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Attention is a key cognitive phenomenon that is studied to understand cognitive
disorders or even to estimate workloads to prevent accidents. Usually, it is studied
using brain activity, even though it has many psychophysiological correlates. In the
present study, we aim to evaluate if finger temperature, as a surrogate of peripheral
vasoconstriction, can be used to obtain similar and complementary information
to electroencephalography (EEG) brain activity measurements. To conduct this, 34
participants were recruited and submitted to performing four tasks—one as a baseline,
and three attentional tasks. These three attentional tasks measured sustained attention,
resilience to distractors, and attentional resources. During the tasks, the room, forehead,
tympanic, and finger temperatures were measured. Furthermore, we included a 32-
channel EEG recording. Our results showed a strong monotonic association between
the finger temperature and the Alpha and Beta EEG spectral bands. When predicting
attentional performance, the finger temperature was complementary to the EEG spectral
measurements, through the prediction of aspects of attentional performance that
had not been assessed by spectral EEG activity, or through the improvement of the
model’s fit. We also found that during the baseline task (non-goal-oriented task), the
spectral EEG activity has an inverted correlation, as compared to a goal-oriented task.
Our current results suggest that the psychophysiological assessment of attention is
complementary to classic EEG approach, while also having the advantage of easy
implementation of analysis tools in environments of reducing control (workplaces,
student classrooms).

Keywords: EEG, autonomic nervous activity, attention, finger temperature, oscillations

INTRODUCTION

Attention is a key cognitive phenomenon whose mechanism impacts a wide range of disciplines
(Petersen and Posner, 2012; Langner and Eickhoff, 2013); from understanding and treating
attention deficit hyperactivity disorder (ADHD) (Castellanos and Tannock, 2002; Huang-Pollock
et al., 2012; Tamm et al., 2012) to examining its consequences during driving or industrial accidents
(Hancock, 1986; Pilcher et al., 2002; Hancock and Vasmatzidis, 2003; Cheema and Patrick, 2012).
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Because of the consequences of assessing attention, especially in
real-work environments, fast and reliable examination of this
cognitive ability has become an essential goal in neuroscience.
Typically, cognitive attention is assessed through brain activity
(Petersen and Posner, 2012); however, attentional processes
may exhibit many other physiological correlates (Lehrer et al.,
2010; Werkle-bergner and Sommer, 2014; Liao et al., 2016;
Binda and Gamlin, 2017; Vergara et al., 2017). Currently, some
features of the cerebral electric activity (e.g., ERPs and spectral
activity) are considered the best predictors of attentional states
(Hogervorst et al., 2014; Kumar et al., 2018), but EEG presents
major limitations when these measurements are applied in real
working environments.

Attention assessed through EEG measurements are
characteristically based on two major approaches; spectral
activity and event-related potentials (ERPs). In general terms,
oscillatory activity has been related to ongoing global states of
attention and other cognitive functions. In contrast, the evoked
potentials are associated with activities specifically elicited by
a given stimulus. These latter responses were examined after
averaging large amounts of stimulus-evoked brain activity
trials, which were presumed to be similar enough to produce a
meaningful average (Luck, 2005). Depending on the stimulus
properties, specific evoked potentials have been reported in many
studies (Hajcak et al., 2010; Ganushchak et al., 2011), particularly
associated to attention—frequently studied for its relevance in
attention deficit disorders (Johnstone et al., 2013).

Despite the useful information that can be obtained from
ERPs, they are highly sensitive to stimulus properties, also they
required a high number of repetitions of the same stimulus
(Luck, 2005). For this reason, ERPs require highly controlled
environments. Nonetheless, various methods have been used to
assess single-trial evoked potentials (one stimulus evoked-brain-
activity; Delorme et al., 2015; Williams et al., 2015); however,
these methods are still under development (Li et al., 2018).
While only the P300 evoked potential has been widely used
as a single trial (Lin et al., 2018), but to our knowledge, the
literature regarding its potential use in attention is still limited
(Käthner et al., 2014).

In contrast, oscillatory activity is widely used in contexts of
reduced control to estimate workload and fatigue (Chuang et al.,
2018; Karthaus et al., 2018) as well as many other cognitive
functions (Klimesch, 1999; Başar and Güntekin, 2008; Sauseng
and Klimesch, 2008; Buzsáki and Watson, 2012; Zoefel and
VanRullen, 2017). EEG oscillatory activity is the result of the
rhythmic activity of large populations of neurons (Buzsáki et al.,
2012), containing the most common spectral bands studied
in attention; theta (4–8 Hz), alpha (8–13 Hz), and beta (14–
30 Hz). Theta and especially the frontomedial theta has been
shown growing more powerful during sustained attention tasks,
yet this gain has traditionally been associated with deteriorated
attention (Lal and Craig, 2002; Wascher et al., 2014). Moreover,
theta is associated with performance improvement during non-
fatiguing tasks (Missonnier et al., 2006; Ahveninen et al., 2013).
On the other hand, alpha oscillations are thought to play a
role in the inhibition of task-irrelevant processes, specifically,
its power increments in sensory areas when not being used

to drive the attentional process (Kelly et al., 2006; Anderson
and Ding, 2011; for an alpha review: Klimesch, 2012). Beta has
traditionally been associated with top-down control mechanisms;
however, it may display similar inhibitory properties akin to alpha
ones (van Ede et al., 2014). Yet others have proposed that beta
relates to maintaining cognitive control during pauses within an
attention task (Shapiro et al., 2017). All these three bands have
been used to build “attentional indices” (Molteni et al., 2007;
Coelli et al., 2015, 2018).

Despite substantial evidence in favor of utilizing EEG
features to assess the attentional processes, this approach
has its shortcomings. EEG activity can be assessed under
uncontrolled environments but is technically complex, sensitive
to muscular and electric noise, generally uncomfortable, with
high computational demands. Moreover, highly noisy recordings
can produce high classification results due to overfitting, when
combining machine learning techniques with small sample sizes.
Even when using larger sample sizes, the differences in subjects
may contribute to different EEG activities evoked by the same
stimuli (Hogervorst et al., 2014).

Since attentional processes are a global brain state, their
manifestations should not only be revealed as changes in
brain activity but also through other psychophysiological
markers. Indeed, it is known that pupillary dilation (Hoeks
and Levelt, 1993; Liao et al., 2016; Binda and Gamlin,
2017), oculomotor activity (Werkle-bergner and Sommer, 2014;
Meyberg et al., 2017; Schwedhelm et al., 2017), heart rate
variability (Lehrer et al., 2010), and peripheral vasoconstriction
are associated to attentional performance (Vergara et al., 2017).
Despite their potential usefulness, along with EEG measures,
psychophysiological activity is seldom used in the practical
assessments of attention. For instance, neurofeedback that
is used for ADHD and other attentional disorders is done
only with brain-related variables (Ordikhani-Seyedlar et al.,
2016). Similarly, EEG spectral activity alone is considered the
gold standard in predicting alert/workload/fatigue to prevent
accidents (Kumar et al., 2018).

We conjecture that psychophysiological correlates such as
electrodermal response, heart rate variability, or peripheral
vasoconstriction, provide similar and/or complementary
information, as compared to brain-related variables solely, which
can be potentially employed in real therapies and interventions
or working environments to reduce health risks. In this work, we
aim to evaluate the association of classic attentional, brain-related
measurements with the general psychophysiological response,
triggered by attentional demands. Specifically, we hypothesize
that EEG spectral activity and peripheral vasoconstriction,
measured through skin temperature change, can complement
each other to predict attentional performance.

MATERIALS AND METHODS

Participants
A total of 34 participants were recruited (18 females and 16
males) of ages 19 to 36 years old, with a mean age of 25.17 ± 4.8
years (mean ± SD). All volunteers provided written informed
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consent, following the Declaration of Helsinki, to participate in
this study (approved by the Comité de Ética de Investigación en
Seres Humanos from the Facultad de Medicina, Universidad de
Chile), project number ID 060-2015, ACTA AP-65. This study
is partially based on a previously conducted one (Vergara et al.,
2017). The current study can be differentiated from the previous
one as it includes EEG measurements as well as adds 15 more
subjects to the sample size.

Tasks
Participants performed the same tasks in similar conditions,
as reported in Vergara et al. (2017) in their study. All the
participants briefly executed the following four tasks: The
baseline task (BT), the continuous performance task (CPT), the
flanker task (FT), and the counting task (CT). The BT was
to measure the baseline variation of body temperatures during
a resting performance. The remaining tasks were designed to
measure the specific attentional features; CPT tested for sustained
attention, FT tested for resilience to distractors, and CT for
attentional resources. All tasks last approximately 10 min.

Continuous Performance Task (CPT)
This task consisted of the detection of a sequence of target letters
with a low frequency of appearance (approximately 15%). To
increase the difficulty of the task, we flanked the target letter with
an additional letter to the right and left of the central letter. As
such, we displayed three letters at the same time for 150 ms,
followed by a fixation cross for 1,650 ms. If the central letter
was X and, two trials back, the central letter was O, participants
reported it by pressing a button (go condition). Reports of seeing

this sequence when it was absent were considered false alarms
(false alarm condition). A description of the task can be found
in Figure 1A. The go condition was randomly displayed in 15%
of a total of 400 trials, and the letters employed for the displays
included C, G, O, Q, H, and X. All participants had to detect the
same letter sequence.

Flanker Task (FT)
The task was configured following Green and Bavelier (2003).
In this task, six circles were arranged equidistantly apart (2.1◦)
from the center of the screen, in a circular fashion. In each trial,
a distractor outside the circular array was presented. It could be
shaped as a square or a diamond and was presented 0.5◦ to the
left or right (inside the array) or 4.2◦ (outside the array) from the
center of the circular array. When the shape was presented inside
the circular array, it was at 0.3◦ or at 0.9◦ from central fixation
when presented inside or outside, respectively. The subjects were
asked to report whether a square or diamond was present inside
the circles. The other circles were either blank or filled with
different geometric shapes, such as triangles and circles (see
Figure 1B for example). The diamonds and squares were never
displayed inside the circles, simultaneously, in the same trial.
However, four (easy condition) or six (hard condition) shape-
filled circles were evenly distributed over 320 trials. Additionally,
to counter this, half of the trials were compatible (the figure
outside the circular array matched the target shape inside), while
the other half were incompatible (the figure outside the circular
array did not match the target shape inside). The array was
presented for 100 ms, followed by an unlimited amount of time
to answer. The participants had to answer to continue with the

FIGURE 1 | Description of the three attentional tasks in the order in which they were performed. Before starting the attentional tasks, a baseline was taken with the
instruction to “sit and relax” (see “Materials and Methods” for more details). In the flanked CPT (A), participants had to report whether the sequence of central letters,
O-any letter-X, appeared. In the FT (B), participants had to report a square or a diamond inside one of six circles. If the inside target figure (square or diamond)
matched the external figure, presented outside the circles, it was considered compatible, while those that did not match were incompatible. In the CT (C),
participants had to report the number of squares observed.

Frontiers in Human Neuroscience | www.frontiersin.org 3 March 2019 | Volume 13 | Article 66

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00066 March 12, 2019 Time: 10:1 # 4

Vergara et al. Psychophysiological Assessment of Attention

task. Once the answer was provided, a 1,000 ms fixation dot was
displayed. Descriptions of the task and conditions can be found in
Figure 1B. For additional details regarding the task, see Proksch
and Bavelier (2002) and Green and Bavelier (2003).

Counting Task (CT)
The task was implemented as described by Green and Bavelier
(2003). In this task, a random number of squares was presented
on the screen. The participants had to report the number of
squares that they observed. The squares (0.5◦ × 0.5◦) were
randomly displayed over a 10◦× 10◦ square array centered on the
screen (Figure 1C). The set of squares were displayed for 100 ms,
followed a visual fixation dot while awaiting the participant’s
answer. The participants needed to respond to continue the task.
Once a response was given, the fixation dot was displayed for
1,000 ms before the next trial. The task difficulty was modulated
by presenting any number of squares, from 1 to 10, in an even
distribution across 200 trials.

In our previous report (Vergara et al., 2017), we presented the
tasks in the fixed order: BT, CPT, FT, and then CT. Therefore,
the tasks of the previous 19 participants are present in that
order. The 15 new participants included in this study were
assigned the tasks in all possible orders. We included new
orders to examine whether the respective order was relevant
to any of the reported effects. To avoid thermal noise in
our measurements, the environmental temperature was kept
constant for each subject. The temperature between the subjects
was homogeneously selected to be within a range of 18–26◦C.
This range was chosen based on previous room/environmental
temperature studies (Steinmetz and Mussweiler, 2011; Cheema
and Patrick, 2012; Huang et al., 2014; Schilder et al., 2014).
Finger and environmental temperatures were measured using
two Dallas DS18B20 thermometers, and an Arduino UNO board.
One thermometer was positioned at the tip of the left ring finger,
and the other was positioned at 40 cm to the front, 20 cm to
the left, and it was lifted from the desk by 5 cm in front of
the participant.

EEG Recordings and Signal Processing
During the experiment, we recorded 32 channels of continuous
EEG signals, using a Biosemi ActiveTwo System in an extended
10–20 configuration (Jasper, 1958). Two electrodes were placed
above and below the right eye and two were placed on the external
canthi of both eyes; this configuration was used to record the
vertical and horizontal electrooculogram (EOG), respectively.
The data was recorded at 2,048 Hz, re-referenced to a common
average reference and band-pass filtered between 1 and 40 Hz
using a symmetric linear-phase FIR filter of firwin design with
a Hamming window (acausal, zero-phase delay, and applied
in one-pass forward). The filter length was 3.3 s. The width
of the transition band of the filter was 1 Hz at the low cut-
off frequency and 10 Hz in the high cut-off frequency. The
pass-band ripple of the filter was 0.0194 dB and the stop-band
attenuation was 53 dB.

Data segments containing muscle movements and other
non-eye blinks recorded artifacts were eliminated through the
automatic, peak-to-peak threshold within a windows of 2 s.

Subsequently, continuous data was submitted to the independent
component analysis (ICA) to remove vertical and horizontal
EOG components of the signals. Following this, continuous
EEG epoching was conducted for each frequency band into
a contiguous duration window, corresponding to 10 cycles
of the central frequency of the band. Thus, the duration of
the theta (4–8 Hz), alpha (8–13 Hz), and beta (14–30 Hz)
epochs were of 1.8, 1.0, and 0.45 s, correspondingly. The
artifact detection was performed on epoched data, using a
peak-to-peak threshold algorithm with a voltage threshold of
250 µV. All the epochs containing the detected artifacts were
rejected. The power spectral density (PSD) was obtained for
each frequency band’s epoch, through a multitaper spectrum
estimation, using multiple DPSS tapers with a half-bandwidth
window of 4 Hz. The PSD values were then transformed
to decibels (dB) by applying a natural logarithm and then
multiplying by 10. For the data analysis we selected middle-
line electrodes, which have previously been related to attention
(Borghini et al., 2014; Hogervorst et al., 2014) for all the
aspects of our tasks; sustained attention (Kelly et al., 2003),
resilience to distractors (Bonnefond and Jensen, 2012), working
memory (Freunberger et al., 2011), and attentional resources
(Ghorashi and Spencer, 2015).

Data Analysis
The analysis was performed to evaluate two main questions:
Does finger temperature behave similarly to EEG spectral
activity during the tasks? And, does finger temperature predict
attentional performance as well as the EEG spectral activity?
For the first question, to compare the temporal dynamics of
temperature and EEG spectral activity regardless of the time
that a participant needs to complete a task, we scaled the time
so that all tasks last the same duration for each participant.
This step is critical to compare task dynamics rather than time
dynamics. If this no escalation wouldn’t be done, we would
need to truncate the participants that lasted longer. Specifically,
we calculated a representative normalized timeline for each
task/instruction, which starts at 0 and ends in 1 (in this scale 0.5
would equate to half of the task). To fit the temporal data of each
participant in this timeline without losing temporal resolution,
we estimated a reference duration for each task/instruction by
calculating the average time taken by the group of participants
in seconds. In this way, we determine the number of points
between 0 and 1 of the normalized time scale in granularity
of seconds (e.g., average duration of 600 s for a task means
600 points between 0 and 1 in the normalized timeline of the
task). Finally, each participant’s task related temperature dynamic
was then linearly interpolated within that common space. This
scaling allow us to compensate the time spent on the task
through inter-subject variability, keeping the duration of each
task proportional (i.e., each participant start at 0 and ends at 1).
Importantly, this normalization does not affect importantly the
data considering that all tasks last approximately the same. To
control for environmental temperature differences, we average
centered each subject using the following procedure:

T◦ij = (xij − xj)+ xg (1)
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Where xij is an individual observation i, of the temperature
of a particular participant j, xj is the participant’s average
temperature, xg is the grand average temperature for all
participants, and T◦ij is the centered temperature for observation
i, and participant j. Once all the participants were normalized, we
averaged their finger temperature and their theta, alpha, and beta
spectral activities. Finally, we performed Spearman correlations
to evaluate if the finger temperature displayed similar behavior
to those of the spectral activity. To address whether finger
temperature predicts attentional performance as well as EEG
spectral activity, we employed the changes in finger temperature
and spectral activity, from the beginning and the end of each task,
to predict attentional performance. Following the procedure of
Vergara et al. (2017), we used 1FingerT◦ defined as:

1FingerT◦ = Final Finger Temperature− Initial Finger Temperature (2)

Where, the final and initial finger temperature is
approximately the average of 1 min of it, obtained from the
fingertip thermometer, at the end or the beginning of one
of the four tasks, respectively. The Initial finger temperature
did not include the instruction time and was restricted to
the beginning of the task. We used the same approach for
spectral activity, replacing finger temperature with the EEG
spectral power, obtained at the first and last minute of each task,
leading to 12 new variables: 1Theta, 1Alpha, 1Beta, each in
four midline EEG electrodes (Oz, Pz, Cz, and Fz). To predict
attentional performance, we used multiple linear regression
models, using 1FingerT◦, 1Theta, 1Alpha, 1Beta for each
electrode as predictors.

Since all 12 EEG spectral variables are likely to be correlated,
we evaluate the collinearity using the variance inflation factor
(VIF) (García et al., 2015). Linear models presenting VIFs higher
than three were then submitted to a dimension reduction, to
reduce the collinearity and the number of variables used as
predictors. The dimension reduction, in our case, was aimed to
average those variables which were consistently associated, so it
is possible to assume that they measure the same phenomenon.
This allowed us to reduce the 12 spectra EEG variables into
fewer independent variables, where they were grouped based
on their covariances. This procedure is widely used for this
purpose (Gaskin and Happell, 2014). In doing so, we performed
a factor analysis using maximum likelihood as an extraction
method, with varimax rotation (intending to reduce collinearity),
where the number of factors to extract was decided based on the
Eigenvalue > 1 criteria (Raîche et al., 2013). The variables that
loaded the same factor were then averaged. In case of detecting
cross loaders in the factor solution (variables loading over 0.3 in
more than one factor), the averages were built using the highest
loading and ignoring the lowest. Before averaging the variables,
we evaluated the internal consistency of each dimension using
Cronbach’s alpha (Cronbach, 1951). These averages were then
used in the regression models. If the linear models with reduced
dimensions presented a VIF higher than three, then they were
revised by checking each regressor separately, and then the
combinations among them, leaving behind the regressors that
explained more variance (squared-R based), thus, keeping the
VIF below 3. The dependent variables were different depending

on the task, and also some new independent variables which were
included according to each case. For the CPT we used go accuracy
and reaction times as dependent variables, without including any
new independent variables. For FT we used incompatible minus
compatible reaction times as the dependent variable, following
previous reports (Proksch and Bavelier, 2002; Green and Bavelier,
2003). As an independent variable (predictor) we included the
difficulty (easy or hard). Finally, for the CT we used the error
ratio as the dependent variable, and the number of squares
presented in the task as a predictor (independent variable).
We also reported whether the data passed the assumption of
normality of the dependent variable and the residuals, as well
as the homoscedasticity. The homoscedasticity (homogeneity of
variance) was evaluated using the non-constant variance score
test, and for normality, we used the Shapiro–Wilk test. In this
case, we reported the normalized regression coefficients to be
comparable to the predictor’s coefficients of EEG spectral activity
with 1FingerT◦. Finally, to evaluate the effects of the order
in which the tasks were presented, we performed a one-way
ANOVA, to evaluate if all the dependent variables, previously
described, were different due to the task order. Given the ordinal
nature of this variables and its tight relation to the duration of
the experimental session, we also included as a covariable in the
multiple linear regression models.

Software
For every statistical analysis, we used the R-project (R Core Team,
2015), using the following packages: Lattice (Sarkar, 2008), ez
(Lawrence, 2016), car (Fox and Weisberg, 2011), psych (Revelle,
2016), nFactors (Raiche, 2010), GPArotation (Bernaards and
Jennrich, 2005), and MVN (Korkmaz et al., 2014). The processing
of data processing and figures were developed with Python
2.7.1, Anaconda 2.4.1 (Python Core Team, 2015), using the
following packages: Pandas (McKinney, 2010), MNE (Gramfort,
2013; Gramfort et al., 2014), and Matplotlib (Hunter, 2007). The
EEG data processing was carried out through the MNE-python
software (Gramfort, 2013).

RESULTS

Finger Temperature and Spectral Activity
Association
To assess whether finger temperature measurements for the four
different tasks behaved similarly to the EEG spectral activity, we
ran a set of correlations using the grand averaged EEG spectral
activity and finger temperature. Even when using a conservative
approach for these correlations, such as a Bonferroni’s multiple
comparison correction with an alpha value of p < 0.001, most of
them were significant (Figure 2). In general terms, the cognitive
tasks presented a consistent inverse association of spectral activity
with the finger temperature, while for the baseline they presented
a positive association. The beta and alpha bands were more
consistently associated to finger temperature changes, where only
the alpha band displayed a remarkably similar curve in the
function of task time (Figure 3B). However, it is critical to notice
that the EEG presented a noisy dynamic, as compared to the
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FIGURE 2 | Spearman’s correlations presenting the association between finger temperature and EEG spectral activity for each of the four tasks of the study.
Presents Spearman’s correlations of all three tested spectral bands. Each box represents a correlation test, with Spearman’s rho inside it. Colors are assigned for an
easy reading, where blank spaces denote non-significant correlations (we considered significant results with p < 0.001, based on Bonferroni’s correction).

finger temperature, while the latter presented a slightly slower
dynamic throughout the duration. Overall, these results support
that finger temperatures are associated with the classic brain
attentional measurements, related to attentional performance.
Interestingly, this relation is inverse for goal-directed tasks (CPT,
FT, CT), in contrast with the BT, which presented a direct
association (Figure 3).

Collinearity and Dimension Reduction
Once we have already described a population relationship
between the EEG spectral activity and finger temperature, we
wanted to evaluate if, at the participant level, we were able to
predict the attentional performance, based in spectral activity and
finger temperature. Therefore, we used the difference between the
ending and the beginning of each cognitive task as predictors
(for further details, see the section “Materials and Methods”).
Given the high correlation presented among the different spectral
bands and electrodes, where the signals were measured, we
violated the independence of multiple linear regression model
assumptions by garnering a high collinearity (VIF > 20, ref < 3).
Thus, we submitted all the deltas of the spectral activities for a
dimension reduction, for each task, using factor analysis. For the
CPT, we detected three dimensions; one related exclusively to
1Theta, another to all the 1Alpha electrodes, but also including
the Oz 1Beta, and finally the 1Beta for the Pz, Cz, and Fz
electrodes (Table 1). All the three factors presented high internal
consistencies: The theta band Cronbach’s alpha = 0.9; the alpha
band plus the occipital beta presented a Cronbach’s alpha = 0.93,

and the parieto-center-frontal beta band presented a Cronbach’s
alpha = 0.89 (Table 1). For the FT, we found three factors,
one associated to 1Theta, another to 1Alpha, and the last one
to 1Beta. Their internal consistencies, measured through the
Cronbach’s alpha were, 089, 0.94, and 0.92, respectively. Finally,
for the CT, only two factors were found, one associated with
1Theta, and another to 1Alpha and 1Beta. The Cronbach’s
alpha values for these two factors were 0.89 and 0.94, respectively.
All the results are summarized in Table 1. Given the current
results, the differences were average agglomerated using each
factor as reference, depending on the results for each task, to then
use these averages as predictors in the linear regression models.
In case of having cross loaders in the factor solution (variables
loading over 0.3 in more than one factor), the averages were
built using the highest loading and ignoring the lowest (Table 1,
marked in bold). From this point on, we use X1 to denote the
spectral activity deltas that were then averaged, based on the
factor analysis results.

Multiple Linear Regressions
For the CPT, we were able to significantly estimate the reaction
times for go condition, using 1FingerT◦ [F(1.28) = 11.62,
p = 0.0019, R2 = 0.293; β1FingerT◦ = 0.54, t = 3.40, p = 0.0019;
homoscedasticity: χ2 = 0.37, df = 1, p = 0.53; residual normality:
W = 0.96, p = 0.45, dependent variable normality: W = 0.949,
p = 0.087]. The spectral EEG activity variables were not
significant predictors of the CPT go reaction times; however,
the X1Beta average and the order of the task presented a
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FIGURE 3 | The average of the fingertip temperature and EEG spectral alpha band activity, presented within the normalized time for all four tasks: (A) BT, (B) CPT,
(C) FT, and (D) CT. In gray, the standard deviation of the measures are presented.

significant interaction (βX1Beta = 0.32, t = 0.92, p = 0.36;
βTasksOrder = 0.37, t = 1.70, p = 0.09; βInteraction = −0.98,
t = −2.57, p = 0.016), when predicting the CPT accuracy
[F(3,27) = 5.57; p = 0.004, adjusted-R2 = 0.313; homoscedasticity:
χ2 = 2.64, df = 1, p = 0.103; residual normality: W = 0.929,
p = 0.043, dependent variable normality: W = 0.627, p = 1.017E-
08]. For accuracy, the 1FingerT◦ was not a significant
predictor. As such, for a sustained attention task, the finger
temperature was able to predict the distinct aspect of attentional
performance, compared to the EEG spectral activity, suggesting

that despite the association between both (Figure 2), they provide
complementary information. For the FT, only the spectral
activity was a significant predictor, concretely the FT X1Alpha
[F(1,66) = 8.52; p = 0.004, R2 = 0.114; βX1Alpha = −0.33,
t = −2.91, p = 0.004; homoscedasticity: χ2 = 1.08, df = 1,
p = 0.29; normality: W = 0.977, p = 0.27, dependent variable
normality: W = 0.983, p = 0.39]. These results suggest that
finger temperature modulations are not associated to this specific
feature of attention, which can be captured by the EEG alpha
spectral band. Finally, for the CT we found a complementary
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TABLE 1 | Factor analyses and internal consistencies results for all tasks.

Spectral activity Electrode CPT FT CT

Factor1 Factor2 Factor3 Factor1 Factor2 Factor3 Factor1 Factor2

1Theta Oz 0.55 0.67 0.77 0.87

Pz 0.71 0.57 0.7

Cz 0.81 0.87 0.67

Fz 0.88 0.81 0.84

1Alpha Oz 0.96 0.98 0.91

Pz 0.61 0.58 0.64 0.78

Cz 0.73 0.59 0.68 0.78 0.41

Fz 0.78 0.44 0.57 0.62 0.79 0.47

1Beta Oz 0.64 0.72 0.47 0.7

Pz 0.74 0.89 0.77

Cz 0.86 0.92 0.66

Fz 0.91 0.83 0.57

Internal consistencies Cronbach’s alpha 0.9 0.93 0.89 0.89 0.94 0.92 0.89 0.94

Bold loadings indicate the variables used for averaging. Internal consistencies are indicated at the bottom of the table for each factor, including only the bold loadings.

situation, where the 1FingerT◦ (β = −0.104, t = −3.140,
p = 0.0018), CT X1AlphaBeta (β = 0.228, t = 6.83, p = 4.55E-11),
and the number of squares presented were significant predictors
of the error ratio in the task (β = 0.779, t = 23.45, p = 2E-16).
These results demonstrate that finger temperature served as
a complement to the spectral EEG activity when predicting
attentional performance in this task, thereby, explaining 66% of
the variance [F(3,302) = 201, p = 2.2E-16, adjusted R2 = 0.663;
highest VIF = 1.0097; homoscedasticity: χ2 = 53.41, df = 1,
p = 2.7E-13; normality: W = 0.966, p = 1.3E-06, dependent
variable normality: W = 0.864, p = 2.2E-16]. In order to evaluate
the relative weight of the model fit of the EEG and finger
temperature variables, we explored the reduction in it when
removing the X1AlphaBeta or the 1FingerT◦. We observed
a reduction of 0.05 in the adjusted-R2 when removing the
X1AlphaBeta and of 0.01 for the 1FingerT◦. This means
that the X1AlphaBeta explains around 5% and the 1FingerT◦
about 1% of the model’s variance. This means that the number
of squares explains over 60% of the variance in the error
ratio made by the subject. Beyond the experimental condition,
the EEG measurements explain more variance than the finger
temperatures. Overall, the results presented here support that the
classic brain-related variables are capable of being complemented
with a psychophysiological approach. Concretely, as summarized
in Table 2, the EEG related variables were unable to capture the
performances predicted by the finger temperature and vice versa
in the case of CPT and FT.

DISCUSSION

The results of our experimental design can be summarized in
two major statements: First, the finger temperature might not
measure the same physiological processes as the EEG spectral
activity. Second, these variables are rather complementary when
trying to estimate attentional performance. In the following
sections, we address the consistency of our spectral EEG

TABLE 2 | Summary of all linear regression models results.

Tasks CPT FT CT

Performance Accuracy Reaction
times

Reaction time
diff.

Error

1 Finger n.s. 0.54∗∗ n.s. −0.10∗∗

X1Theta n.s. n.s. n.s. n.s.

X1Alpha n.s. n.s. −0.33∗∗ n.s.

X1Beta 0.32 n.s. n.s. n.s.

X1AlphaBeta n.s. n.s. n.s. 0.22∗∗∗

Order 0.37 n.s. n.s. n.s.

Order∗DeltaBeta −0.98∗ n.s. n.s. n.s.

Square N◦ 0.77∗∗∗

R2 0.313 0.293 0.114 0.663

Each table’s column represent one linear regression model. Standardized
coefficients are presented. Non-significant results were included as n.s., and
therefore pruned from the model. In case of interaction, main effects are left to
improve interpretability. Square Number were only tested in CT, therefore, left
in blank for the other tasks. Accuracy in CPT refers to the number of correct
answers in Go condition. Reaction times are those of the correct answers in Go
condition. Reaction time difference in FT is the difference between incompatible and
compatible condition’s reaction times. Finally, error refers to the number of wrong
answers given in counting task. Significances are stated as follows: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

findings with the previous literature, followed by how we
interpret the association of finger temperatures. Finally, we
address the possible applications of finger temperatures for
research regarding attention, accident prevention, or workload
and fatigue prediction.

Spectral EEG Signals and Attention
In this work, we first examined the three different EEG
frequency bands and the finger temperature to predict attentional
performance. We found that theta was not a significant predictor
of performance in any of the three attentional tasks used
(Table 2). The finding contests previous reports showing that
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theta oscillations had been ascribed to numerous cognitive
processes, such as working memory (Raghavachari et al., 2001),
expectation (Rungratsameetaweemana et al., 2018), or attention
(Fries, 2015). During our tasks, most of these cognitive abilities
are deployed to fulfill the tasks. Thus it is intriguing that the theta
band activity exhibited a weak correlation with the 1FingerT◦
and was not a good predictor of attentional performance.
In contrast, the alpha activity consistently correlated with
the 1FingerT◦ across all tasks and locations (Figure 2).
The alpha band activity was the only significant predictor of
FT performance. These results appear to be supported by a
more robust association between this frequency band and the
attentional process it underlies, which is related to the inhibition
of non-relevant areas (Fu et al., 2001; Jokisch and Jensen, 2007).
Finally, beta activity resulted in the strongest correlation with the
finger temperature. Also, it was a significant predictor of CPT
performance. This result is consistent with its putative, top-down
control over cognitive processes. Our tasks were selected in part
because they required various abilities, but also because all of
them could be considered to depend on the activation of a high-
order phenomena, requiring top-down control mechanisms.

As stated before, EEG is likely to be the most non-invasive
tool used to assess and explain the subjects’ performance in the
different attentional tasks, but it should be considered that most
of the reports about their role in brain processes are the result of
complex experimental settings. Furthermore, EEG signals have
to be subjected to intricate analysis algorithms that modify the
original signal in various forms.

Finger Temperature and Attention
To our knowledge, there are limited articles testing the peripheral
temperatures and its relation to attention. Nonetheless, the
fact that we extended the sample and included the EEG
measurements of Vergara et al. (2017) means that we extended
sample size using the same experimental design. This allowed
us to directly contrast our previous results to evaluate the
robustness of peripheral temperature as a marker of attention.
In our present study, finger temperature was a significant
predictor of attentional performance for two of the three
tasks performed, the FT being the one where the finger
temperature was not a significant predictor. This contrasts
the previous results, where the finger temperature was used
to estimate the attentional performance of all three tasks
(Vergara et al., 2017). We obtained a significant p-value in
our previous report; however, given the sample size used in
that study, it was possible to obtain non-reproducible results
(Nuzzo, 2014). Simultaneously, it is interesting that we were
able to obtain similar results for two of the three tasks,
supporting that finger temperature can be used as an attentional
performance marker. If the tasks are further examined, where
the finger temperature was a significant predictor, it will be
found that they target particular features of attention. CPT
is associated with sustained attention (Riccio, 2002; Huang-
Pollock et al., 2012), while FT was developed to measure
resilience to distractors (Proksch and Bavelier, 2002), and
CT is related to attentional resources (Green and Bavelier,
2003). Altogether, we interpret that a decrement in finger

temperature is associated with an increment in arousal, which
will help sustain an attentional state, as well as recruit
more resources, but not necessarily improve the ability to
discriminate between the target and the distractors when
solving the task.

Then, why would finger temperature be associated with
arousal? It is known that many, some of them autonomic,
psychophysiological mechanisms will be triggered into coupling
with environmental demands (Jansen et al., 1995). Probably,
the most likely scenario of this coupling is during the fight
or flight response (FOF) (Cannon, 1929). In this scenario, a
highly salient stimulus from the environment triggers many
psychophysiological mechanisms to evaluate the danger to then
decide if the response should be FOF.

The FOF system increases arousal to cope with stressful
situations (Kemeny, 2003) where the heart rate (Kreibig, 2010)
and peripheral vasoconstriction (Ulrich-Lai and Herman, 2009),
among others physiological responses, appear. We may consider
that the FOF response is an acute version of a general
physiological system triggered to cope with external demands.
For instance, thermal stress induces vasoconstriction/dilation
(Charkoudian, 2003; Johnson and Kellogg, 2010), which changes
hand and feet temperatures (Cheung, 2015), but cognitive-
demanding tasks also produce vasoconstriction (Iani et al., 2004)
and can be related to subjective, self-reported stress (non-thermal
stress) (Yamakoshi et al., 2007). We conceived that the set of
physiological responses that appear in a triggered FOF response
are proportional to the perceived stress/potential risk. Therefore,
cognitive tasks will trigger a FOF-like response, according to the
perceived stress/cognitive demand that the task represents. This
claim would also be supported by Figure 2, were correlations
between spectral bands and finger temperatures change direction
in BT, as compared to goal-oriented tasks. We interpret this
difference as a process where during BT, no external demand
is imposed upon the participant and therefore, there is no
trigger of this psychophysiological mechanism. Even though FOF
is classically seen as an emotional response, it is necessarily
related to attentional resource allocation and reorienting. The
heart rate variability and peripheral vasoconstriction are already
reported to be associated with attentional performance (Lehrer
et al., 2010; Vergara et al., 2017). In summary, these results
can be interpreted within a psychophysiological phenomenon
that leads to an increase in arousal and attentional resources,
which in turn is triggered by external demands and observed
by modulations in autonomic responses, such as the peripheral
body temperature.

Differences Between Finger Temperature
and EEG Spectral Activity
Finger temperature has proven to be useful in predicting
attentional performance (Vergara et al., 2017). More importantly,
finger temperature seems to complement spectral measurements.
For instance, CPT reaction times were predicted by finger
temperature but not by spectral activity, while accuracy was
predicted only by spectral activity. Only in the case of CT we
found that both were significant predictors. If we consider that
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spectral activity presents a significant correlation with finger
temperature, how is it possible that 1FingerT◦ is independent
from X1AlphaBeta? (reflected in the highest VIF of 1.009;
ref < 3). If we examine Figure 3, we will notice that despite
the similarity in the dynamic of both curves, the spectral
activity is noisier compared to the finger temperature. Also,
it presents a faster dynamic, hence the use of Spearman’s
monotonic correlation instead of the usual linear Pearson
correlation. Given that we were using the difference between
the first and the last minute of the task, the slower dynamic
of finger temperature helps to increase the 1FingerT◦, as
compared to spectral activity which rapidly plateaus. Also, the
noisy EEG signal increased the variability of the difference
between the last and first minute. It is most likely that
the noise was due to artifacts such as fast fluctuations in
impedance values, muscle contraction, eye movements or others.
These differences between both the signals implied that when
estimating the differences between the last and first minute,
they resulted in independent variables. This is most interesting,
considering that for CPT—a vigilant task—the finger temperature
was a predictor of reaction times, while the spectral activity
was of accuracy. We speculate that the differences between
the dynamic of these two signals might be reflect different
attentional processes. Naturally, a better suited experiment to
disentangle each other’s roles would be required to understand
the mechanisms underlying the autonomic and cortical neural
correlates of attention. In the specific context of this article, we
conclude that the EEG spectral activity and finger temperatures
are robust predictors of sustained attention and attentional
resources. For resiliency to distractors, the spectral activity seems
to be a better predictor. Therefore, we also conclude that the EEG
spectral activity can be complemented by the finger temperature
when predicting attentional performance in tasks requiring long
periods of attention, and when more resources are needed
to fulfill a task.

One final interesting finding is the correlation between the
finger temperature and the change in direction of the spectral
activity during BT, when compared to all the performed three
tasks (Figure 2). Only for BT the correlations are positive, while
for all goal-oriented tasks this association is negative. The critical
difference between these tasks is that BT is not goal oriented, or
at least it does not have a clear expected outcome or external
demand. The instruction is to relax, but no evaluation or answer
is required during the task. As such, it is plausible that finger
temperature, jointly with EEG spectral bands, can be used to
discriminate between states where people are engaged in a goal-
oriented task or are distracted toward a non-goal-oriented task
(e.g., attending to their own thoughts). Our experimental design
does not allow for an evaluation of this, however, it seems

promising to use the association of EEG and finger temperatures
as markers of task engagement.

Possible Applications for
Brain-Autonomic Joint Assessment of
Attention
Our current results suggest two possible applications for joint,
brain-autonomic assessment of attention. First, our results
support the idea that the best way to estimate the attentional
state of a person and avoid possible workplace accidents due
to inattentive or drowsiness, is using a joint, brain-autonomic
assessment of attention. However, this concept still requires
additional research to determine the relative value of autonomic
and brain-related measures, and the impact of non-regulated
environments over these measures and their predictive power.
Moreover, in this study, we used a simple approach (multiple
linear regressions) which can be used as starting point to
develop more accurate models using techniques such as random
forest, support vector machine, artificial neural networks, or
others. The fact that a simple approach proves to be enough to
find the association between finger temperatures, EEG spectral
activities, and attentional performance, is a good starting point
to improve predictive models and, above all, include peripheral
measurements as complements of EEG. In addition, these
measures may have a role in predicting other cognitive outcomes,
such as neurofeedback therapies, widely applied to ADHD
(Ordikhani-Seyedlar et al., 2016). Overall our results contribute
to the assessment of attention by suggesting a joint, brain-
autonomic strategy, improving the prediction of the attentional
state. This can be employed in the workplace environment and
thus contribute to enhancing safety and mental health conditions.

AUTHOR CONTRIBUTIONS

The experimental design was developed by RV and PM. The
data collection was performed by RV and CÁ. The analysis was
conducted by CM-L and RV. All the electrical ad hoc devices and
software were developed by RV. The manuscript was written by
RV, CM-L, CÁ, JE, and PM.

FUNDING

This work was supported by the postdoctoral FONDECYT
grant 3160403, given to RV, the ICM P09-015-F and the
Puelma Foundation, and the Biomedical Neuroscience Institute
Beca Puente to CM-L.

REFERENCES
Ahveninen, J., Huang, S., Belliveau, J. W., Chang, W.-T., and Hämäläinen, M.

(2013). Dynamic oscillatory processes governing cued orienting and allocation
of auditory attention. J. Cogn. Neurosci. 25, 1926–1943. doi: 10.1162/jocn_a_
00452

Anderson, K. L., and Ding, M. (2011). Attentional modulation of the
somatosensory mu rhythm. Neuroscience 180, 165–180. doi: 10.1016/j.
neuroscience.2011.02.004
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