loops exhibiting an

eosinophilic lipoprotein thrombus in the capillary lumens. (C,D) Electron

microscopy: Diffuse foot-process effacement and lamellated fingerprint-like

thrombi in capillary lumens, which are composed of granules and vacuoles of

various sizes. (E) Oil red O staining: Numerous red droplets are seen in the

thrombus-like substances in the glomerular capillaries.

demonstrated focal subcutaneous electron dense deposition
(100, 110–112, 114, 116).
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Because the main pathological feature of LPG is lipoprotein
thrombosis, it should be differentiated from other diseases with
thrombotic substances, such as macroglobulinemia nephropathy
and cryoglobulinemia nephropathy.

TREATMENT

There is still a lack of specific or targeted therapies for LPG. Most
of the regimens available were based on lowering proteinuria and
hyperlipidemia. In the absence of clinical trials, current data are
mostly from case reports or observational studies.

No Beneficial Effects From
Immunosuppressants or Transplantation
Early in the history of LPG, the patient was often treated
with glucocorticoids with or without immunosuppressants,
similar to other nephrotic syndromes. However, it was soon
proven ineffective (43, 95, 108, 117, 118). Additionally, in
the twentieth century, it was reported that LPG relapsed in
nearly all ESKD patients caused by LPG even with intensive
immunosuppressive therapy. Therefore, kidney transplantation
and immunosuppressants were not recommended because the
culprit was abnormal lipoprotein components in the blood
instead of the kidney. However, in some case reports, leflunomide
was reported to ameliorate proteinuria in some patients. It was
initially used to replace prednisone, which was found to have a
complete disappearance of kidney symptoms after leflunomide
was added (119). The exact mechanism of leflunomide may not
be related to its immunosuppressive effect.

Regimens Targeting Lipoprotein and
Hyperlipidemia
Regimens have achieved some success in supporting the
pathologically causal role of lipoprotein and hyperlipidemia
in LPG. The first drug was probucol, which reduces total
TC and LDL levels and is widely used in the treatment of
hypercholesterolemia (120). Probucol is also an antioxidant,
and it may mitigate glomerular damage caused by oxidative
stress of mutated proteins. As early as 1994, it was used
in an LPG female case of 54 years old, effectively reducing
hyperlipidemia, proteinuria and the complete elimination of
her glomerular lipoprotein thrombosis (86). Later, different case
reports confirmed the efficacy of probucol therapy (116, 121).

Fenofibrate and benzafibrate can significantly reduce blood
VLDL levels by acting on peroxisomal proliferator-activated
receptor (PPAR) and activating lipoprotein lipase (LPL) and thus
reducing TG and LDL. A small clinical contrast study based on
35 patients supported the efficacy of fibrates in LPG. After 12
months of treatment, their lipid profiles, proteinuria, and serum
albumin improved, and their serum apoE decreased significantly
with stable renal function (7, 14, 93, 121, 122).

Niceritrol is a nicotinic acid derivative that has been used to
lower lipoprotein levels and reduce proteinuria in patients with
chronic kidney disease associated with hyperlipidemia (123, 124).
It was used to relieve clinical symptoms in two patients with LPG

who had failed to respond to statins (125). However, there was
still a lack of more widespread attempts.

The other drugs that are still in clinical use today are statins. As
a potent inhibitor of ’β-hydroxy β-methylglutaryl-CoA’ (’HMG-
CoA’) reductase, statins can increase the expression of the LDL
receptor in the hepatocytes’ cell membranes. In addition, statins
also have multiple effects, such as reducing TG, improving
endothelial function, and anti-oxidation (126). Statins can reduce
patients’ blood lipid levels but can also effectively lower urinary
protein levels and retain renal function. There were very few cases
in which statin therapy alone was evaluated (16, 90, 94, 108, 111,
119, 125, 127).

Renin-angiotensin-aldosterone system inhibitor (RAASi)
therapy shows reno-protective effects in various forms of
proteinuric CKD. Therefore, although there is no evidence that
ACEIs and ARBs are effective in LPG, their administration can
be considered suitable both for blood pressure control and to
reduce proteinuria among LPG patients. Some case reports
have suggested that antilipidemic drugs combined with ACEIs
and ARBs are an effective treatment for LPG (128). Recently,
SGLT2 inhibitors proved to be beneficial for patients who
have proteinuric CKD with or without diabetes. With evidence
that SGLT2 inhibitors might be safe and useful in hereditary
renal diseases such as Alport syndrome (129), whether SGLT2
inhibitors could be a potential treatment for LPG remains to be
further investigated.

Plasma Adsorption Therapy
Adsorption therapy also showed a certain effect. LDL apheresis
was used when the patient had a poor response to traditional
drug therapy. However, allergic reactions to LDL-apheresis
are a concern (90). In 2009, a heparin-induced extracorporeal
lipoprotein precipitation (HELP) system was first used to treat a
60-year-old white woman with proteinuria, high blood pressure,
and renal failure (90). The basic principle of this system is
to acidify plasma pH to ∼5 in vitro and then use heparin to
form a polymer with LDL-cholesterol, LP (a), fibrinogen, and
triglyceride to precipitate them out (130, 131). After 25 courses of
treatment, the patient achieved significant clinical improvements,
including decreased urinary protein, blood creatinine and
lipid levels.

Protein A, immunosorbent may also be a treatment option.
Since protein A has a strong affinity for the FcγR of IgG, this
effect can compensate for the lack of an FcRγ. This technique
has previously been shown to reduce proteinuria levels in
patients with a variety of nephropathies, including diabetic
nephropathy, IgA nephropathy, and amyloidosis (132). In a
small pilot study involving 13 cases, immunoadsorption was
administered for 10 cycles per session and 10 sessions as a
course. A total of 30 L of plasma was regenerated in each course.
Apart from proteinuria reduction, a repeated renal biopsy (n
= 12) showed that intraglomerular lipoprotein thrombi almost
disappeared. The proteinuria of six patients returned to baseline
levels within 12 months. Four recurrent patients received repeat
immunoadsorption treatment and showed repeated efficacy (97).
The strategy is advantageous in being rapidly therapeutic and
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having relatively stable effects. However, disadvantages include
invasive procedure complications, high cost and risk of infection.

Other Possible Treatments
Other lipid-lowering drugs, such as niacin (133) and apoC-
III monoclonal antibodies, as well as non-pharmaceutical
approaches, such as lipoprotein apheresis, may also be promising
(134, 135). Other antioxidants, apart from probucol, including
vitamin C, polyphenols, N-acetylcysteine, allopurinol, natural
polysaccharides, pentoxifyllin, and bardoxolone methyl, may
be candidates to study antioxidant efficacy, since antioxidant
therapy apparently reduces CKD progression (136, 137).
However, high interindividual variability and off-target effects,
such as body weight reduction, need to be further investigated.
The anticonvulsant topiramate, which induces weight loss and
a moderate reduction in plasma lipids and glucose, has recently
been reported to protect APOE-deficient mice from kidney
damage. Thus, it could be investigated in drug repurposing
studies for the treatment of glomerular lipidosis (138).

Gene-based therapeutics, pioneered for the treatment
of monogenic inherited retinal disease, are being actively
investigated as new treatments for acquired retinal disease. Gene
therapy could also be tried in the future, i.e., by CRISPR/Cas9
technology, since it is widely believed that LPG is an inherited
disease caused by an abnormality in the APOE gene (2, 9).

CONCLUSIONS

Current studies have found that several mutations of the APOE
gene can lead to LPG, and most of these mutations are
concentrated in some hot spots. Future functional research on
LPG focusing on hot spot regions for gene mutations may
be helpful to explore the specific pathogenesis of the disease
and to develop target drugs. It is worth exploring whether
different genotypes lead to differences in clinical phenotypes after
increasing the number of patients who are enrolled and who can
be stratified.

Although the symptoms of LPG are common and fixed, some
cases still cannot be explained by the current theory. For example,
in 2015, a patient presented with a large number of macrophage
infiltrates in the glomerulus. In most cases, macrophage
infiltration is not present in the glomerular capillaries of patients
with LPG (91). In 2018, a new variant of the APOE gene (APOE
Toyonaka) was discovered. Patients with this gene mutation
presented with kidney pathology that resembled membranous
nephropathy (MN) rather than LPG (139, 140). For cases such as
this, it is still not clear if they belong to a new disease category or a
different spectrum of LPG (27, 28, 141). APOE-related disorders
were recently summarized,mainly includingAPOE2 homozygote
glomerulopathy (HLP), MN-like APOE disease, and LPG (141).

All the cases above indicate that the incidence andmanifestations
of LPG cannot be fully explained by existing theories. In addition
to the new theory of FcRγ pathogenesis, other causes of LPGmay
be discovered in the future.

The current clinical diagnosis and treatment of LPG still needs
to be improved. As the clinical manifestations of LPG are often
non-specific, the actual incidence of LPG is underestimated. The
diagnosis is beyond the scope of primary care hospitals, and
conventional nephropathy treatment has proven ineffective, so
the sensitivity of the diagnosis needs to be increased so that more
patients can be treated properly. In terms of treatment, effective
drugs are not commonly used in practice, and therapy has not
been commonly used, so new drug research and development
are needed. For those who have been diagnosed, indicators
for clinical surveillance are still lacking. As a rare disease,
an international registry may be worthwhile, as registries are
essential for epidemiological data and collaborative research.
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