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Abstract

Experimental models of neuroendocrine tumour disease are scarce, and no 

comprehensive characterisation of existing gastroenteropancreatic neuroendocrine 

tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the 

molecular characteristics and therapeutic sensitivity of these cell lines. We therefore 

performed immunophenotyping, copy number profiling, whole-exome sequencing and 

a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, 

BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, 

L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. 

Characterisation of remaining authentic GEPNET cell lines by copy number profiling 

showed that GOT1, among other chromosomal alterations, harboured losses on 

chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 

had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications 

of MDM2 and HMGA2. Whole-exome sequencing revealed both disease-characteristic 

mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events 

(e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening 

showed that cell lines from pancreatic NETs to a greater extent, when compared to small 

intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells 

originating from the small intestine were considerably more sensitive to a group of 

HDAC inhibitors. Taken together, our results provide a comprehensive characterisation 

of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and 

explore their therapeutic sensitivity to a broad range of inhibitors.

Introduction

Patient tumour-derived cell lines, as models of tumour 
disease, have been widely used for studying the molecular 
mechanisms of tumours and their response to therapy. 
However, cell lines do not perfectly reflect their tumour 

of origin and in terms of genomic alterations, protein 
expression and therapeutic sensitivity, they can differ 
substantially (Stein et al. 2004, Sandberg & Ernberg 2005, 
Ertel et al. 2006, Gillet et al. 2011, Domcke et al. 2013).
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The establishment of cell lines from human 
neuroendocrine tumours (NETs) of the gastrointestinal 
tract and pancreas (GEPNETs) has proved to be difficult. 
This has been attributed, in part, to the low proliferation 
rate of GEPNETs (Modlin et  al. 2008). Despite these 
challenges, several cell lines have been established from 
small intestinal NETs (SINETs). The first cell line derived 
from a human SINET was the KRJ-I cell line, reported in 
1996 (Pfragner et al. 1996). KRJ-I was established from a 
primary tumour and has been used to characterise the 
molecular mechanisms and therapeutic sensitivity of 
SINET disease (Modlin et al. 2006, Kidd et al. 2007, 2008). 
The GOT1 cell line was established in our laboratory 
in 2001 from a patient with metastatic SINET disease 
(Kölby et  al. 2001). GOT1 cells were derived from a 
liver metastasis and expressed neuroendocrine markers, 
including somatostatin receptor type 2 (SSTR2). This cell 
line has been used as a model for optimisation of SSTR2-
mediated peptide receptor radionuclide therapy (PRRT) 
(Kölby et al. 2005, Bernhardt et al. 2007, Forssell-Aronsson 
et  al. 2013, Dalmo et  al. 2017, Spetz et  al. 2017). More 
recently, in 2009, three cell lines were established from 
a patient with metastatic SINET disease (Pfragner et  al. 
2009). The P-STS cell line was derived from the patient’s 
primary tumour, L-STS from a lymph node metastasis and 
H-STS from a liver metastasis. A basic characterisation of 
these cell lines has been reported, and P-STS has been used 
to study the secretory response of SINETs (Rinner et  al. 
2012, Pfanzagl et al. 2017).

The generation of cell lines from human pancreatic 
NETs (PanNETs) has also been proven difficult, and only 
few cell lines are available. Among the most frequently 
used PanNET cell lines are QGP-1 and BON-1. QGP-1 was 
established in 1980 from a somatostatin-producing islet 
cell carcinoma (Kaku et al. 1980, Iguchi et al. 1990) and 
it has been used to study the molecular mechanisms that 
regulate tumour cell proliferation (Doihara et  al. 2009, 
Valentino et  al. 2014). BON-1 was established in 1991 
from a lymph node metastasis of a PanNET patient (Evers 
et al. 1991) and has been used as a model for studying the 
molecular mechanisms of PanNETs and their sensitivity 
to therapy. Albeit so far lesser used, the establishment of 
additional GEPNET cell lines has been reported, e.g. CM, 
LCC-18 and CNDT2.5 (Gueli et al. 1987, Lundqvist et al. 
1991, Van Buren et al. 2007). However, the authenticity 
of CNDT2.5 has been questioned (Ellis et al. 2010). There 
are also GEPNET cell lines derived from transgenic murine 
rodents, e.g. STC-1 (intestinal NET from SV40-expressing 
transgenic mouse), βTC and MIN6 (insulinomas from 
SV40-expressing transgenic mouse), RIN and INS-1 

(X-ray induced insulinomas from NEDH rat) (Gazdar et al. 
1980, Rindi et al. 1990, Efrat et al. 1991, Asfari et al. 1992, 
Ishihara et al. 1993).

The current status can be summarised as follows. 
Authentic GEPNET cell lines are rare, their genomic 
and mutational characteristics largely unknown and 
comprehensive information regarding their therapeutic 
sensitivity is lacking. Recently, efforts have been made to 
characterise PanNET-derived cell lines BON-1 and QGP-1 
by exome sequencing and genome-wide copy number 
analysis. These studies have raised questions regarding 
their relevance as models due to the absence of PanNET-
associated mutations (Boora et  al. 2015, Vandamme 
et al. 2015). There have been no corresponding efforts to 
characterise NET cell lines derived from SINETs. The aim 
of the present study was to re-evaluate the authenticity 
of GEPNET cell lines and to define their genomic profile 
and their therapeutic sensitivity. In this paper, we report 
the immunophenotyping, genome-wide copy number 
profiling, whole-exome sequencing and comprehensive 
inhibitor screening of seven GEPNET cell lines. We 
confirmed the neuroendocrine phenotype of GOT1, 
P-STS, BON-1 and QGP-1 and investigated their genomic 
profile. The inhibitor screening established the therapeutic 
sensitivity profiles of the cell lines and predicted the cell 
tumour type-specific efficacy of MEKi and HDACi.

Materials and methods

Cell lines, primary cell cultures and cell culturing

The GOT1 cell line was established from a liver metastasis 
of a midgut carcinoid from a female patient (Kölby et al. 
2001). GOT1 was cultured in RPMI-1640 supplemented 
with 10% foetal bovine serum (FBS), 5 μg/mL insulin and 
5 μg/mL transferrin. KRJ-I, P-STS, L-STS and H-STS were all 
gifts from Prof. R Pfragner and cultured in M199:Ham’s F12 
(1:1) supplemented with 10% FBS. KRJ-I was established 
from a male patient with a multifocal carcinoid of the 
small intestine. P-STS (primary tumour), L-STS (lymph 
node metastasis) and H-STS (liver metastasis) were all 
established from the same male patient with metastatic 
carcinoid of the terminal ileum. The PanNET cell line BON-
1, a gift from Prof. B Wiedenmann, was established from 
the lymph node of a carcinoid tumour of the pancreas 
in a male patient and cultured in DMEM:Ham’s F12 (1:1) 
with 10% FBS. QGP-1, which has been isolated from 
a pancreatic carcinoma of a male patient, was acquired 
from Japanese Collection of Research Bioresources Cell 
Bank (JCRB) and maintained in RPMI-1640 supplemented 
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with 10% FBS. MCF10A, BJ and HUV-EC-C were 
acquired from ATCC. MCF10A (human mammary gland 
epithelium) was maintained in DMEM:Ham’s F12 (1:1) 
supplemented with 5% horse serum, 10 µg/mL insulin, 
20 ng/mL epidermal growth factor (EGF), 0.5 µg/mL 
hydrocortisone and 0.1 µg/mL cholera toxin. BJ (human 
foreskin fibroblasts) was maintained in Eagle’s minimum 
essential medium supplemented with 10% FBS. HUV-
EC-C (human vascular endothelium) was maintained 
in F12K medium supplemented with 10% FBS,  
100 µg/mL heparin and 50 µg/mL endothelial cell growth 
supplement. The medium of all cell lines also contained 
200 IU/mL penicillin and 200 μg/mL streptomycin. For 
doubling time experiments, cells were seeded onto 25 cm2 
tissue cell culture flasks. At 24, 48, 72, 96 and 120 h, flasks 
(n = 2) were trypsinised and counted using Countess cell 
counter (Invitrogen).

Primary cell cultures of small intestinal and 
pancreatic NETs were generated from biopsies collected 
at the time of surgery, as previously described (Arvidsson 
et al. 2010). Both PanNET cultures (PanNET patient 1 and 
2) were derived from primary tumours, ‘SINET patient 
1’ from a lymph node metastasis and ‘SINET patient 
2’ from a liver metastasis. The cells were kept in RPMI-
1640 supplemented with 4% FBS, 200 IU/mL penicillin 
and 200 μg/mL streptomycin. For the characterisation 
and inhibitor sensitivity experiments, only first-passage 
primary cell cultures were used. All cell lines and primary 
cell cultures were incubated at 37°C in a humidified 
incubator with an atmosphere of 5% CO2.

Analysis of STR, Epstein-Barr virus and Mycoplasma

DNA was isolated from cell lines at the same passage as 
used for the inhibitor screening using the DNeasy Blood & 
Tissue Kit (Qiagen). DNA from cell lines, and from GOT1 
patient tumour tissue, was subjected to STR analysis 
at a DANAK/ILAC DS/EN ISO 15189:2008 accredited 
laboratory (IdentiCell, Department of Molecular Medicine 
(MOMA) at Aarhus University Hospital, Denmark) 
(Supplementary Fig. 1, see section on supplementary data 
given at the end of this article). Cell lines were regularly 
tested for Mycoplasma species by PCR as described in the 
study by van Kuppeveld et al. (1994) at a Swedac SS-EN ISO 
15189 accredited laboratory (Bacteriological laboratory, 
Sahlgrenska University Hospital, Gothenburg, Sweden). 
DNA from GEPNETs and lymphoblastoid cell lines was 
subjected to EBV DNA quantification using artus EBV PCR 
Kit (Qiagen). The PCR was performed using a 7500 Fast-
Real-time PCR system (Applied Biosystems).

Cell blocks and immunohistochemistry

Cell lines and primary cell cultures in exponential 
growth phase were detached and fixed in 4% buffered 
formaldehyde for 1 h followed by methanol fixation. The 
paraffin blocks were created using a Cellient automated 
cell block system (HOLOGIC). Sectioning and staining 
were carried out as previously described (Andersson 
et  al. 2016). The following primary antibodies were 
used: anti-chromogranin A (PHE5; Chemicon; diluted 
1:1000), anti-synaptophysin (SY38; Dako; diluted 1:200), 
anti-NCAM (ERIC1; Santa Cruz; diluted 1:10), anti-NSE  
(BBS/NC/VI-H14; Dako; ready-to-use), anti-PGP9.5 
(Z5116; Dako; diluted 1:400), anti-CD57 (HNK-1; BD 
Biosciences; diluted 1:40), anti-VMAT1 (C-19; Santa Cruz; 
diluted 1:1000), anti-5HT (H209; Dako; diluted 1:10), anti-
cytokeratin 8/18 (5D3; Leica Biosystems; diluted 1:2000), 
anti-pan-cytokeratin (AE1/AE3; Leica; ready-to-use), anti-
SSTR2A (UMB-1; Abcam; diluted 1:100), anti-Ki67 (MIB-1;  
Dako; ready-to-use), anti-CD45 (2B11+PD7/26; Dako; 
diluted 1:200) and anti-CD20 (L26; Dako; ready-to-use). 
Each staining was scored by a board-certified pathologist 
(O N) into four categories; ‘0’ (<1% weakly stained cells), 
‘+’ (<50% weakly stained cells), ‘++’ (moderate staining in 
>50% of cells) and ‘+++’ (strong staining in >50% of cells). 
A biopsy of a SINET served as a positive control (‘+++’). For 
Ki67, manual counting was performed on printed images 
and the percentage of labelled tumour cell nuclei was 
calculated (Reid et al. 2015).

Confocal laser scanning microscopy

Adherent cells (GOT1, P-STS, QGP-1 and BON-1) were 
grown on µ-slide 8-well chamber slides (ibidi, Martinsried, 
Germany) for 3 days and fixed in 4% buffered formaldehyde 
in PBS. Cells growing in suspensions (KRJ-I, L-STS, and 
H-STS) were spun onto microscope slides with a Cytospin 
2 cytocentrifuge (Shandon, UK) before fixation. The slides 
were incubated with primary antibodies for 1 h at room 
temperature in 1% BSA and 0.2% Triton X-100 in PBS and 
for 1 h with secondary antibodies conjugated to Alexa 
Fluor 594 (rabbit anti-mouse, cat. no. A11062 or goat anti-
rabbit, cat. no. A11037; ThermoFisher) or to FITC (rabbit 
anti-goat, cat. no. F0250; Dako). All experiments included 
negative controls wherein the primary antibody was 
omitted. The fluorescent cells were analysed using a Zeiss 
LSM 700 confocal microscope and Zen black software 
was supplied by the manufacturer. Images were captured 
using a Zeiss LSM 700 inverted microscope with a 63× oil 
immersion objective.
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Analysis of copy number alterations

DNA from cell lines was extracted as mentioned earlier, 
and arrayCGH analysis was performed using 4x180K 
Human SurePrint G3 ISCA CGH + SNP microarrays (Agilent 
Technologies) as recommended by the manufacturer and 
as previously described (Barrett et al. 2004, Persson et al. 
2008). Data analysis was carried out using Nexus Copy 
Number software, v.8.0 (BioDiscovery Inc., El Segundo, 
CA, USA). The FASST2 segmentation algorithm was 
used to define non-random regions of copy number 
alterations (CNAs) across the genome with a significance 
threshold ranging from P = 10−8 to P = 10−18, where the 
higher stringency threshold was used for arrays with 
QC >0.2. The log2 ratio thresholds for aberration calls of 
gain and loss were set to 0.2 and −0.2 for arrays with a 
significance threshold P≥10−8, and to 0.3 and −0.3 for 
arrays with a significance threshold P<10−8. Thresholds 
for amplification and homozygous loss were set to 1.5 and 
−1.5 in all cases. Sex chromosomes and regions partially or 
completely covered by a previously reported copy number 
variation (Database of Genomic Variants; http://dgvbeta.
tcag.ca/dgv/app/news?ref=NCBI37/hg19) were excluded 
from the analysis (Iafrate et al. 2004). Each aberration was 
checked manually to confirm the accuracy of the call.

Whole-exome sequencing

DNA from cell lines was extracted as described earlier and 
subjected to whole-exome sequencing at GATC Biotech 
(Cologne, Germany). FastQC (version 0.11.2) was used 
to assess the quality of the data. Paired end reads were 
aligned to the human reference genome (hg19) using a 
Burrows-Wheeler Aligner (mem version BWA_0.7.13) 
(Li & Durbin 2009). Samtools (version 1.3.1) was used to 
sort, index and assess mapping statistics. Picard (version 
2.2.4) was used to remove duplicates. The Genome Analysis 
ToolKit (GATK, version 3.1-1) (McKenna et al. 2010) was 
used for realignment and variant calling. Variant calling 
was performed following GATK best practices with the 
tool HaplotypeCaller. In HaplotypeCaller, the following 
hard filters were applied for quality filtering; for SNPs: 
QD <2.0, MQ <40.0, FS >60.0, ReadPosRankSum <−8.0, 
MQRankSum <−12.5 and for indels: QD <2.0, FS >200.0, 
ReadPosRankSum <−20.0. Called variants that passed 
the GATK quality filtering were further filtered against 
1000 Genomes (Auton et  al. 2015) to remove variants 
with a MAF >0.01. Remaining variants were annotated 
with the knownGene database using the tool ANNOVAR 
(Wang et al. 2010).

Screening library and inhibitor sensitivity

The screening library consisted of 1224 compounds 
(Inhibitor library, no. L1100; Selleckchem). The library 
was prepared by two-step dilution of the compounds from 
10 mM to 100 µM in DMSO and batched in 96-well plates. 
Inhibitors were subjected to a maximum of five freeze-
thaw cycles. From frozen stocks, cells were expanded 2–5 
passages before being used in screening experiments. 
Seeding density was adjusted for each cell line so that 
control cells were approximately 70‒80% confluent at 
treatment endpoint in 100 µL cell medium/well in black 
solid-bottom 96-well plates. The plates were incubated for 
72 h at 37°C to allow for cell attachment. Each treatment 
plate included DMSO control wells (n = 8), and each 
experiment included an additional plate with DMSO 
control wells (n = 96), as well as one cell-free control 
plate. The screening library was diluted 1:50 in 100 µL 
medium and added to the treatment plates (1:2; end 
concentration 1 µM). Cell viability was estimated using a 
fluorescence-based assay to measure the reducing capacity 
of metabolically active cells (alamarBlue, DAL1100; Life 
Technologies). All assay plates were incubated for 72 h at 
37°C, followed by addition of 1:100 alamarBlue reagent. 
The plates were further incubated for 6 h at 37°C and 
were then analysed using a 96-well fluorescence plate 
reader (Victor3 multilabel reader, ex. 560 nm/em. 640 nm). 
For vorinostat and trametinib dose–response curves, 
first-passage primary cultures were thawed and seeded 
onto 96-well plates, allowed to settle for 48 h before 
treatment with vorinostat or trametinib for 72 h. Each 
concentration was added in triplicate and plates were 
analysed as described earlier. Fitting of the curves was 
done in GraphPad Prism software, v7.02 using inhibitor 
vs. response nonlinear fit with variable slope.

Statistical analyses

For each cell line, inhibitor fluorescence intensities 
generated by the cell viability assay were log-transformed 
and normalized by subtracting the average and dividing 
by the standard deviation generating a Z-score. Average 
Z-scores were calculated for the SINET and PanNET cell 
lines respectively. The difference in inhibitor intensity 
between SINET and PanNET was then calculated and a 
corresponding p-score was derived from a fitted normal 
distribution. Testing for groups of inhibitors was done 
by comparing their differences to the differences of 
all other inhibitors using a Wilcoxon–Mann–Whitney 
test. False discovery rates were estimated using the  
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Benjamini–Hochberg algorithm. Differences in the 
effect of MEKi and HDACi to SINET, PanNET and non-
tumourigenic cell lines were analysed using Wilcoxons 
signed-rank test. Differences in the response of primary 
cell cultures to different doses of MEKi and HDACi was 
analysed using two-sided unpaired Student’s t-test for each 
dose and corrected for multiple testing with Benjamini–
Hochberg algorithm.

Results

Immunophenotyping confirmed expression of 
neuroendocrine tumour markers and SSTR2 in four 
GEPNET cell lines

NETs are defined by their expression of neuroendocrine 
markers, notably chromogranin A and synaptophysin. 
The degree of neuroendocrine differentiation of NET cell 
lines was evaluated by performing immunohistochemical 
staining on cell blocks. Each staining was scored into four 
categories, using biopsies from SINETs as positive controls.

We found strong staining for synaptophysin in GOT1, 
P-STS, QGP-1 and BON-1, while staining for chromogranin 
A was moderate in GOT1, weak in BON-1 and absent in 
P-STS and QGP-1 (Fig.  1A and B). In addition, PGP9.5 
staining was strong in SINET cell lines and negative in 
PanNET cell lines. NCAM staining was strong in all 
investigated cell lines. Neuron-specific enolase (NSE) 
showed strong staining in GOT1, P-STS and QGP-1, but 

was weak in BON-1. P-STS had strong staining for CD57, 
while GOT1, BON-1 and QGP-1 had moderate levels.

Linage markers of SINETs (VMAT1 and 5-HT) were 
also investigated. VMAT1 was strongly stained in GOT1, 
weakly stained in BON-1 and QGP-1, and not stained 
in P-STS, while 5-HT was strong in GOT1, moderate in 
BON-1 and weak in P-STS and QGP-1. The localisation 
of synaptophysin, chromogranin A, VMAT1 and 5-HT 
to secretory granules was confirmed by confocal laser 
scanning microscopy (Fig. 2).

GEPNETs are derived from progenitor cells in the 
intestinal crypts, or pancreatic ducts, which express 
epithelial markers such as cytokeratins. To confirm the 
epithelial phenotype of NET cell lines, we stained for high-
molecular-weight cytokeratins (AE1/AE3) and cytokeratin 
8/18. The staining for high-molecular-weight cytokeratins 
was strong in all cell lines, while staining for cytokeratin 
8/18 was weak to moderate in GOT1, P-STS, BON-1 and 
QGP-1 (Fig. 1).

Neuroendocrine marker, linage-specific marker and 
epithelial marker expression for GOT1, P-STS, BON-1 and 
QGP-1 overall well reflected that of clinical samples of 
GEPNETs. However, the Ki67 index of the cell lines was 
not representative of typical GEPNETs. GOT1 originated 
from a SINET liver metastasis with positivity for SYP, CgA, 
5-HT, CK8/18 and with a Ki67 index of 1.3% (Grade I; 
data not shown). Furthermore, the Ki67 index of the cell 
lines correlated poorly to their doubling time (Fig. 1).

Figure 1
Expression of neuroendocrine markers and somatostatin receptor 2 in GEPNET cell lines. (A) Scoring of protein expression based on 
immunohistochemical staining of cell blocks. 5-HT was evaluated from confocal laser scanning microscopy. (B and C) Immunohistochemical staining of 
cell blocks, illustrating expression of the neuroendocrine markers synaptophysin and chromogranin A (B), and clinically relevant SSTR2 (C) in GEPNET cell 
lines. CHGA, chromogranin A; SYP, synaptophysin; PGP9.5, ubiquitin carboxyl-terminal hydrolase isozyme L1; N-CAM, neural cell adhesion molecule 1; 
NSE, gamma-enolase; 5-HT, serotonin; VMAT1, chromaffin granule amine transporter 1; cytokeratin 8/18, keratin type II cytoskeletal 8/type I cytoskeletal 
18; pan-CK, pan-cytokeratin; SSTR2, somatostatin receptor type 2; n.d., not detected.
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For the three putative SINET cell lines KRJ-I, L-STS and 
H-STS, we however, with the exception of NCAM, found 
only weak or no staining of neuroendocrine markers and 
could not detect any linage-specific markers or cytokeratins. 
These observations, in addition to the fact that these three 
cell lines grow non-adherently and form aggregates in cell 
culture (in contrast to the other GEPNET cell lines), made 
us question their authenticity. We hypothesised that KRJ-I,  
L-STS and H-STS were EBV-driven lymphoblastoid cell 
lines and thus performed immunohistochemical staining 
for lymphoid (CD45) and B cell markers (CD20). Both 
markers were highly expressed in KRJ-I, L-STS and H-STS, 
and the cell lines also contained high levels of EBV DNA, 
while the GOT1, P-STS, BON-1 and QGP-1 were negative 
(Supplementary Fig. 2). We therefore conclude that these 
cell lines are lymphoblastoid, and do not represent true 
GEPNET cell lines.

Somatostatin receptors are frequently over-expressed 
in GEPNETs and are used as a target for imaging and 
therapy. We performed staining for the somatostatin 
receptor subtype 2 (SSTR2) and found strong staining 
in GOT1 cells, weak staining in BON-1 and no 
staining in P-STS and QGP-1 (Fig.  1C). Confocal laser  
scanning microscopy showed strong membranous 
localisation of the SSTR2 protein in GOT1 cells (Fig. 2).

GEPNET cell lines harbour multiple copy 
number alterations

Chromosomal changes have been linked to tumourigenesis 
and disease progression in patients with GEPNETs. 
Recurrent copy number alterations (CNAs) differ between 

SINETs and PanNETs, suggesting different mechanisms 
for tumour initiation and progression. To study CNAs 
in GEPNET cell lines, we performed whole-genome copy 
number profiling and found CNAs in all GEPNET cell 
lines (range 7‒44) (Supplementary Table 1).

The SINET cell lines GOT1 and P-STS had a lower 
frequency of alterations and a predominance of 
chromosomal losses. Loss of parts or whole chromosome 
18 is the most common genomic event in SINETs 
(found in 60‒70% of the tumours). The GOT1 cell line 
showed loss of a 1.8 Mb segment of 18q, including the 
tumour suppressor SMAD4 (Fig.  3A). The GOT1 cell 
line originated from a tumour that had loss of whole 
chromosome 18 and like GOT1, with predominance 
of losses and without gains of whole chromosomes 
(data not shown). The P-STS cell line had no losses on 
chromosome 18, but instead showed losses involving 
11q, which is also a frequent alteration in SINETs (Kulke 
et al. 2008, Andersson et al. 2009). The PanNET cell lines 
BON-1 and QGP-1 had a higher frequency of CNAs. The 
BON-1 cell line had a predominance of gains, including 
whole chromosomes 2, 5, 7, 10 and 12, which are also 
frequent gains in PanNETs (Hu et al. 2010, Gebauer et al. 
2014). BON-1 also harboured a homozygous loss of the 
CDKN2A/B tumour suppressor genes. The QGP-1 cell line 
had the highest number of CNAs and was the only cell line 
with gene amplifications. There were three amplicons on 
chromosome 12, one in 12p12.1, including SOX5, one in 
12q14.1 and one in 12q12.2–q21.1 including MDM2 and 
HMGA2 (Fig.  3B). The lymphoblastoid cell lines L-STS 
and H-STS had no alterations, while KRJ-I harboured 
three small CNAs.

Figure 2
The subcellular localisation of neuroendocrine 
markers in GEPNET cell lines. The staining pattern 
of chromogranin A (CHGA), synaptophysin (SYP), 
chromaffin granule amine transporter 1 (VMAT1) 
and serotonin (5-HT) was consistent with 
localisation to secretory granules. The staining of 
somatostatin receptor type 2 (SSTR2) and 
cytokeratin 8/18 (CK8/18) was confirmed to be 
membranous and cytoskeletal, respectively.
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GEPNET cell lines harbour mutations in several 
tumour suppressor genes, including TP53

Mutations in GEPNETs are rare, and the only identified 
recurrent gene mutation in SINETs is of CDKN1B, which 
occurs in less than a tenth of all tumours (Francis et al. 
2013). Recurrent mutations in PanNETs have been found 
in several genes, including ATRX, DAXX, as well as genes 
involved in the Akt/mTOR pathway, DNA repair and 
chromatin remodelling (Jiao et al. 2011, Scarpa et al. 2017). 
In order to evaluate the mutational profiles of the GEPNET 
cell lines, we performed whole-exome sequencing and 
searched for tumour disease-associated genes.

We detected an average of 196,067 single-
nucleotide polymorphisms (SNPs) per cell line (range 
173,584‒228,182). After quality filtering according to 
GATK best practices with the tool HaplotypeCaller, the 
number of reads was narrowed down to 188,133 on average 
(range 166,049‒219,655). In order to remove frequently 
occurring SNPs, all variants were further filtered against 
the 1000 Genomes Project database (Auton et al. 2015), 

where only SNPs with a frequency less than 0.01 were 
included. This generated an average of 25,095 rare SNPs per 
cell line. On average 1956 SNPs (range 1586‒2580) were 
located within exons and predicted to cause an alteration 
in the translated protein (Fig.  4 and Supplementary 
Table 2). Using the same filtering process, the number of 
indels was narrowed down from an average of 31,729 per 
cell line (range 25,665‒39,758) to an average of 275 (range 
134‒653) protein-modifying events (Supplementary 
Table 3). Among the four GEPNET cell lines, P-STS had the 
highest number of protein-altering SNPs and indels and 
also displayed a higher degree of transitions compared to 
the other cell lines (Supplementary Fig. 3).

We first investigated the cell lines for mutations in 
genes linked to hereditary endocrine tumour syndromes, 
i.e. MEN1, VHL, NF1 and TSC2 syndromes (Capelli 
et al. 2009, Corbo et al. 2010). Among these genes, only 
heterozygous TSC2 mutations in P-STS and BON-1 were 
found (Fig. 5). None of the cell lines harboured mutations 
in the MEN1, VHL or NF1 genes. Next, we searched for 
mutations in genes previously reported to be recurrently 

Figure 3
Copy number alterations detected in four GEPNET 
cell lines. (A) GOT1 harboured a loss of a 1.8 Mb 
segment on chromosome 18q, encompassing the 
SMAD4 gene. (B) Of the three amplicons on 
chromosome 12 that QGP-1 harboured, one 
spanned 12q12.2–q21.1 including the HMGA2 
and MDM2 genes.
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mutated in SINETs (Francis et  al. 2013) and PanNETs 
(Jiao et  al. 2011, Scarpa et  al. 2017). CDKN1B, which is 
recurrently mutated in SINETs, was not affected in any of 
the cell lines. ATRX, MTOR, SETD2 and DIS3L2, all of which 
have been found recurrently mutated in PanNETs, had 
bi-allelic inactivations in one or several cell lines. QGP-1 
harboured homozygous mutations in ATRX, while GOT1 
had a heterozygous mutation. QGP-1 had only one MTOR 
gene copy, which was mutated. SETD2, a gene coding for 
a histone modifier protein, had only one gene copy in 
GOT1, P-STS and QGP-1. This gene copy was mutated 
in P-STS and QGP-1 causing bi-allelic inactivation. DNA 
repair gene CHEK2 showed a homozygous mutation in 
BON-1. Finally, we studied other cancer-associated genes, 
by analysing the 127 mutated genes identified in the 
Tumor Cancer Genome Atlas (TCGA) Pan-Cancer effort. 
(Kandoth et al. 2013) Out of these cancer-associated genes, 
46 genes had heterozygous or homozygous mutations in 
one or more cell lines (Supplementary Table 4). Among 
affected genes, we found the key tumour suppressor TP53 
mutated in three out of four cell lines. TP53 is seldom 

inactivated in GEPNETs, but here found mutated in 
P-STS, BON-1 and QGP-1. GOT1 was the only GEPNET 
cell line with wild-type TP53. The cell-cycle regulators 
CDKN2A and CDKN2B were inactivated by homozygous 
loss in BON-1. The SMAD4 gene, involved in cell growth 
inhibition signalling, was lost in GOT1, had a heterozygous 
mutation in P-STS and a homozygous mutation in BON-1.

PanNET and SINET cells are sensitive to inhibitors of 
MEK and HDAC

GEPNET cell lines have been used to study selected 
inhibitors for their efficacy and mechanism of action 
(Grozinsky-Glasberg et  al. 2012). No comprehensive 
screening for effective inhibitors of GEPNETs has however 
been reported. One of this study’s aims was to define a 
therapeutic sensitivity profile for GEP-NETs. To this end, 
we performed an inhibitor screening with 1224 inhibitors, 
on the GEPNET cell lines GOT1, P-STS, BON-1 and QGP-1 
using the non-tumourigenic cell lines MCF10A, BJ and 
HUV-EC-C as controls.

Figure 4
Whole-exome sequencing of GEPNET cell lines. Successive filtering with the remaining number of SNPs or indels in each step is shown. Percentage is 
relative to the number of variants detected in the detection step.

Figure 5
Genomic events involving genes linked to 
hereditary endocrine tumour syndromes, genes 
recurrently mutated in GEPNETs, and cancer-
associated genes. Four genes have been 
hereditary linked to GEPNETs, none of which had 
bi-allelic inactivation in the cell lines. Out of 
previously identified recurrently mutated genes 
in GEPNETS, four had bi-allelic inactivations: 
ATRX (QGP-1), MTOR (QGP-1), SETD2 (P-STS and 
QGP-1), and CHEK2 (BON-1). Out of the 127 
genes identified by the Tumor Cancer Genome 
Atlas, 49 had one or more protein-altering 
mutations in the cell lines; these genes included 
key tumour suppressors TP53, CDKN2A, CDKN2B 
and SMAD4.
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Figure 6
Therapeutic sensitivity of GEPNET cell lines and primary cell cultures. (A) Average Z-score representing effect on cell viability of individual inhibitors to 
SINETs (GOT1/P-STS) and PanNETs (BON-1/QGP-1), plotted against each other. Groups of inhibitors that are significantly more potent against SINETs or 
PanNETs are marked by colour. (B) The effect of all MEKi against SINET cells, PanNET cells and non-tumourigenic cells. MEKi are more potent against 
PanNET cells, compared to SINET and non-tumourigenic cells. (C) Comparing the sensitivity of PanNET and SINET first-passage primary cells to MEKi 
trametinib. (D) SINET cell lines are more sensitive to HDACi, compared to PanNET cells and non-tumourigenic cells. (E) First-passage primary SINET cells 
are seemingly more sensitive than primary PanNET cells to the HDACi vorinostat. (B and D) Bars indicate mean effect, error bars s.d. and P values 
generated from Wilcoxon signed-rank test. (C and E) Dose–response curves represent a mean of n = 3 and the error bars denote standard deviation (s.d.).

https://doi.org/10.1530/ERC-17-0445
http://erc.endocrinology-journals.org © 2018 The authors

Printed in Great Britain
Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/ERC-17-0445
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


376T Hofving et al. Characterisation of GEPNET 
cell lines

25:3Endocrine-Related 
Cancer

This resulted in data regarding the efficacy of a large 
number of inhibitors and protein targets (Supplementary 
Table 5). In the data, we observed an overall high degree 
of similarity in inhibitor sensitivity between cell lines 
derived from SINETs and PanNETs. We could however 
identify several groups of inhibitors that were significantly 
more selective for PanNET cells or SINET cells (Fig. 6A). 
Inhibitors of HDAC and topoisomerase were more efficient 
against SINETs, and inhibitors of MEK, HSP90 and Aurora 
kinase were more efficient against PanNETs. Looking at 
the anti-tumour effect of all MEKi in the screening library, 
SINET cells were largely unaffected, while most of the 
MEKi were efficient against PanNET cell lines and in a 
lesser degree against non-tumourigenic cells (Fig.  6B). 
To confirm these findings, we used first-passage primary 
tumour cells, prepared from patient SINETs and PanNETs 
collected at surgery. The authenticity of tumours was 
verified using immunohistochemistry (Supplementary 
Fig.  4 and Supplementary Table  6). FDA-approved MEK 
inhibitor trametinib was used to treat these cells (Fig. 6C). 
While many HDACi had no or limited effect, this was 
mostly true for PanNET cells and non-tumourigenic 
cells. A large number of HDACi had, in fact, a potent 
effect against SINET cells (Fig. 6D). In primary cells, FDA-
approved HDACi vorinostat was seemingly more efficient 
against SINETs than PanNETs at the highest tested 
concentration (Fig. 6E).

Discussion

We here report the first comprehensive characterisation 
of seven GEPNET-derived cell lines, including evaluation 
of their neuroendocrine phenotype, genomic alterations 
and therapeutic sensitivity profiles. We found a preserved 
neuroendocrine phenotype in four cell lines and that 
these cell lines have genomic alterations characteristic 
of GEPNETs, albeit while also harbouring additional 
genomic alterations. A large-scale inhibitor screening 
was performed, providing a basis for future therapeutic 
developments and identified HDAC and MEK as promising 
protein targets for therapy.

NETs are defined by their expression of neuroendocrine 
markers, e.g. synaptophysin and chromogranin A, which 
are components of small synaptic-like vesicles, and 
large dense-core vesicles, respectively (Rindi et  al. 1986, 
Wiedenmann et  al. 1986). Furthermore, GEPNETs are 
derived from progenitor cells in the intestinal crypts or 
pancreatic ducts, and consequently express epithelial 
markers, e.g. cytokeratins. We showed that four GEPNET 
cell lines, GOT1, P-STS, BON-1 and QGP-1, all expressed 

synaptophysin and NCAM strongly, while expression 
of chromogranin A, PGP9.5, NSE, CD57 and lineage-
specific markers VMAT1 and 5-HT varied between the 
cell lines. In GOT1 and BON-1, we also found expression 
of SSTR2, a major target for symptomatic treatment 
of hormonal symptoms, tumour imaging and peptide 
receptor radiotherapy in GEPNET patients. These 
findings demonstrate the neuroendocrine phenotype 
of these cell lines, and their usefulness as models for 
studying somatostatin receptor-targeted radiotherapy in 
neuroendocrine tumours (Reubi et al. 2000). All four cell 
lines also stained positively for cytokeratins. We failed, 
however, to find any neuroendocrine differentiation 
or expression of cytokeratins in the KRJ-I, L-STS and 
H-STS cell lines. These cell lines grew as suspension 
cultures, forming floating aggregates. Based on this, we 
hypothesised that they might be lymphoblastoid cell 
lines. We went on to show that these cell lines expressed 
lymphoid markers CD45 and CD20 and contained high 
levels of EBV DNA, confirming our hypothesis. The lack 
of NET markers and cytokeratins, and the presence of 
lymphoid markers plus EBV DNA, has also been found 
in early passages of these cell lines at the laboratory in 
which they were established (R Pfragner, unpublished 
observations). While KRJ-I in the initial characterisation 
displayed a positivity for anti-chromogranin A and HISL19 
staining, it was also shown that the culture consisted of 
clones with both high and low growth rates, and with 
varying anchorage dependency (Pfragner et al. 1996). The 
established cell line later consisted only of a suspension of 
single cells and multicellular spheroids. P-STS was shown 
to express neuroendocrine markers in all cells, while 
the staining frequency and intensity of neuroendocrine 
markers in L-STS and H-STS was variable (Pfragner et al. 
2009). Based on these early observations, combined with 
the present investigation, has lead us to believe that 
the loss of a neuroendocrine phenotype in KRJ-I, L-STS 
and H-STS was because the cultures initially consisted 
of both neuroendocrine and lymphoblastoid cells. The 
neuroendocrine cells were then were completely taken 
over by the lymphoblastoid cells. We also characterised 
primary cell cultures, which as expected showed 
expression of all general neuroendocrine and epithelial 
markers while lymphoid markers could not be detected.

SINETs are often subcategorised into at least two 
groups based on their CNAs. The largest group of tumours 
is characterised by chromosomal losses, including loss of 
chromosome 18, and is associated with longer patient 
survival. A smaller group of tumours is characterised 
by multiple chromosomal gains and is associated with 
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shorter patient survival (Kulke 2008, Andersson et  al. 
2009, Karpathakis et al. 2016). PanNETs harbour recurrent 
CNAs characterised by a predominance of gains (Gebauer 
et al. 2014). To study the genomic profile of the GEPNET 
cell lines, we performed arrayCGH and found that they 
had very different CNA profiles. The SINET cell lines 
GOT1 and P-STS were characterised by a predominance 
of chromosomal losses. The PanNET cell line BON-1, on 
the other hand, was characterised by a predominance 
of gains, including gain of several whole chromosomes. 
Among the cell lines investigated, QGP-1 had the highest 
frequency of CNAs, with an equal number of losses and 
gains. GOT1 had partial losses on 18q encompassing 
the tumour suppressor SMAD4, which is believed to be 
haploinsufficient (Howe et al. 1998, Xu et al. 2000, Alberici 
et al. 2006). BON-1 had homozygous loss of the tumour 
suppressor genes CDKN2A and CDKN2B, an event that has 
previously been reported in this cell line (Vandamme et al. 
2015). The QGP-1 cell line had amplifications involving 
three segments on chromosome 12, including the genes 
MDM2 and HMGA2. Interestingly, amplification and 
overexpression of MDM2 is a well-known mechanism of 
TP53 inactivation occurring in 22% of all PanNETs, while 
overexpression of HMGA2 is associated with a malignant 
phenotype (Abe et al. 2003, Hu et al. 2010).

PanNETs frequently have somatic mutations in MEN1, 
ATRX or DAXX. ATRX, located on the X-chromosome, 
was mutated in QGP-1 (male) and had a heterozygous 
mutation in GOT1 (female), possibly leading to a 
bi-allelic inactivation of the gene. No mutations in 
DAXX or MEN1 were found in any of the cell lines. While 
expression studies have indicated that mTOR signalling 
is upregulated in most PanNET tumours (Perren et  al. 
2000, Missiaglia et  al. 2010), whole-exome and whole-
genome sequencing studies have found mutations in 
negative regulators of the signalling pathway in only 
12–15% of patient tumours (Jiao et al. 2011, Scarpa et al. 
2017). None of these genes were mutated in any of the 
GEPNET cell lines, but MTOR was altered in QGP-1. 
CDKN1B is the only gene so far reported to be recurrently 
mutated in a subset of SINETs (Francis 2013). We did 
not find any mutations affecting CDKN1B in any of the 
GEPNET cell lines. Due to selection pressure and stress 
during in vitro culturing, tumour cell lines often acquire 
novel mutations that may not be found in the tumour 
from which they were derived. Acquired mutations may 
affect the growth properties of cell lines, and influence 
their therapeutic sensitivity. TP53, encoding a tumour 
suppressor and key regulator of DNA repair and apoptosis, 
is usually unaffected in GEPNETs, but was found to be 

bi-allelically inactivated in P-STS, BON-1 and QGP1. We 
found a homozygous stop-loss mutation in BON-1 and 
a frameshift deletion in QGP-1, in accordance with a 
previous report (Vandamme et al. 2015).

To date, GEPNET cell lines have only been used to 
study the potency and mechanisms of action of a limited 
number of inhibitors. In the present study, we performed a 
comprehensive inhibitor screening to obtain a sensitivity 
profile representing a wide range of therapeutic principles. 
The screening identified inhibitors that are selectively 
efficient to SINET or PanNET cell lines. To study these 
findings in another model, we used first-passage primary 
cells. The primary cell cultures expressed neuroendocrine 
markers similar to the investigated GEPNET cell lines. 
Experiments showed that vorinostat killed SINET primary 
cells more efficiently than PanNET primary cells and that 
trametinib was more efficient against PanNET primary 
cells. This effect was however only prominent at high 
doses, suggesting that observed effects might be due to 
off-target activity. HDAC inhibition has also previously 
been suggested as a treatment option for GEPNET patients 
(Baradari et al. 2006, Arvidsson et al. 2016, Sun et al. 2016).

From these findings combined, we conclude that the 
four cell lines GOT1, P-STS, BON-1 and QGP-1 are indeed 
authentic neuroendocrine tumour cell lines, harbouring 
genomic events characteristic of GEPNETs, but also cancer-
associated mutations that most likely have occurred 
in cell culture. The identification of lymphoblastoid 
cell lines among putative GEPNETs emphasises the 
need to thoroughly characterise GEPNET cell lines used 
as models for neuroendocrine tumour disease. Our 
observations also emphasises the need to be cautious 
when drawing conclusions from studies performed on 
GEPNET cell lines. One major concern is the origin of 
GEPNET cell lines and whether they were derived from 
well-differentiated neuroendocrine tumours or poorly 
differentiated neuroendocrine carcinomas. The difficulties 
in establishing GEPNET cell lines are usually attributed 
to the low proliferation rate of these tumours. One may 
argue that available GEPNET cell lines were established 
from more aggressive tumours that should be classified 
as neuroendocrine carcinomas. The occurrence of TP53 
mutations in three of the investigated cell lines (P-STS, 
BON-1 and QGP-1) further strengthens this concern. The 
original publications on GEPNET cell lines do not contain 
sufficient data to determine the grade of the tumours 
from which cell lines were derived. We have therefore 
reinvestigated the origin of the GOT1 cell line and found 
it to be a liver metastasis from a well-differentiated, 
serotonin-producing (enterochromaffin cell type) ileal 
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NET. The liver metastasis was of grade 1 (WHO 2010) and 
harboured a loss of chromosome 18. We conclude that it 
remains to be proven to what extent GEPNET cell lines 
are representative for the tumour disease from which they 
were derived. Experimental data obtained from GEPNET 
cell lines should therefore be carefully validated using 
patient tumours.

Supplementary data
This is linked to the online version of the paper at https://doi.org/10.1530/
ERC-17-0445.
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