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Abstract

Analyzing whole-genome bisulfite and related sequencing datasets is a time-intensive process due to the complexity and size of the
input raw sequencing files and lengthy read alignment step requiring correction for conversion of all unmethylated Cs to Ts genome-
wide. The objective of this study was to modify the read alignment algorithm associated with the whole-genome bisulfite sequencing
methylation analysis pipeline (wg-blimp) to shorten the time required to complete this phase while retaining overall read alignment
accuracy. Here, we report an update to the recently published pipeline wg-blimp achieved by replacing the use of the bwa-meth
aligner with the faster gemBS aligner. This improvement to the wg-blimp pipeline has led to a more than �7 acceleration in the proc-
essing speed of samples when scaled to larger publicly available FASTQ datasets containing 80–160 million reads while maintaining
nearly identical accuracy of properly mapped reads when compared with data from the previous pipeline. The modifications to the
wg-blimp pipeline reported here merge the speed and accuracy of the gemBS aligner with the comprehensive analysis and data visu-
alization assets of the wg-blimp pipeline to provide a significantly accelerated workflow that can produce high-quality data much
more rapidly without compromising read accuracy at the expense of increasing RAM requirements up to 48 GB.
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Introduction
DNA methylation at CpG dinucleotides is one of the most com-
monly studied parameters within the epigenome because it is di-
rectly assessable and is often reflective of the overall structure of
chromatin, which, in turn, contributes to regulation of gene ex-
pression at the transcriptional level [1]. While there is a myriad of
techniques for analysis of DNA methylation, a number of those
used in the past (e.g. reduced-representation bisulfite sequencing
[2], methylated DNA immunoprecipitation sequencing [3]) have
employed enrichment of regions with higher frequencies of CpG
dinucleotides to limit the portion of the genome to be sequenced
as a means to decrease the cost and computational resources re-
quired to process and analyze the resulting data. However, these
techniques provide only a partial view of the epigenome, typically
focused primarily on the impact of DNA methylation on chroma-
tin structure in promoters and exons where CpG dinucleotides
are often most abundant [4]. This limits the potential of these
techniques to profile DNA methylation in other regions of the ge-
nome which also contribute to regulation of gene expression,
such as enhancers or regions associated with the boundaries of
topologically associated domains [5].

Whole-genome approaches, such as whole-genome bisulfite
sequencing (WGBS) and more recently, enzymatic methyl-seq
(EM-seq), yield informative results for the entire genome, and, as
such, have become the gold standard for global analysis of DNA

methylation with single-CpG resolution [6]. Thus, as sequencing

costs have decreased [7], an increasing number of investigators

are opting to utilize this more comprehensive, genome-wide as-

sessment of DNA methylation which yields large and robust

datasets [8–10]. However, this more comprehensive assessment

of the epigenome mandates a corresponding increase in the ex-

tent of computational analysis needed to interpret the resulting

larger datasets.
Recently, a novel snakemake [11] workflow termed whole-

genome bisulfite sequencing methylation analysis pipeline (wg-

blimp) was described as an “end-to-end” pipeline for processing

WGBS data by integrating established algorithms for alignment,

quality control (QC), methylation calling, detection of differen-

tially methylated cytosines (DMCs), differentially methylated

regions (DMRs), and methylation segmentation for profiling of

DNA methylation states at regulatory elements [12]. This novel

wg-blimp pipeline has been added to a short but growing list [13–

17] of similar pipelines which include msPIPE [18], the ENCODE

WGBS pipeline [19], and Nextflow methylseq [20]. The wg-blimp

pipeline is simple to install on either a personal computer or in a

research high-computing cluster, often requiring only an input

reference, gene annotation, and FASTQ read files to fully process

WGBS data. However, due to the nature and large file sizes

of WGBS data, executing the wg-blimp pipeline in its previous

form often required extended computing time emanating from
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mapping bisulfite-treated sequences to a reference genome. This
difficulty is due to the conversion of unmethylated Cs to Us in
the original DNA strand following bisulfite treatment. During PCR
amplification, these Us are replaced with Ts, ultimately resulting
in the conversion of C–G base pairs into T–A base pairs. Because
most Cs in the genome exist in non-CpG contexts and are thus
normally unmethylated, the bisulfite treatment causes a sub-
stantial increase in the proportion of T–A base pairs and a con-
comitant decrease in the proportion of G–C base pairs in the
amplified copies of the initially treated DNA strands. This renders
mapping of bisulfite-converted reads using a conventional read
mapper inadequate, because a large percentage of the converted
bases will be called as mismatches relative to the untreated refer-
ence sequence.

To overcome this limitation, improved “3-letter” aligners, such
as bwa-meth [21] and gemBS [22], designed specifically for map-
ping bisulfite-converted reads, perform a two-stage mapping pro-
cess. Cs on read 1 are fully converted to Ts, while Gs on read 2 are
fully converted to As. The reads are then aligned to either of two
reference genomes, where either all the Cs have been converted
to Ts or all Gs have been converted to As. After mapping to the
converted reference genomes, the read sequences are then re-
stored to the original sequence, revealing methylated Cs which
can be identified in further downstream processing. Due to this
extensive processing step required for alignment of all converted
reads to multiple indexed genomes, followed by conversion back
to the starting read sequence, the alignment step imposes a very
time-consuming computational toll on data processing.

While both bwa-meth and gemBS follow the same “3-letter”
alignment mapping concept, there are significant differences in
their implementation which translate to large differences in their
overall speed due to differences in the underlying alignment soft-
ware packages from which these specialized methylation aligners
were generated. The bwa-meth methylated DNA aligner has a
foundation built on the improved BWA-MEM alignment software
which follows the seed-and-extend paradigm to find initial seed
alignment with super-maximal exact matches (SMEMs) using an
improvement of the Burrows–Wheeler transform algorithm [21,
23]. BWA-MEM additionally re-seeds SMEMs greater than the de-
fault of 28 bp to find the longest exact match in the middle of the
seed that occurs at least once in the bisulfite-converted reference
genome, to reduce potential miss-mapping due to missing seed
alignments. BWA-MEM also filters out unneeded seeds by group-
ing closely located seeds which it terms ‘chains’, thereby remov-
ing shorter chains contained within longer chains (which are at
least 50% and 38 bp shorter than the longer chain) [23]. The seeds
remaining in these longer chains are then ranked by the length of
the chain to which the seed belongs, and then by the length of
the seed itself. Seeds that are already contained in a previously
identified alignment are dropped, while seeds that potentially
lead to a new alignment are extended with a banded affine-gap-
penalty dynamic program [23]. While these strategies have in-
creased the potential size of the read that can be aligned using
the BWA-MEM software from 70 bp to a few megabases, the
heavy reliance on gapped sequenced alignment by BWA-MEM
comes with the drawback that non-unique matches have a
higher likelihood of aligning to multiple places in the genome in-
troducing a higher potential for false-positive read alignments.

While the aligner that the gemBS software is built on, GEM3,
allows for mapping lengths of only up to 1 kb, this length is suffi-
cient to scale to large sequencing analyses while GEM3 prioritiza-
tion of exact over gapped read alignments maintains equal if not
superior read mapping accuracy when compared with BWA-MEM

[22]. This superiority largely comes from gemBS performing the

conversion of read steps before and after mapping “on the fly”

[22] for each read pair, thereby avoiding the generation of inter-

mediate files and greatly increasing the efficiency of the mapping

process. In addition, GEM3 filters and sorts mapped seeds into

groups referred to as “strata” which facilitate complete searches

of indexed references to find all possible matches to the reference

genome, improving both the speed and the accuracy over BWA-

MEM and other heuristic mapping algorithms but coming at the

cost of filtering away a larger number of read strings that cannot

be grouped into seed groups compared with BWA-MEM [24].
Searching through such a large index file does expose one ad-

ditional limitation of gemBS, which is that it requires 48 GB of

RAM compared with only 8–16 GB required by bwa-meth.

However, this limitation is normally insignificant given that most

midrange or higher computers are equipped with more than suf-

ficient RAM to meet this need [22]. We sought to leverage these

differences to improve the speed of read alignment in the wg-

blimp pipeline. We were able to modify the wg-blimp pipeline by

replacing the bwa-meth alignment software with gemBS. This

single modification allowed us to increase the overall speed of

the wg-blimp pipeline by more than �7, all without sacrificing

alignment accuracy.

Materials and methods
Wg-blimp workflow steps
The aim of the wg-blimp pipeline is to provide a straightforward

and streamlined framework for processing WGBS or similar data

that will allow the user to perform genome-wide DNA methyla-

tion analysis by bundling a suite of preexisting software pack-

ages. The result is an end-to-end inclusive pipeline that is

useable by biologists of all skill levels. Users without an extensive

computer science background will appreciate the comprehensive

walkthroughs available as well as the limited time and files re-

quired to install and begin running the pipeline, while more expe-

rienced users will appreciate the tuning that can be configured

among multiple steps to customize analysis without extensive ef-

fort. Figure 1 shows an overview of the analysis steps included in

the pipeline.

Figure 1: Improved wg-blimp workflow overview. FASTQ files and the
reference genome file provided by the user now have the option to be
aligned by the newly added gemBS aligner. Output BAM files are then
processed through the remainder of the wg-blimp pipeline and results
can be viewed using the web browser interface.
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Step 1: input data
To start the workflow, users processing human samples need
only provide the FASTQ file and a reference genome as input.

This can be done directly from the command line when running
the wg-blimp binary following installation. Alternatively, paths

to the FASTQ and reference genome files can be added to a work-
flow config file that can be customized for each application or

species being analyzed.

Step 2: wg-blimp workflow
Alignment of FASTQ files can now be toggled between the newly
added gemBS or previous bwa-meth aligner, either in the com-

mand line or master config file when running the pipeline. As
both gemBS and bwa-meth have internal usage of soft-clipping of

reads to mask non-masking read sequences, alignment pre-
trimming is still omitted from the wg-blimp pipeline and is an op-

tional pre-processing step to help improve alignment of reads.

Following alignment, duplicates produced from PCR amplifica-
tion of reads during library preparation are removed using the

Picard toolkit [25].
The pipeline contains a number of programs for QC of the out-

put BAM files from alignment. Read quality scores are deter-

mined with FastQC [26] and Qualimap [27] is used to determine
the overall and per-chromosome read coverage. In addition,

Qualimap also calculates GC content, duplication rate, and clip-

ping profiles. Plots for visualization of all QC metrics are aggre-
gated into a single user-friendly HTML report using MultiQC [28]

discussed in more depth in Step 3.
Methylation calling is performed by MethylDackel [29] which

creates a methylation report used to compute global methylation

statistics. Computing the C>T conversion rate can be enabled by
computing per-chromosome methylation, as unmethylated

lambda DNA is commonly added to genomic DNA prior to bisul-

fite treatment as an internal control. The pipeline contains multi-
ple algorithms for DMC/DMR calling including: metilene [30],

BSmooth [31], and camel [32] which all can be used in parallel
while running the pipeline and were intended to help strengthen

the biological significance of overlapping DMCs/DMRs which
were identified by different approaches. The parameters that are

used to define DMRs can all be tuned by the user and include lim-

its to the minimum number of CpG sites that must be differen-
tially methylated within the region, the minimum coverage size

for each DMR, and minimum average difference in methylation
between two groups. In addition, metilene also includes q-values

computed from the Mann–Whitney U test that can be used to fil-
ter DMRs based on significance during data analysis. Individual

DMCs can be identified by setting the minimum number of differ-

entially methylated CpGs in the region to one.
Wg-blimp can identify potential regulatory regions that may

be bound by transcription factors leading to a reduction in DNA

methylation through the use of MethylSeekR [33] which can de-
tect both unmethylated regions (UMRs) and low-methylated

regions (LMRs) based off a user-defined false-discovery rate (FDR)
and methylation cutoff. MethylSeekR also detects regions that

show a high level of disorder in DNA methylation which it defines
as partially methylated domains (PMDs). However, these PMDs

can influence and limit the detection of LMRs and UMRs. So, to

remove this influence, wg-blimp performs the MethylSeekR
workflow with and without PMD identification and users can ulti-

mately decide whether or not to include PMDs when analyzing
UMRs and LMRs.

Finally, the resulting DMRs, UMRs, LMRs, and PMDs are all an-
notated for overlap with genes, promoters, CpG islands, and re-
petitive elements from the respective Ensemble [34], UCSC [35],
and RepeatMasker [36] databases. A final QC check is performed
by computing the average coverage per DMR with mosdeph [37],
so that regions of low coverage can be filtered out and removed
from further analysis.

Step 3: output visualization interface
Upon completion of the pipeline, users may visualize all of the
data from their WGBS experiment in the wg-blimp interactive
results web browser that is built using the R Shiny local browser
hosting framework [38]. The straightforward layout of the wg-
blimp interactive results browser is user-friendly, allowing users
to quickly find information about the QC reports, pipeline set-
tings, DMRs, and segmentation broken down into separate tabs.
From the browser, users can dynamically adjust the data to filter
both the DMRs and UMRs/LMRs results tables as well as choosing
whether or not to include PMDs as described above. In addition,
all of the results tables and publication quality figures produced
within the browser are easily exported, streamlining and simpli-
fying data processing.

Runtime benchmarking, stress testing, and
accuracy testing of improved wg-blimp v0.10.0
We performed a series of side-by-side runtime benchmarking,
stress testing, and accuracy testing in order to determine if add-
ing the gemBS aligner to the wg-blimp pipeline would accelerate
the runtime while maintaining the accuracy of read alignment.
We first compared overall runtime on WGBS sample datasets
provided to test the wg-blimp pipeline installation, which in-
cluded isogenic human blood and sperm WGBS files (each gener-
ated from pools of DNA from six men) with nearly 1 million (M)
reads each, all restricted to chr22 [12, 39]. We then tested the run-
time of the two pipeline versions on larger publicly available
mouse WGBS data from CD19þ B cells [40] and spermatocytes
[41] with files ranging in size from 80 to 160 M reads to model file
sizes that are more typical to analysis of current WGBS or similar
datasets.

We next tested the extent to which any increase in alignment
speed afforded by the use of gemBS might be accompanied by re-
duced alignment accuracy. First, we stress-tested each aligner by
comparing the mapping percentages of three groups of simulated
paired-end converted sequence reads produced by the mason2
application [42] (Supplementary Section S1) with the number of
reads in each group increasing by a log scale from 1 to 100 M
reads. We defined accuracy as the percentages of both mapped
and unique or ‘properly paired’ reads indicated in the BAM file
output for each aligner using the flagstat function from SAMtools
[43]. In addition, we also took into consideration other metrics,
including the number of reads that had their mate read mapped
to a different chromosome or had a low overall mapping QC
score. However, there is the potential for either of the aligners to
output false-positive read mapping that could bias the perceived
accuracy of one aligner over the other. To account for this poten-
tial bias, we also tested the ability of each aligner to accurately
map reads that could be used to identify a previously known
DMR as an additional biologically relevant test of accuracy.

To further assess the accuracy of these aligners in a biological
context, we obtained publicly available mouse WGBS data from
CD19þ B cells [40] and spermatocytes [41] and used each aligner
to analyze DNA methylation patterns in each dataset focusing
specifically on methylation of the Pgk2 gene promoter. Pgk2 is an
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intronless gene that arose via retrotransposition of the Pgk1 gene
and is required during normal spermatogenesis [44, 45]. Our lab
has previously shown that in mice, the upstream half of the Pgk2
gene becomes demethylated in prospermatogonia and spermato-
gonia, prior to the activation of transcription of the Pgk2 gene in
spermatocytes [46, 47]. Thus, we tested the accuracy with which
pipelines utilizing each aligner software were able to correctly
identify this known DMR.

While this comparison allowed us to test for the identification
of a single expected DMR as a biological measure of accuracy, we
also sought to determine how changing the alignment algorithm
could alter the identification of methylated regions throughout
the remainder of the epigenome. To determine whether any dif-
ferences in the alignment of reads by either aligner could trans-
late into differences in the clustering and identification of
methylation regions, we also compared the output of all other
DMRs, UMRs, LMRs, and PMDs produced by each aligner for the
mouse CD19þ B cells and spermatocytes. The statistical signifi-
cance of any differences between each group was tested with
Pearson’s Chi-squared and Kruskal–Wallis rank sum tests. This
comparison gave us an epigenome-wide view of how altering the
alignment algorithm can impact global methylated region identi-
fication which should be considered by users when analyzing
DNA methylation data.

Finally, to illustrate the ability for the pipeline to handle not
only WGBS data but also increasingly utilized EM-seq datasets,
we tested our improved pipeline on WGBS and EM-seq data from
human genomic DNA and cell-free DNA found in blood samples
collected from cancer patients (Supplementary Section S2) [48].
EM-seq utilizes enzymatic conversion based on TET2/APOBEC2
which produces the same modifications as chemical bisulfite-
based conversion methods and has been gaining popularity be-
cause enzymatic conversion of cytosines avoids the fragmenta-
tion of DNA typically generated by bisulfite conversion of DNA.
The latter occurs under acidic conditions (pH 5) and at high tem-
peratures (90�C) which are not required for the EM-seq method,
thus allowing this enzymatic method to generate libraries with
longer DNA inserts [49].

All analyses were executed on a server equipped with one
Intel Cascade Lake CPU with 80 physical cores and 160 hyper-
threads or virtual cores, 394 GB of memory, and a CentOS 7 oper-
ating system. When running the pipeline, we limited the core
utilization to only 8 of the 80 available cores, which we found
was nearing a plateau in multithreading efficiency for alignment
speed (Supplementary Section S3). Links to all files and code we
used to run the analysis can be found in the Data and Code
Accessibility and Supplementary Data sections.

Results
Benchmarking in previous studies has shown that gemBS is a su-
perior alignment software with respect to overall mapping proc-
essing time, because it can scale for use with larger datasets
more effectively than bwa-meth [22, 50, 51]. We modified the wg-
blimp pipeline to replace the bwa-meth aligner with gemBS, and
then tested our prediction that this change would lead to a de-
crease in the time required for the alignment step in the pipeline
(Fig. 1). When comparing the runtime of the smaller practice files
with 1 M reads provided with the wg-blimp pipeline, we found
the average bwa-meth alignment time was only slightly shorter
than the gemBS alignment time. However, when running the
pipeline with FASTQ files containing 80–160 M reads each, we ob-
served a large difference in the time required to align each file,

with gemBS requiring an average of only 1.43 h per file, whereas
bwa-meth required an average of 11.36 h per file (Fig. 2). This
indicates that gemBS increased alignment efficiency by 0.71 h/107

reads, which translates to a more than �7 improvement in the
speed of sequence alignment for files containing 80–160 M reads
when the gemBS aligner is used relative to that achieved by the
bwa-meth aligner. As such, the gemBS aligner appears to provide
greater utility for analysis of standard WGBS data.

When comparing the accuracy of the produced alignment files
to determine if any increase in alignment speed afforded by the
use of gemBS might be accompanied by reduced accuracy, we
found the mapping accuracies among the three simulated read
groups produced by the mason2 application were nearly identi-
cal. Specifically, we observed only minor differences in the num-
ber of reads that showed either failing mapping QC scores or
paired reads mapping to different chromosomes, and in those
contexts, gemBS displayed superior accuracy (Supplementary
Section S4). To additionally test the alignment accuracy in a bio-
logical context, we compared the pipelines utilizing each aligner
software for their relative ability to correctly identify a known
DMR present in the Pgk2 gene in mouse spermatocytes. We found
that both bwa-meth and gemBS aligners were able to accurately
map reads (Fig. 3A and Supplementary Section S2) and identify
the DMR (Fig. 3B) in mouse spermatocytes when compared with
mouse somatic CD19þ B cells, illustrating that replacement of
the bwa-meth aligner with the gemBS aligner did not reduce the
accuracy with which known DMRs previously identified by gene-
specific analysis within a biological context are correctly revealed
computationally by analysis of genome-wide WGBS data.

However, while these data suggest that the increased alignment
speed afforded by gemBS is not associated with any reduction in
the accuracy of identification of an expected DMR revealed by
genome-wide WGBS analysis in mouse samples, we did observe
small differences in the total number of other identified methyl-
ated regions including DMRs, UMRs/LMRs, and PMDs at the whole

Figure 2: Comparison of alignment time in hours (hrs) when bwa-meth
and gemBS aligners are used with WGBS FASTQ files ranging from
8.5�105 to 1.6�108 reads in size. As read counts increase there is a large
difference in the time required for the bwa-meth and gemBS aligners to
align FASTQ files. Comparison of the slopes of these rates indicates a
time savings of 0.71 h/1�107 reads for when gemBS is used as the aligner
instead of bwa-meth.
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epigenome level (Supplementary Section S5). For DMRs, we
found that bwa-meth identified a total of 220 185 DMRs, while
gemBS identified 212 045 DMRS with a significant portion
(P-value¼ 2.2e�16) of each group containing DMRs that did not

overlap based on Pearson’s Chi-squared test (10.76% and 7.34%, re-
spectively). We found that just over half of these uniquely identified
DMRs occurred in non-coding intergenic regions (58–60%). When
comparing these unique non-overlapping DMRs identified by each

Figure 3: Mapping accuracy and identification of a known DMR in spermatocytes compared with somatic B cells. (A) Comparison of the percentages of
mapped and properly paired reads from spermatocyte and B-cell WGBS samples comparing the accuracy between bwa-meth and gemBS indicates that
both aligners display a similar overall alignment accuracy. (B) Visualization of DNA methylation in the promoter region of the Pgk2 gene in
spermatocytes and B cells produced from either the bwa-meth or gemBS aligners shows that the accuracy of read mapping when either is used is
sufficient to identify a DMR known to be present at the Pgk2 promoter in spermatocytes when compared with somatic cell types.
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aligner, we found the median distance to the next nearest neighbor-
ing DMR produced by the alternative aligner was 2–3 kb. We also
considered the possibility that the decrease in the overall number
of DMRs identified by gemBS was due to the individual DMRs being
longer. However, the median size of the bwa-meth and gemBS
DMRs was similar (448 and 442 bp, respectively). The gemBS aligner
identified a slightly larger number of predicted UMRs/LMRs, but
slightly fewer predicted PMDs than the bwa-meth aligner in the
data from nearly all mouse spermatocytes and CD19þ B cells
tested. However, these differences were not found to be significant
based on Kruskal–Wallis rank sum tests (UMRs/LMRs P-value¼ 0.39
and PMDs P-value¼ 0.77). Finally, the median of all segmented
regions that were non-overlapping from each aligner was 9.73%,
which was similar to the proportion found within DMRs, but dif-
fered in overall median distance of 23 kb to the next nearest regions
identified by the opposing aligner. Thus, overall, there was strong
agreement in the patterns of methylated regions identified from
reads aligned by either aligner (�90%). However, some differences
were noted in non-coding regions that could potentially be involved
in transcriptional regulation.

Discussion
The simplicity of the wg-blimp installation emanates from the
use of Bioconda for package management during installation
[52]. This allows wg-blimp to integrate several published software
packages seamlessly into a single working environment, requir-
ing only minimal technical expertise in software installation.
This avoids the limited versatility associated with many pipelines
that can restrict their integration into local computing systems.
To optimally integrate gemBS into the improved pipeline, we
updated the gemBS package on Bioconda to the most current ver-
sion to overcome certain issues with its installation and use in a
python environment that existed previously (Supplementary
Section S6). This effort was important to maintain the overall
simplicity of the wg-blimp installation process, as forcing users
to compile gemBS manually could have negatively impacted the
gain in overall pipeline speed we accomplished.

The increased speed of the alignment step afforded by replac-
ing the bwa-meth aligner with the gemBS aligner represents a sig-
nificant advance in the utility of the wg-blimp pipeline for
analysis of WGBS or similar genome-wide DNA methylation data.
When the bwa-meth aligner was used in conjunction with the
wg-blimp pipeline, a full work week of computing time was nor-
mally required to complete an analysis of two sets of WGBS data
each representing three replicates of samples sequenced to
80–160 M reads. However, replacement of the bwa-meth aligner
with the gemBS aligner within the wg-blimp pipeline reduced the
computing time required to accomplish the same procedure to a
single day. In turn, this decrease in overall computing time
strengthens the stability and utility of the pipeline by signifi-
cantly reducing the potential for it to crash during long runs over
multiple days, thus avoiding limitations imposed by computing
networks that limit job times on nodes. An additional benefit of
the gemBS aligner is that it automatically sorts the order of reads
by chromosome in the output BAM files, whereas accomplishing
this with the bwa-meth aligner requires an additional step in the
wg-blimp pipeline. Finally, the gemBS aligner is better positioned
to be adapted to rapid advancements in sequencing technologies,
especially those applied to libraries with larger insert sizes and/or
to higher read depths [53, 54].

Importantly, the increased analysis speed afforded by replac-
ing the bwa-meth aligner with the gemBS aligner did not reduce

the overall analysis accuracy of the wg-blimp computational
pipeline when tested on publicly available WGBS and EM-seq
data. There were minor differences in the number of reads with
low mapping QC scores, as well as in the number of paired reads
mapping to different chromosomes in the BAM files, both of
which are indications of reduced alignment accuracy. In both
cases, the pipeline using the gemBS aligner actually performed
better than that using the bwa-meth aligner. Thus, for these
parameters, the gemBS-containing pipeline was more accurate
than the bwa-meth-containing pipeline. Indeed, this exemplifies
an additional limitation of the bwa-meth aligner when a seed has
an exact match that occurs in multiple different chromosomes.
To avoid more complex computational tasks to rule out all but
one of the possible loci, the bwa-meth algorithm picks one of the
chromosomes at random resulting in a higher rate of reads map-
ping to different chromosomes. Grouping of reads into different
strata and completing searches through the reference genome by
gemBS lower the overall number of reads where this occurs, giv-
ing the gemBS aligner another advantage over the bwa-meth
aligner. Ultimately, both aligners are highly accurate, aligning
nearly 100% of the reads supplied, as exemplified by the correct
identification of the known DMR in the Pgk2 gene promoter re-
gion when spermatocytes are compared with somatic cells. Thus,
we conclude that there is no decline in alignment accuracy asso-
ciated with the significant improvement in alignment speed
afforded by use of gemBS aligner.

Despite finding differences in the numbers of all other methyl-
ated regions identified from reads aligned by either the bwa-
meth or gemBS aligners, the close proximity of DMRs uniquely
identified by the opposing aligner and the lack of statistical sig-
nificance when comparing differences in the overall number of
identified UMRs/LMRs and PMDs further indicate the two aligners
yield very similar overall results, with the only potential differen-
ces occurring in non-coding intergenic regions which could be rel-
evant to transcriptional regulatory sequences. To this end, our
inclusion of the ability to toggle between use of either the original
bwa-meth or newly added gemBS aligner in the wg-blimp pipe-
line is advantageous in that it affords the opportunity to focus on
methylated regions that are conserved between both aligners to
build conclusions based on identification of overlapping methyl-
ated regions. Ultimately, as noted above, the very significant in-
crease in the computing speed afforded by inclusion of the
gemBS aligner in the wg-blimp pipeline represents a substantial
advance in the utility of this pipeline with only minor, if any, sig-
nificant differences in the identification of DMRs within the epi-
genome.

Conclusion
Replacement of the bwa-meth aligner with the gemBS aligner in-
creased the overall speed of the alignment step in the wg-blimp
pipeline by more than �7 while maintaining high-level accuracy.
This robustly increases the utility of this computational pipeline
for analysis of WGBS or related genome-wide DNA methylation
data. This modification removes one of, if not the only, source of
concern about the previous version of the wg-blimp pipeline.
With inclusion of the gemBS aligner, the wg-blimp pipeline repre-
sents a comprehensive, accurate, and rapid approach to the
analysis of whole-genome DNA methylation data which can be
utilized in a local core computing environment. In addition, this
improvement positions the wg-blimp pipeline to be adaptable to
future advancements in sequencing technologies or chemistries
which will lead to libraries containing longer insert reads that
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could be sequenced at much higher depths. As sequencing costs

continue to decline and an increasing number of labs adopt

whole-genome assessment of DNA methylation patterns as a

commonly used epigenomic profiling assay, modifications of the

sort reported here that significantly enhance the utility of specific

analytical approaches will advance the field of epigenomic profil-

ing. Thus, we believe that these changes to the wg-blimp pipeline

will further ease the burden of processing epigenomic data asso-

ciated with genome-wide DNA methylation patterns that accom-

pany WGBS to help strengthen the field of epigenetic research.
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52. Dale R, Grüning B, Sjödin A et al. Bioconda: sustainable and com-

prehensive software distribution for the life sciences. Nat

Methods 2018;15:475–6.

53. Mantere T, Kersten S, Hoischen A. Long-read sequencing emerg-

ing in medical genetics. Front Genet 2019; 10:426.

54. Ou S, Liu J, Chougule KM et al. Effect of sequence depth and

length in long-read assembly of the maize inbred NC358. Nat

Commun 2020;11:1–10.

8 | Biology Methods and Protocols, 2023, Vol. 00, No. 0

https://doi.org/10.48550/arXiv.1303.3997/
https://doi.org/10.48550/arXiv.1303.3997/
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/dpryan79/MethylDackel
https://github.com/dpryan79/MethylDackel
https://dx.doi.org/10.17877/DE290R-19925
https://www.repeatmasker.org/
https://www.repeatmasker.org/
https://shiny.rstudio.com/
https://publications.imp.fu-berlin.de/962/

	Active Content List
	Introduction
	Materials and methods
	Results
	Conclusion
	Acknowledgments
	Conflict of interest statement
	References


