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The viral nature of the first “giant 
virus,” Mimivirus, was realized 

in 2003, 10 y after its initial isolation 
from the water of a cooling tower in 
Bradford, UK. Soon after its genome 
was sequenced, the mining of the 
Global Ocean Sampling environmen-
tal sequence database revealed that the 
closest relatives of Mimivirus, only 
known to infect Acanthamoeba, were 
to be found in the sea. These predicted 
marine Mimivirus relatives remained 
elusive until 2010, with the first genomic 
characterization of a virus infecting a 
heterotrophic unicellular eukaryote, the 
microflagellate grazer Cafeteria roenber-
gensis. The genome analysis of a virus 
(PgV) infecting the common unicellular 
algae Phaeocystis globosa now shows that 
it is a bona fide member of the Mimivirus 
family (i.e., the Megaviridae), extending 
the realm of these giant viruses to abun-
dant blooming phytoplankton species. 
Despite its smaller genome size (460 kb 
encoding 434 proteins), PgV exhibits the 
most intriguing feature of the previously 
characterized Megaviridae: an associ-
ated virophage. However, the 19-kb viro-
phage genome, devoid of a capsid gene, is 
packaged in the PgV particle and propa-
gated as a “viral plasmid,” the first ever 
described. The PgV genome also exhibits 
the duplication of “core genes,” normally 
present as single copies and a putative 
new type of mobile element. In a DNA 
polymerase phylogeny including repre-
sentatives of the three cellular domains, 
PgV and the other Megaviridae cluster 
into their own clade deeply branching 
between domains Archaea and Eukarya 
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domains, thus exhibiting the topology of 
a fourth domain in the Tree of Life.

“Giant viruses”1 were initially defined on 
the basis of their particle (virion) size—
more than 0.5 μm in diameter—(making 
them observable under a light micro-
scope) incorporating a DNA genome 
more than a million base pairs (Mb) in 
length, encoding about 1000 proteins 
(hence the proposed name “Megaviridae” 
for their family). Most of them replicate 
in Acanthamoeba including 4 that have 
been fully sequenced2-5 (Table 1). Their 
replication entirely proceed in the host 
cytoplasm through the initial building of 
a large virion factory within which their 
genome is replicated and transcribed, and 
from the periphery of which new particles 
emerge at a later stage.6-8 Long after the 
bioinformatics prediction that Mimivirus 
relatives should be abundant in the sea,9,10 
the first Megaviridae family member not 
infecting an Acanthamoeba (classified in 
the Amoebozoa, Unikonta) was identified 
in Cafeteria roenbergensis, a heterotrophic 
unicellular plankton species, belonging to 
a very distant phylum (Heterokontophyta, 
Bikonta).11 Despite its smaller genome 
(about 700 kb), Cafeteria roenbergensis 
virus (CroV)12 shared a large proportion 
of best matching orthologous proteins 
with Mimivirus, and possessed many of 
its unique features (Table 1), including its 
own type of virophage,13 a specific type of 
mismatch repair protein (MutS7),14 and 
an amino-acyl tRNA synthetase, a type 
of enzyme normally specific of cellular 
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irreversible phenomenon of reductive evo-
lution, condemning them to disappear as 
individual biological entities, eventually 
saving some of their genes by integrating 
them into the genome of their companion 
virus, themselves undergoing a similar 
process vis-à-vis their cellular host.

PgV clusters with the previously 
described Megaviridae in an  

apparent “fourth domain” in the 
tree of life

The first published phylogenetic tree 
including Mimivirus 2 and using a con-
catenation of 7 universally conserved 
protein sequences, already pointed out 
that: “we could now build a tentative 
tree of life, within which Mimivirus 
appears to define a new branch dis-
tinct from the three other domains.”2 
Elsewhere in the same article, Mimivirus 
was also shown to be part of the broad 
family of the nucleocytoplasmic large 
DNA viruses (NCLDV), branching near 
the middle of the previously defined 
Iridovirus, Phycodnaviruses, Poxviruses, 
and Asfarviruses lineages. Put together, 
these 2 results suggested in a sublimi-
nal way that all the large DNA viruses 
were in fact defining a domain distinct 
from the 3 established cellular domains. 
As additional genomes of Megaviridae 
became available, molecular phyloge-
nies computed with an increasing num-
ber of universal proteins associated to 

DNA primase.18-22 Consistent with the 
fact that it was never observed in PgV-
infected cultures, PgVV is the first exam-
ple of a virophage lacking the information 
to make a capsid protein, the essential 
building block of a virus particle. Once 
multiplied in the PgV virus factory, the 
PgVV genome is thus packaged (in mul-
tiple copies16) alongside the PgV genome, 
and propagated through the PgV virion, 
either as an integrated or free viral “plas-
mid.”16 The precise molecular structure(s) 
that can be adopted by the PgVV genome 
are under further studies.

The finding of a virophage associated 
to PgV is already teaching us the impor-
tant lesson that virophages are not solely 
associated to DNA viruses with micron-
sized particles and 1 Mb genome sizes, but 
can be found with large DNA viruses of 
more reasonable (Poxvirus-like?) propor-
tion. It is thus likely that many of such 
associations have been overlooked in the 
past, and that virophages might have 
played a fundamental role in the evolu-
tion of many more viruses than just the 
Megaviridae. If this is true, they could be 
(and have been) the main vehicle of gene 
transfers between Eukaryotic viruses, and 
indirectly between these viruses and their 
hosts. They may also be responsible for the 
sporadic occurrences of mobiles elements 
such as self-splicing introns, inteins, and 
transpovirons.19

Another lesson is that, like all para-
sites, the virophages are submitted to the 

organisms.15 The genome analysis of PgV-
16T,16 a virus known to regulate the popu-
lation of the bloom-forming microalgae 
Phaeocystis globosa17 (Haptophyta, Bikonta) 
now indicates that the Megaviridae fam-
ily includes viruses infecting dominant 
phytoplankton species. With its 459 kb-
genome encoding 434 proteins, PgV-16T 
is the most complex virus known to infect 
a photosynthetic organism.

Virophages might be common  
in the viral world

Although global gene content and detailed 
sequence similarity comparisons with the 
previously described Megaviridae mem-
bers clearly classify PgV within the fam-
ily (including the partially sequenced 
Organic Lake Phycodnaviruses (OLPV), 
Chrysochromulina erecina virus, and 
Phaoecystis pouchetti virus),4 the find-
ing of a PgV-associated virophage came 
as a surprise. Eight complete virophage 
genomes have now been described, but 
only 3 correspond to identified and isolated 
“hosts”—the 2 closely related “Sputnik” 
1 and 218,19 infecting Mimivirus, and 
“Mavirus” infecting CroV.20 The PgV 
virophage (PgVV)16 is the third, and pre-
sumably not the last, of a rapidly growing 
series.21-23 Except for their genome size in 
the 20 kb range, these new types of sat-
ellites viruses have little in common in 
terms of gene content, although they all 
code for a major capsid protein and one 

Table 1. Specific features in the 6 fully sequenced genomes megaviridae

Virus Genome size

(GenBank ID)

Virophage tRNA 
ligase

DNA Mismatch

Repair (MutS7)

Bifunctional

Thy/DHFR

Intein

(DNA pol)

Host

taxonomy

megavirus chilensis 1,259,197

(NC_016072)

+ 7 + + + Acanthamoeba

Amoebozoa

unikonta

moumouvirus 1,021,348

(NC_020104)

+ 6 + + + Acanthamoeba

mimivirus 1,181,549

(NC_014649)

+ 4 + + + Acanthamoeba

mimivirus (m4) 981,813 (JN036606) ? 3 + + + Acanthamoeba

Cafeteria

roenbergensis

virus

617,453

(NC_014637)

+ 1 + + + heterokontophyta Ah/SAr 
megagroup

Bikonta

phaeocystis

globosa

virus (16t)

459,984

(NC_021312)

+ No + No No haptophyta

Ah/SAr megagroup

Bikonta
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this strongly supported topology suggests that the common ancestor of the megaviridaelargely predated the radiation of the eukaryotes (CeV: 
Chrysochromulinaericina virus, unpublished).
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