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A B S T R A C T

Random forests (RF) is a powerful species distribution model (SDM) algorithm. This ensemble model by default
can produce categorical and numerical species distribution maps based on its classification tree (CT) and
regression tree (RT) algorithms, respectively. The CT algorithm can also produce numerical predictions (class
probability). Here, we present a detailed procedure involving the use of the CT and RT algorithms using the RF
method with presence-only data to model the distribution of species. CT and RT are used to generate numerical
prediction maps, and then numerical predictions are converted to binary predictions through objective
threshold-setting methods. We also applied simple methods to deal with collinearity of predictor variables and
spatial autocorrelation of species occurrence data. A geographically stratified sampling method was employed for
generating pseudo-absences. The detailed procedural framework is meant to be a generic method to be applied to
virtually any SDM prediction question using presence-only data.

� How to use RF as a standard method for generic species distributions with presence-only data

� How to choose RF (CT or RT) methods for the distribution modeling of species

� A general and detailed procedure for any SDM prediction question.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Specification Table
Subject Area: Agricultural and Biological Sciences

Environmental Science
More specific subject area: Species distribution modelling
Method name: Random forests models species distribution
Name and reference of
original method:

Zhang, L., Huettmann, F., Liu, S., Sun, P., Yu, Z., Zhang, X., Mi, C., 2019. Classification and
regression with random forests as a standard method for presence-only data SDMs: A future
conservation example using China tree species. Ecological Informatics, 52, 46–56.

Resource availability: R software

ethod details

Fig. 1 shows the overall workflow using the classification tree (CT) and regression tree (RT)
lgorithms of the random forests (RF) method to model the distribution of species.

ata and materials

The study area encompassed all of China. China has a land area of 9.6 million square kilometers and
pans a large range of climatic types and natural environments. We characterized the environments in
hina based on 19 biologically relevant proxy climatic variables (Table 1) drawn from the WorldClim
ataset at a resolution of 30 arc seconds (www.worldclim.org). Using the vector map of Chinese

ig. 1. General framework for species distribution modeling by random forests (classification tree (CT) and regression tree (RT)
lgorithms) and R functions used in this study. Adopted from Zhang et al. [9]; * recommended methods.
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administrative regions (http://bzdt.ch.mnr.gov.cn/), the “extract by mask” tool in ArcGIS (ESRI Inc.,
http://www.esri.com/) was used to delineate climate data within the administrative boundaries of
China. Baseline climatic data were obtained from the average of the period 1960–1990, and these data
were rasterized to a cell size of 8 km with the “resample” tool in ArcGIS 10.1.

Fifty-two native forest tree species that occur in China were selected for a comparison of the
performance of the CT and RT algorithms. The distribution datasets for these 52 tree species were
derived from the 1:1,000,000 Vegetation Distribution Map of China [38]. Those data were freely
obtained from the Environmental and Ecological Science Data Center for West China of the National
Natural Science Foundation of China (http://westdc.westgis.ac.cn). The data were then rasterized to a
cell size of 8 km � 8 km with the “polygon to raster” tool in ArcGIS 10.1.

Suppression of collinearity in predictor variables

Collinearity (or multicollinearity) refers to the strong interdependence of explanatory variables, usually
inaregressionmodel.Theoppositeeffect includestwokeyproblems:inflatedestimatesofavariable’seffect
and debated model extrapolation. There are currently many methods available for tackling collinearity
problems [1]. A priori variable selection (leaving out the most correlated variables) and combining
correlated variables into new explanatory terms (e.g., via PCA) are the most often used approaches.

We applied a pre-selecting variables approach to avoid the risk of multicollinearity. We eliminated the
predictor variables yielding correlation values above 0.8 (Pearson’s coefficient) in the pairwise cross-
correlation matrix, and the remaining variables were used for constructing CT or RT models. We kept the
following five climatic variables for the CT and RT models: annual mean temperature, annual temperature
range, isothermality, annual precipitation, and precipitation seasonality (coefficient of variation). A
correlation matrix was constructed using the “layerStats” function in the “raster” R package [2].

The correlation values chosen above (e.g., 0.8 and 0.7) are from a folk law without statistical
foundation, but this choice performed nearly equally well with other approaches addressing
collinearity [1]. We proposed the pre-selecting variables approach because of its convenience when
used for a large number of species. Furthermore, this approach could minimize model overfitting and
ensure comparability across model projections. If a specific species is studied, among the highly
correlated predictors we can retain the variable that has the highest correlation with species
occurrence data. In addition, Pearson correlations (between numeric variables), polyserial
correlations (between numeric and ordinal variables), and polychoric correlations (between ordinal
variables) can also be calculated if needed.

Table 1
Biologically climatic variables.

Code Variable

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp–min temp))
BIO3 Isothermality (BIO2/BIO7)
BIO4 Temperature Seasonality
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
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valuation of model performance

There is now a plethora of metrics for evaluating SDM performance [3,4]. In short, different
ccuracy measures have different strengths and weaknesses, and none can provide a universal rating
or SDM performance. This phenomenon may be ascribed to the fact that different measures have
ifferent strategies of weighting the various types of prediction errors (e.g., omission, commission, or
onfusion), especially for composite metrics that are based on different algorithms and assumptions
e.g., Kappa; overall accuracy, OA). Therefore, we argue for applying multiple performance metrics to
valuate model performance.

hreshold-independent evaluation (numerical prediction evaluation)
For numerical prediction, the predictive performances were evaluated using such measures as the

oot mean square error (RMSE), the mean absolute prediction error (MAE), the coefficient of
etermination (R2), mean cross entropy (MXE), and area under the curves (AUCs) of four threshold-
ndependent measures: the area under the sensitivity curve, the area under the specificity curve, the
rea under the accuracy curve, and the area under the receiver operating characteristic curve (ROC).
he latter four measures related to the AUC were estimated using the “AUC” package in the R statistical
nvironment [5]. Measures of AUC avoid the need to choose a threshold value that separates presence
rom absence (i.e., it is threshold independent) and in addition describe the overall ability of the model
o discriminate between two cases.

The RMSE, MAE, R2, and the MXE were calculated for the dataset as in Liu et al. [4]:

RMSE  ¼  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðpi � oiÞ2
vuut

MAE  ¼  
1
n

Xn
i¼1

pi � oij j

R2 ¼ 1 � 1
n

Xn
i¼1

ðpi � oiÞ2= pð1 � pÞ½ �

MXE ¼ �1
n

X
oi¼1

lnpi þ
X
oi¼0

lnð1 � piÞ
2
4

3
5;

here pi and oi are the predicted and observed values (1 for presence, and 0 for pseudo-absence) for
ite i,o is the mean of the observed values, n is the total number of sites, and p is the observed
revalence of model-testing data.
For numerical predictions, accuracy measures often characterize two aspects of SDM models:

iscrimination capacity (e.g., AUC values) and reliability (e.g., RMSE, MAE, and R2) [4]. Discrimination
apacity measures the ability to discriminate presence and absence based on model predictions.
eliability tells us about how closely predicted probabilities match observed proportions of
ccurrence, i.e., goodness of fit. The relative importance of reliability and discrimination capacity
epends on the use of the model and the experience level of the user [6].

hreshold-dependent evaluation (binary prediction evaluation)
The accuracy of binary maps produced by threshold-setting approaches was quantified using

easures of accuracy derived from the confusion matrices. These measures included Kappa, the true
kill statistic (TSS), OA, sensitivity, and specificity. Kappa, TSS, and OA are composite measures of
odel performance, as they attribute different weights to the various types of prediction errors (e.g.,
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omission, commission, or confusion). The R package “SDMTools” (“accuracy” function) [7] was used to
calculate the values of these metrics.

Choice of threshold-setting methods (Binary conversion of numerical prediction)

Species distribution models (SDMs) usually produce numerical predictions. However, in
conservation and environmental management practice (e.g., reserve design and biodiversity
assessment), the information presented as species presence/absence (binary) may be more practical
than data presented as probability or suitability. Therefore, a threshold is needed to transform the
numerical or suitability data to presence/absence data in conservation and environmental
management practice.

The binary conversion process can be conducted using the R package “PresenceAbsence” [8]:

(1) Default 0.5: Taking a fixed default value of 0.5 as the threshold.
(2) MeanProb: Taking the average predicted probability of the threshold-selecting data as the

threshold.
(3) PredPrev = Obs: The threshold where the predicted prevalence (the proportion of sites occupied) is

equal to the observed prevalence of the threshold-selecting data.
(4) Sens = Seps: The threshold where sensitivity (the proportion of observed presences correctly

predicted as presence) equals specificity (the proportion of observed pseudo-absences correctly
predicted as pseudo-absence) for the threshold-selecting data.

(5) MaxOA: The threshold that results in the maximum value of overall accuracy (OA) for the
threshold-selecting data (see below). OA measures the proportion of correctly classified presences
and absences.

(6) MinROCdist: The threshold corresponds to the point on the receiver operating characteristic (ROC)
curve (sensitivity against 1-specificity) that minimizes the distance to the top-left corner (0,1) in
the ROC plot. The area under the curve (AUC) of the ROC is a threshold-independent model
evaluation indicator that is independent of both species prevalence and classification threshold
[3].

(7) MaxKappa: The threshold that results in the maximum value of kappa for the threshold-selecting
data. Kappa measures the extent to which the agreement between observed and predicted values
is higher than that expected by chance alone.

(8) MaxTSS: The threshold that results in the maximum value of the true skill statistic (TSS) for the
threshold-selecting data. TSS = sensitivity + specificity �1. TSS has all of the advantages of Kappa
but is not sensitive to prevalence [3,37].

When converting numerical predictions into binary predictions, the optimal threshold varies with
the choice of threshold-setting method. However, the choice of thresholds has practical consequences
for estimating of RF model performance and species range shifts under climate change [9]. Hence, the
use of an appropriate threshold appears to be a better choice for binary conversions for RF. Zhang et al.
[9] demonstrated that the four threshold methods (MaxKappa, MaxOA, MinROCdist, and MaxTSS)
based on the composite model accuracy measures (Kappa, TSS, ROC, OA) are promising objective
methods for binary conversions of continuous predictions when presence-only data are available.
These four methods can also produce the same threshold using either presence-only data or presence/
absence data for CT and RT models. The top four approaches performed equally well in terms of model
performance, threshold determination, and range shift projection, and each often performed better
than the other approaches. The CT default classification method (default 0.5) was not recommended
for binary conversions [9,10].

Generation of pseudo-absence

SDMs are constructed through a series of methods that relate a set of environmental predictors
with species distribution data [11]. Information concerning the distributions of species, frequently
from museum and herbarium collections, atlases, plant lists, or from volunteer observation networks,
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re typically composed of presence-only data. The most effective SDM models most often require data
n both species presence and absence in the area [12,13]. RF needs species presence and absence
ecords. One solution is to generate pseudo-absences when no reliable absence data are available and
hen use these as absence data [14,15]. Thus, presence–absence models are increasingly used when
nly presence data are available by creating pseudo-absence data [16]. Several recent studies have
uggested that pseudo-absence data should be restricted to locations that are documented to be
istinctly unsuitable for this species occurrence [14,17]. To improve sampling accuracy, the following
ethod as recommended by Barbet-Massin et al. [16] and Zhang et al. [9] for RF was used to randomly
elect pseudo-absences.

1) Geographic distance method: Any points located at least two degrees in latitude or longitude from
any presence point were selected as true absences (the 2 degrees method). This method assumes
that when closer to a known presence point, it is more likely to find the species. This process can be
implemented using the “dismo” package (“circles” function) [18] in the R environment.

2) Environmentally stratified sampling. The locations where all predictor variables fall within the
extreme values (both maximum and minimum limits of each predictor) as determined by species
presence sites are defined as areas suitable for the occurrence of a particular species. The
remaining locations are termed “potential” absences. This process can be implemented by
the surface range envelop model (SRE) in the BIOMOD2 package [19] in the R platform (hereafter,
the “SRE” method). However, the SRE method was not proposed for generating pseudo-absences
when comparing model performance of CT and RT or for comparing them with other SDMs, since
both RF and SRE have a piecewise constant function in nature [9].

inimization of spatial autocorrelation in species occurrence data

Spatial autocorrelation is the lack of independence between pairs of observations at given
istances in space. This is a common phenomenon in ecological data. Spatial autocorrelation in
cological data can create Type I errors in statistical analyses and can inflate the significance of
easured species–environment relationships in SDMs when non-spatial models are applied. There
any methods of dealing with spatial autocorrelation in the field of species distribution modeling

20]. We recommended the block cross-validation strategy [21] to tackle spatial autocorrelation when
F is used as the SDM. The block cross-validation method can increase spatial independence of
raining and testing datasets and can help to evaluate model transferability rather than just its
nterpolation accuracy [21]. This matters a lot, because SDMs are often used for projecting species
istributions outside the range of environments (in space or time) on which the original model is
ased. According to the block cross-validation method, the species distribution data area is divided
nto several geographically non-overlapping areas to split the data into blocks rather than randomly
ssigning locations to a split.
A large-sample test indicated that four blocks are appropriate when geographically (2 degrees) or

nvironmentally (SER) stratified sampling was used to generate pseudo-absences. This is because a
inimum distance at which the autocorrelation in model residuals begins to disappear is about half

he geographical range of species occurrence data (data not shown). This method is recommended for
odeling the distribution of a large number of species with presence-only data [9]. In this paper, we

mplemented block cross-validation to divide the presence data area into four geographically non-
verlapping areas as follows. Presence records are split into two sets based on their longitude using a
eridian as a dividing line. Then, these two halves (with the same longitudinal range) are separately
plit into two equal parts (with the same latitudinal interval) using parallels.

reation of model-training and -testing data and threshold-setting data

According to the block cross-validation method recommended for RF, the presence data area was
ivided into four geographically non-overlapping areas to split the data into blocks. Each pair of blocks
as used in turn as model-training data (model-training presence data, MCp), while the two others
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were separately used to test the model (model-testing presence data, MVp) and to select the optimal
threshold (threshold-setting presence data, TSp).

Using the 2 degrees or SRT method, RF sampled pseudo-absence data from the entire study region.
The following procedure was implemented to sample pseudo-absences for compositing complete
model-training and -testing data as well as threshold-setting data.

First, we randomly created a sample of 20,000 pseudo-absences (PA1) from the pseudo-absence
population that was generated by the 2 degrees or SRE methods. This process was achieved using the
“randomPoints” function the R package “dismo” [22].

Second, we created model-training pseudo-absence data (MCpa). The same number of pseudo-
absences as a given species’ presences that were used for model-training data (MCp) was randomly
selected from PA1.

In the model-building process, we kept the ratio between the number of presences and absences in
the calibration and testing dataset constant at 1:1. This is a recommended method used to find the
optimal transforming threshold [23] and to achieve the highest model accuracy [16,24,25] when using
RF and a presence/pseudo-absence dataset to develop SDMs.

Third, we created model-testing pseudo-absence data (MVpa). The remaining pseudo-absences
(PA1�MCpa) from the sample above were used as the “potential” MVpa. The pairwise distance
sampling method proposed by Hijmans [18] was used to select final MVpa points for the model-testing
set. We conducted this process using the “pwdSample” function in the R package “dismo” [22].

By combining the block cross-validation strategy with the pairwise distance sampling method to
select the pseudo-absence points for the model test and threshold selection sets, spatial sorting bias
was removed, and thus, the effect of spatial autocorrelation on the performance evaluation was
suppressed.

Fourth, we created threshold-setting pseudo-absence data (TSpa). The remaining pseudo-absences
(PA1�MCpa � MVpa) were use as the “potential” TSpa. Similarly, the pairwise distance sampling
method was utilized to remove spatial sorting bias between threshold-selecting data and model-
training data, yielding the final TSpa.

Finally, we created six sets of sub-model-training (MCp + MCpa) data, and each had a set of
accompanying model-testing (MVp + MVpa) and threshold-setting data (TSp + TSpa). For each species,
these six sets of sub-data constituted a full model-training dataset.

Because chance plays a part in the choice of the pseudo-absences (PA1), we independently
repeated this procedure three times. This was done in an effort to reduce variability in the model-
building process and subsequent predictions. Thus,18 (six sub-model-training sets � three full model-
training sets) sets of sub-model-training data were created, and each had a set of companion
sub-model-testing data and threshold-determining data.

The use of classification and regression algorithms using random forests to model species distributions

Random forest is an ensemble learning technique. RF by default can yield categorical and numerical
species distribution maps based on the classification tree (CT) and regression tree (RT) algorithms,
respectively [26]. RF models in the form of CT and RT are commonly and successfully used in species
distribution modeling [27]. In statistical terms, CT can also produce probabilistic predictions (class
probability) [9]. In RF models, bootstrap samples are applied to construct a large number of decision
trees. These trees are then used to predict new data by aggregating the predictions of the trees (i.e., the
proportion of votes for classification, or the average for regression; [28]). In a typical CT, the resulting
model output is categorical, and the “winning” class for an observation is the one with the maximum
ratio of proportion of votes (the default is 1/k, where k is the number of classes). For presence–absence
data, the ratio of the proportions of votes for presence or absence ranges from 0 to 1, and the sum of the
ratios is equal to 1. As such, the resulting ratio for presence in CT could be taken as a relative index of
occurrence (numerical prediction) [39].

Recent gradient theory [29] holds that numerical results convey more information than binary
outputs [30]. For mapmaking, we therefore recommend the use of numerical predictions of RT and CT
for species distribution modeling.

L. Zhang et al. / MethodsX 6 (2019) 2281–2292 2287
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Many parameters in RF can be manipulated, e.g., the number of trees grown or the number of
ariables to try at each split. Because the outcome of both CT and RT is not very sensitive to
odifications of these parameters [31–33], it was deemed unnecessary to fine-tune all the RF models

o their optimal capacity when they were used for a large number of species. Fine-tuning RF
arameters may only be necessary when the method is used for a given well-known species.
We constructed six CT (and RT) sub-models using the six sets of sub-model-training data from the

ame full model-training dataset. These six sub-model predictions constituted full complete
redictions, and three replicates of complete predictions were created (see below). CT and RT models
ere developed using the package “randomForest” [28] in the R environment.
A total of 18 (CT and RT) sub-models were constructed for each species, and each had a set of

ompanion sub-model-testing data and sub-threshold-setting data that were employed to evaluate
odel performance and to determine the optimal threshold cut-off values, respectively.
We compared the model performance (discrimination capacity and reliability) of CT and RT based

n the threshold-independent evaluation metrics. In terms of discrimination capacity, RT performed
etter than CT, especially for species with restricted ranges; for reliability, CT performed better than
T, especially for species with wide ranges [9]. Therefore, choosing RT rather than CT as the SDM is the
est choice if model discrimination capacity is viewed as more important than model reliability, and
ice versa (Fig. 2). This can be considered as the generic guideline for choosing RT (CT or RT) algorithms
o model the distribution of species, especially for a large number of species. Fig. 3 shows an example
or model accuracy of a single tree species.

In practice, the selection between CT and RT depends on the specific species as well as model
ccuracy measures [4]. Expert experience and ecological common knowledge of the species of interest
an at times also be highly effective, albeit nonstandard, evaluation methods. For instance, if SDMs are
sed to estimate the total population size for a species by predicting the probability of the species

ig. 2. Generic guidelines on how to choose a random forests (classification or regression algorithm) method with presence-
nly data to model the distribution of species. Adopted from Zhang et al. [9].

ig. 3. Differences in model accuracy between random forests regression tree (RT) and classification tree (CT) algorithms used
or prediction of the distribution of Quercus serrata. Dots show the mean value across all species. Different letters indicate
ignificant differences according to a Wilcoxon signed-ranks test (P < 0.05).
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occurring at a large number of sites within a region, model reliability should be viewed as more
important than model discrimination capacity. When SDMs are used to identify potential re-
introduction sites for endangered species, more attention should be paid to model discrimination
capacity.

Ensemble modeling of species distribution

A total of 18 (CT or RT) model predictions were generated for each species. We combined ensemble
predictions to draw the final prediction. First, we integrated the numerical predictions generated by
the six sub-models within the same one full model set to produce a complete prediction map. The
habitat suitability of each site was determined by the maximum predicted values of the six sub-
models (assuming their model predictive accuracies were at an acceptable level). Then, we derived the
final numerical prediction map for each species by taking the average of the three replicates of
complete predictions. Averaging the ensemble predictions is the most often used consensus approach
for combining ensemble projections and can significantly improve predictive accuracy [34]. For each
species, the averaged prediction resulted in a single prediction at each grid point. According to the
above methods, the final numerical prediction maps were generated for each species.

When binary prediction is desired or necessary, the numerical predictions generated by the
aforementioned six sub-models within the same one full model set were converted to binary data
using the optimal threshold cut-off values corresponding to the six sub-models. We executed this
conversion process using the “BinaryTransformation” function in the R package “BIOMOD2” [19]. The
sites predicted to be present by at least one of the six sub-models within the same one full model set
were considered to be species occurrence sites. Thus, we produced a complete binary map for each full
model set. The final binary prediction map consisted of the sites predicted to be present by at least two
of the three replicates of complete binary predictions.

A large-sample test showed that four threshold-setting methods (MaxKappa, MaxOA, MinROCdist,
and MaxTSS) performed significantly better than other methods and produced the same threshold
using either presence-only data or presence/absence data for CT and RT models [9]. Therefore, those
methods can be considered as promising threshold methods for RF when only presence data are
available. Unless sound justification exists for choosing a particular threshold cut-off over the others
(e.g., a good data match); if high sensitivity is needed in defining a management area for a rare species,
or if high specificity is needed for determining whether a species is threatened [3,23,35,36], there can
be advantages in applying these objective threshold methods for CT and RT. In this manner, map users
can choose appropriate threshold cut-off values and generate binary maps according to the intended
map use (e.g., species range estimation).

Fig. 4 demonstrates the spatial difference between CT and RT prediction maps for a single tree
species.

Summary

A detailed procedural framework was proposed for applying RF methods with presence-only data
to model the distributions of species (Fig.1). Choosing RT rather than CT as the SDM is recommended if
model discrimination capacity is viewed as more important than model reliability, and vice versa
(Fig. 2). MaxKappa, MaxOA, MinROCdist, and MaxTSS are four promising objective methods for binary
conversion of continuous predictions when presence-only data are available. Numerical rather than
binary prediction distribution maps are recommended, and binary conversion of model outputs
should only be implemented when it is clearly justified by the application’s objective. This general
procedural framework benefits the wholesale implementation involved with a large number of
species because of its simplicity and flexibility.

Due to the complexity of the ecosystem and the uniqueness of the life histories and physiological
characteristics of the specific species, these general rules may not apply to all species [10].
Nevertheless, this procedural framework is meant to be a generic concept to be applied to virtually any
model prediction question with presence-only data. Under the detailed framework developed in this
study, for a specific species, the choice of RF (CT or RT) models can be determined by model

L. Zhang et al. / MethodsX 6 (2019) 2281–2292 2289



Fig. 4. Differences in prediction maps between random forests (RF) regression tree (RT) and classification tree (CT) algorithms
for Quercus serrata. Numerical predictions were converted to binary predictions through objective threshold-setting methods
(MaxTSS).
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performance metrics (model discrimination capacity and reliability). Fine-tuning RF parameters may
also be necessary. Other methods that can deal with multicollinearity, autocorrelation, and binary
conversions of numerical predictions can be integrated into this procedural framework. Although
some SDMs are not very sensitive to collinearity and autocorrelation, they also can embrace these
methods.
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