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A B S T R A C T   

There is emerging evidence of microvascular thrombosis and thrombotic microangiopathy (TMA) induced by 
COVID-19, presumably from endothelial injury. Thrombomodulin (TM) is an endothelial glycoprotein that plays 
a dual role in maintaining healthy endothelium-as a natural anticoagulant by binding thrombin to activate 
protein C (APC) and a negative regulator of the alternate complement pathway (AP). TM is shed into the plasma 
as soluble TM (sTM) during endothelial injury. 

We hypothesize that SARS-CoV-2 spike proteins cause direct microvascular endothelial injury, leading to TM 
shedding, decreased activation of PC, and consequently, microvascular thrombosis in COVID-19. We conducted 
this study twofold: 1) in vivo, we assessed endothelial injury (by measuring sTM) and AP activation by quanti-
fying Ba (cleavage product of AP component Factor B) in a cohort of critically ill COVID-19 pediatric patients and 
the implications on clinical outcomes; and 2)in vitro, we investigated endothelial injury (TM shedding) by SARS- 
COV-2 spike proteins and the subsequent functional consequence in activated PC (APC) levels and Ba levels. 

sTM and Ba in plasma samples from SARS-CoV-2 positive patients admitted to Texas Children’s Hospital 
Pediatric Intensive Care Unit (n = 33) and from healthy controls (n = 38) were measured by ELISA. In vitro, 
confluent glomerular microvascular endothelial cells (GMVECs) were incubated for 48 h in the presence or 
absence (control) of purified SARS-CoV-2 spike proteins, S1 and S2. TM from the cell lysates while Ba and APC 
from the cell supernatants were measured by ELISA. sTM and Ba levels were significantly higher in the COVID-19 
pediatric patients compared to healthy controls (p < 0.01 and p < 0.001, respectively). Among the COVID-19 
patients, elevated sTM was associated with increased vasopressor use (p = 0.01) and elevated Ba was associ-
ated with increased duration of mechanical ventilation (p = 0.04). In vitro, surface bound TM and soluble APC 
were significantly lower in GMVECs after addition of spike proteins (p < 0.05), while Ba was undetectable in 
both control and spike proteins exposed GMVECs. 

In conclusion, we provide evidence of endothelial injury in COVID-19 pediatric patients and demonstrate a 
potential pathway of SARS-CoV-2 induced thrombosis. Decreased surface-bound TM results in lower amount of 
thrombin-TM complex, hence lesser activation of PC, likely leading to a pro-thrombotic state. These findings in 
GMVECs could explain the vulnerability of kidneys to COVID-19-induced TMA.   

1. Introduction 

Coronavirus disease-19 (COVID-19) is an acute illness caused by the 
SARS-CoV-2 virus. COVID-19 is now increasingly recognized as a disease 
of the vasculature [1], thereby leading to systemic and multi-organ 
pathology. Patients can present with macro- or microvascular throm-
bosis [2–4] in the setting of inflammation (thromboinflammation), 

which has been reported as a major contributor to morbidity and mor-
tality related to COVID-19 [5,6]. While lungs are the most frequently 
involved organ [7], other organs including kidneys [8], heart [9], and 
brain [10] can also be affected. In critically sick patients with COVID-19, 
kidneys are the second most involved organ, and abnormal renal func-
tion is one of the significant risk factors for death in the ICU setting [11]. 
A systematic review further showed that severe acute kidney injury is a 
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worrying clinical predictor and associated with high mortality [12]. An 
autopsy study of deceased COVID-19 patients has shown detectable 
SARS-CoV-2 viral load in all kidney compartments, with preferential 
targeting of glomerular cells [13]. In kidneys, microvascular thrombosis 
can result from thrombotic microangiopathy (TMA) induced by 
COVID-19 [14,15]. While most of the studies so far have focused on the 
pulmonary vasculature and thrombosis, the relevance of microvascular 
thrombosis in kidneys remains a matter of investigation. Hence, the 
focus of this study is to investigate mechanisms of microvascular 
thrombosis in the kidneys and add to the growing literature on 
COVID-19 and thrombosis in order to improve outcomes. 

SARS-CoV-2 is a type of coronavirus comprised of four main proteins, 
namely spike (S), membrane (M), nucleocapsid (N) and envelope (E) 
[16]. S protein, consisting of S1 and S2 subunits, is present on the cell 
surface and has been reported to be responsible for virus induced cell 
injury [17]. Studies have shown the S1 component binds to the ACE2 
receptor on the cell surface and the S2 subunit releases the viral mRNA 
component into the host cell causing cellular injury [18]. Endothelial 
cells express ACE2, making them a target for SARS-CoV-2 virus [19]. 

Thrombomodulin (TM) is an endothelial glycoprotein that is ubiq-
uitously expressed on endothelial cells and plays two crucial roles in 
maintaining a healthy endothelium – a natural anticoagulant and a 
negative regulator of the alternate complement pathway (AP) [20]. TM 
controls the coagulation pathway by binding to thrombin, and the 
resulting thrombin-TM complex converts protein C to activated protein 
C (APC). APC in the presence of protein S, inactivates factors Va and 
VIIIa, thereby limiting coagulation [21]. AP is one of the three com-
plement pathways within the innate immune system that is activated 
during times of inflammation and/or infection. Upon activation, 
through a series of steps involving C3, factor B (FB), factor D (FD) and 
factor P (FP), the C3 and C5 convertases are generated (C3bBb and 
C3bBbC3b, respectively), and activation products C3a, Ba, and C5a are 
released [22]. In a normal physiologic/uninflamed state, TM attenuates 
AP activation at the endothelial surface by binding to AP regulators 
factor H (FH) and factor I (FI). This complex inactivates C3b, limiting the 
amplification of the AP [23]. During times of endothelial injury, TM is 
shed into plasma as soluble TM (sTM) [24,25], in turn affecting TM’s 
role as a gatekeeper of coagulation and AP regulation. 

One proposed mechanism of thrombosis in COVID-19 is from endo-
thelial dysfunction, or “endotheliopathy”. A retrospective clinical study 
showed elevated plasma sTM in adult patients with COVID-19, sug-
gesting the shedding of endothelial TM following injury [26]. In an in 
vitro study, Yu et al. demonstrated the spike protein subunit of 
SARS-CoV-2 acts as a potent activator of the AP using TF1PIGAnull cells 
[27]. Satyam et al. reported the deposition of complement components 
on lung tissue of patients who succumbed to COVID-19, consistent with 
activation of classical and alternate pathways [28]. These studies sug-
gest TM shedding and complement dysregulation lead to endotheliop-
athy in acute COVID-19. Whether endothelial injury is a result of direct 
viral invasion or secondary to inflammatory response to the virus, 
however, remains unclear. Some autopsy findings suggest the former as 
the culprit [1,28], but there is no mechanistic evidence to support the 
hypothesis. Furthermore, Rotoli et al. elegantly demonstrated TM gene 
(THBD) downregulation by spike proteins in lung microvascular endo-
thelial cells [29], however the mechanism of thrombosis in kidney 
microvasculature remains unknown, and the functional consequence of 
endothelial TM downregulation/shedding is yet to be clarified. 

The objectives of our study were twofold. One, to determine endo-
thelial injury and AP activation in children with COVID-19 and subse-
quent impact on clinical outcomes; and two, to investigate cellular 
mechanism of SARS-CoV-2 induced endotheliopathy in vitro. We hy-
pothesized that endothelial injury and AP activation is associated with 
poor clinical outcomes in children with COVID-19; and that spike pro-
teins (S1 and S2) cause direct microvascular endothelial injury in vitro 
resulting in TM shedding from the endothelium. We further hypothe-
sized that loss of TM results in AP overactivation and decreased 

production of the natural anticoagulant APC, thereby creating a pro-
thrombotic state. 

2. Methods 

2.1. Clinical study 

Study population: This was a retrospective cohort study utilizing re-
sidual plasma samples from disseminated intravascular coagulation 
(DIC) panels that were obtained from patients admitted to the Intensive 
care unit (ICU) for a diagnosis of COVID-19 between Dec 2, 2020, and 
Jan 22, 2021 at Texas Children’s Hospital. DIC panels were obtained as 
standard of care for all patients with COVID-19 admitted to the ICU at 
our center. All patients less than or equal to 21 years of age with a 
positive SARS-CoV-2 RT-PCR on admission to the ICU were included. 
Data regarding demographics (age, gender, race, ethnicity), length of 
ICU stay, and clinical indicators of end organ damage (mechanical 
ventilation, dialysis, use of vasopressors) were collected via retrospec-
tive chart review. All patients were on thromoboprophylaxis as per 
institutional standard of care for patients with COVID-19 admitted to the 
ICU. 

For controls, residual plasma samples from DIC panels obtained from 
pediatric patients who came in for pre-op clearance during the study 
period, all presumed to be at their baseline state of health, were 
collected. Control patients with known autoimmune, inflammatory, or 
complement-mediated disorders were excluded. Pregnant females and 
anyone above 21 years of age were excluded from both experimental 
and control groups. Institutional IRB approval and waiver of consent 
were obtained. 

2.1.1. Quantification of sTM and Ba levels 
From patient plasma samples, sTM, as a marker of endothelial injury 

and Ba, as a marker of AP activation, were quantified by commercially 
available ELISA kits (Abcam, ab46508 and Quidel, A033, respectively) 
according to the manufacturer’s instructions. 

2.2. In vitro studies 

Glomerular microvascular endothelial cells (GMVECs). Pooled primary 
human GMVECs were purchased from Cell Systems (CBRI-128). 
GMVECs were grown in complete media (CM131, MCDB-131 medium 
[Sigma-Aldrich, M8537], supplemented with penicillin/streptomycin/L- 
glutamine [Life Technologies], plus microvascular growth supplement 
[Life Technologies]). GMVECs (passage 4–7) were seeded in T-25 flasks 
and used when confluent, after 7–9 days of growth, for all experiments. 

2.2.1. Measurement of TM from GMVEC lysates 
Since TM is present on or within the cells, we quantified TM from cell 

lysates to get an accurate measurement of TM. Confluent GMVECs were 
washed with PBS and exposed to SARS-CoV-2 spike proteins (0.5 μg/ml 
each of S1 and S2) in complete media for 24 h, followed by exposure to 
an additional 0.5 μg/ml of each spike protein in serum-free media for 
another 24 h. These concentrations and exposure time were based on the 
initial experiment we performed to identify the optimal concentration of 
spike proteins (alone or together) for TM shedding (Supplemental 
Fig. 1). Control GMVECs were washed with PBS and exposed to an equal 
volume of serum-free media as the experimental GMVECs for 24 h. 
Subsequently, all cells were lysed with CelLytic M (Sigma-Aldrich, C- 
2978) containing Halt protease/phosphatase inhibitor cocktail (Thermo 
Scientific, 78,430). Lysed cells were collected and centrifuged, and the 
resultant supernatant was used for analysis. TM levels were measured in 
spike protein-exposed and control GMVEC lysates using a TM ELISA kit 
(Abcam, ab46508). 

2.2.2. Measurement of APC from GMVEC supernatant 
Spike proteins (0.5 μg/ml each of S1 and S2) were added to 
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experimental GMVECs for 48 h, and serum-free media alone was added 
to control GMVECs, as described above. The GMVECs were then washed 
with PBS and supplemented with 0.2 mM human PC (Haematologic 
Technologies, HCPC-0070) and 10 nM human α-thrombin (Haemato-
logic Technologies, HCT-0020) in “APC buffer” (0.1% BSA, 3 mM CaCl2, 
0.6 mM MgCl2 in PBS) and incubated at 37 ◦C for 60 min [30]. Further 
activation of PC to APC was inhibited with the addition of 10 nM hirudin 
(1.5 U/ml, Sigma Aldrich, H7016). Supernatants were collected and 
APC levels were measured from cell supernatants using an APC ELISA kit 
(Cloud-Clone, SEA738Hu). 

2.2.3. Measurement of Ba from GMVEC supernatant 
Spike proteins were added to experimental GMVECs for 48 h, and an 

equal volume of serum-free media was added to control cells, as 
described above. Cell supernatants were subsequently collected, and Ba 
levels were measured from cell supernatants using a commercially 
available Ba ELISA kit (Quidel, A033). 

Each of the above-described experiments were performed on 4–6 
flasks to ensure reproducibility. 

2.3. Statistical analysis 

For comparing clinical outcomes within the COVID-19 patients’ 
cohort, Pearson’s Chi-squared, Fischer exact and Wilcoxon rank sum 
tests were used to assess the relationships between Ba or sTM and the 
clinical outcomes as appropriate. For the in vitro studies, unpaired t-tests 
with Welch’s correction were used to test the difference in means be-
tween the treatment and the control groups in GraphPad Prism9. A p- 
value <0.05 was considered statistically significant. 

3. Results and discussion 

A total of 33 patients with COVID-19 and 38 controls were included 
in the final analysis. sTM and Ba levels were both significantly higher in 
the COVID-19 pediatric patients compared to the controls (mean sTM 
6.2 ng/ml in controls and 10.9 ng/ml in COVID-19 patients, p < 0.01 
and mean Ba 526.7 ng/ml in controls and 1098.0 ng/ml in COVID-19 
patients, p < 0.001) (Fig. 1). Furthermore, sTM levels positively corre-
lated with Ba in our patient cohort (Pearson correlation coefficient =
0.55, p < 0.001) (Fig. 2). In normal healthy individuals, sTM is released 
during physiologic cleavage and shedding of membrane-bound TM but 
in very low amounts (less than 10 ng/ml) [31]. However, sTM is released 
in increased amounts during certain pathologic conditions like sepsis, 
DIC and thrombotic thrombocytopenic purpura, as a result of endothe-
lial cell damage [24,25,32]. Our findings of elevated sTM in pediatric 
patients with COVID-19 suggests endothelial injury in children with 

SARS-CoV-2 infection. Our results are in accordance with the previously 
published data in adults [26]. Additionally, our findings of elevated Ba 
are reflective of AP activation in children with COVID-19. This is the first 
study showing elevation of AP activation product in pediatric COVID-19 
and are supportive of findings in a previously published study in criti-
cally ill, COVID-19-infected adults by Leatherdale et al. [33]. These 
findings further explain the potential role of anti-complement agents in 
the treatment of critically ill patients with COVID-19 [34,35]. 

We also analyzed the utility of sTM and Ba in predicting clinical 
outcomes (Table 1). Elevated sTM was associated with increased vaso-
pressor use (p = 0.011). Goshua et al. had reported sTM as a predictor of 
mortality in adults with COVID-19 [26]. Although other clinical 
outcome variables, including mortality, did not reach statistical signif-
icance in our cohort, likely owing to small numbers, overall, the trend 
indicated worse outcomes in patients with elevated sTM. Additionally, 
COVID-19 related mortality in pediatrics is much lower than adults [36], 
which could also explain the variability of our findings from the adult 
study. Amongst the intubated patients, higher Ba levels were associated 
with an increased duration of mechanical ventilation (p = 0.039), which 

Fig. 1. Mean sTM and Ba levels in pediatric controls and COVID-19 patients. sTM and Ba were quantified in plasma samples using commercially available TM and Ba 
ELISA kits, respectively. 
Error bar = standard deviation. **p < 0.01 and ****p < 0.001. Normal sTM levels were considered <7.6 ng/ml and normal Ba levels <1080 ng/ml. 

Fig. 2. Correlation between sTM and Ba in patient cohort. Moderately positive 
correlation between sTM and Ba levels. Pearson correlation coefficient = 0.55, 
p < 0.001. 
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could suggest increased lung endothelial damage and subsequent res-
piratory failure. Regarding thrombosis, two patients had an acute 
thrombotic event (1 venous and 2 arterial), which could be the result of 
endothelial injury and TM shedding. It is possible though that the 
number of thrombotic events were low in our cohort despite the pres-
ence of endothelial injury because all patients were on thrombopro-
phylaxis; however, it is difficult to draw any conclusion based on small 
sample size. Overall our findings suggest that the severity of endothe-
liopathy may predict clinical outcomes, however, large prospective 
studies are indicated to validate the use of sTM and Ba as prognostic 
markers in pediatric COVID-19 infection. 

Our in vitro data further corroborates our in vivo findings. Since 
COVID-19 is associated with microvascular thrombosis and TMA 
resulting in kidney injury, we utilized GMVECs for our in vitro experi-
ments. We hypothesized SARS-CoV-2 spike proteins cause direct 
microvascular endothelial cell injury resulting in loss of cell surface 
bound TM. Our data demonstrated endothelial-bound TM is approxi-
mately half as much on GMVECs exposed to spike proteins compared to 
GMVECs without exposure (13.2 ± 1.8 ng/ml on control lysates and 7.2 
± 1 ng/ml on spike protein exposed cells, p < 0.05, Fig. 3a). These 
findings may explain the vulnerability of kidneys to SARS-CoV-2 

infection and the subsequent risk of TMA. The high concentration of TM 
on the surface of the endothelial cells allowed us to better quantify TM 
from the cell lysates, providing us with the information needed to assess 
TM shedding. We believe the mechanism behind TM shedding is from 
disruption of cell membranes upon exposure to spike proteins, however, 
a study led by Rotoli et al. showed downregulation of the gene encoding 
for TM (THBD) upon exposure to spike proteins. Therefore, decreased 
TM in cell lysate could result from a combination of shedding from the 
cell surface as well as decreased transcription at the gene level on 
exposure to spike proteins. The mechanism of TM shedding from ECs is 
likely multifactorial. It is possible that the spike proteins cause a 
response in the GMVECs that leads to cell injury – this response could be 
secondary to up regulation of inflammatory cytokines and/or increased 
generation of cleaving proteases such as HGMB1 (high mobility group 
box 1) that cleave TM from the cell surface, but further work is war-
ranted to determine the exact mechanism of TM shedding. 

While we have shown the effects of spike proteins on the glomerular 
microvasculature, we do acknowledge that lungs are the most common 
site of involvement in COVID-19. Most of the thrombotic phenomenon 
in the lungs is macrovascular (i.e. pulmonary embolism), although some 
studies have shown microvascular thrombosis [1,37] to occur as well. 

Table 1 
Association of sTM and Ba with clinical outcomes in critically ill pediatric COVID-19 patients.  

Clinical Indicators sTM Ba 

Elevated sTMc n = 20a Normal sTM n = 13a p valueb Elevated Bad n = 14a Normal Ba n = 19a p valueb 

Length of ICU stay 8 (4,16) 5 (3,7) 0.15 6 (4,13) 7 (4,13) 0.80 
Intubation 10 (50%) 4 (31%) 0.30 4 (29%) 10 (53%) 0.20 
Length of mechanical ventilation 8 (3,13) 3 (3,8) 0.50 25 (12,40) 3 (2,9) 0.04 
Vasopressors 12 (60%) 2 (15%) 0.01 5 (36%) 9 (47%) 0.50 
Dialysis 4 (20%) 0 (0%) 0.14 3 (21%) 1 (5%) 0.30 
ECMO 2 (10%) 1 (8%) 1.00 1 (7%) 2 (11%) >0.90 
Mortality 3 (15%) 0 (0%) 0.30 1 (7%) 2 (11%) >0.90 
Thrombus (arterial and/or venous) 2 (10%) 0 (0%) 0.51 2 (14%) 0 (0%) 0.17 

Abbreviations used: ICU- Intensive care unit, ECMO- Extracorporeal membrane oxygenation 
a n (%), Median (IQR). 
b Fisher’s exact test; Wilcoxon rank sum test; Pearson’s chi-squared test. 
c Elevated sTM: sTM >7.6 ng/ml. 
d Elevated Ba: Ba > 1080 ng/ml. 

Fig. 3. Fig. 3aMean TM levels from GMVEC lysates. Spike proteins or serum-free media alone (as a control) were added to GMVECs for 48 h. Cell lysates were then 
collected, and TM was quantified by ELISA. 
Fig. 3b. Mean APC levels in GMVEC supernatant. Spike proteins or serum-free media alone (as a control) were added to the cells for 48 h. Then PC and thrombin were 
added to the cells for 1 h, after which further reaction was prevented by addition of hirudin. Supernatant was collected for measurement of APC by ELISA. Fig. 3c. 
Mean Ba levels in GMVEC supernatant. Spike proteins or serum-free media alone (as a control) were added to the cells for 48 h. Supernatant was collected for 
measurement of Ba by ELISA. 
Error bar = standard deviation, **p < 0.01, *p < 0.05, ns = not significant, p value > 0.05. 
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Therefore, we also evaluated TM shedding from lung microvascular ECs 
exposed to spike proteins and found similar results to those in GMVECs 
(Supplemental Fig. 2). 

TM not only serves as a marker of endothelial injury, but also plays a 
crucial role in the anticoagulation pathway by converting protein C to its 
activated form (APC). Our in vitro data demonstrates that the lower 
amount of surface bound TM on cells exposed to spike protein leads to 
less generation of APC compared to cells without spike protein exposure 
(104.6 ± 29.2 pg/ml in controls and 54.4 ± 40.5 pg/ml in spike protein 
exposed cells, p < 0.05, Fig. 3b). As APC is a natural anticoagulant that 
inactivates coagulation factors Va and VIIIa, these findings suggest a 
mechanism in vivo for SARS-CoV-2-mediated hypercoagulability and 
microvascular thrombosis. While we did not assess FV or FVa levels in 
our patient cohort, a study by Stefely et al. assessed FV activity levels in 
102 consecutive inpatients with COVID-19 [38]. They found signifi-
cantly elevated FV activity in COVID-19 patients compared to healthy 
controls [38]. This data is further supportive of our hypothesis that in 
COVID-19 infection, less activation of PC leads to decreased inactivation 
of FVa, hence higher circulating amounts of active FV. Additionally, 
lower amounts of APC may also impact its interaction with endothelial 
PC receptor (EPCR), and thereby, affect its role as an anti-inflammatory 
agent. PC and EPCR attenuate inflammation by inhibiting the release of 
proinflammatory cytokines [39,40], and preventing TNF-α-mediated 
neutrophil adhesion to ECs [41]. Some studies have shown sEPCR levels 
are higher in plasma of patients with COVID-19 [42,43], suggesting 
shedding of EPCR from the endothelial cell surface. Lesser amounts of 
APC and EPCR imply less APC-EPCR pathway signaling, rendering the 
endothelium more susceptible to proinflammatory factors, but further 
studies are justified to understand the APC-EPCR pathway in COVID-19 
infection. 

In addition to its role in the coagulation system, TM plays an 
important role in AP regulation. We therefore analyzed the impact of TM 
downregulation on AP activation. In contrast to the observations in 
patient plasma samples, we did not observe significant differences in Ba 
levels between spike protein-exposed GMVECs and controls (10.5 ±
24.3 pg/ml in spike protein-exposed cells and 0 ± 0.002 pg/ml in con-
trols, p > 0.05, n = 9, Fig. 3c). One explanation could be that the amount 
of Ba released from the cells was below the lower limit of detection of the 
Ba ELISA, hence was not measured accurately. Alternatively, it is 
possible that spike proteins alone may not cause enough TM loss for AP 
overactivation and may need other inflammatory mediators for additive 
effect. Yu et al. have previously demonstrated activation of AP by SARS- 
CoV-2, but the spike proteins in those experiments were produced in 
E. coli, whereas the spike proteins used in this study were produced in 
human cells [27]. E. coli, in contrast to human cells, naturally produce 
endotoxin. This endotoxin may be a contaminant in the E. coli-produced 
spike protein as it is difficult to remove [44,45]. Consequently, AP 
activation observed by Yu et al. may have been induced by endotoxin 
rather than the spike proteins themselves [27]. 

In conclusion, our study provides further insight into the complex 
pathogenesis of thrombo-inflammation seen with SARS-CoV-2 infection. 
We provide evidence of endothelial injury and AP overactivation in 
pediatric patients with COVID-19 associated with worse clinical out-
comes. Additionally, our in vitro data support the hypothesis that the 
spike proteins cause direct microvascular endothelial cell injury, 
resulting in loss of TM, and consequently less activation of the natural 
anticoagulant PC and uninhibited coagulation. Further studies are 
warranted to understand if TM is also downregulated transcriptionally 
upon exposure to spike proteins. Future studies should also further 
investigate AP activation in COVID-19 infection and methods to block 
spike protein interaction with endothelial cells to prevent cell injury. 
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