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Replacing synthetic insecticides with transgenic crops for pest
management has been economically and environmentally benefi-
cial, but these benefits erode as pests evolve resistance. It has
been proposed that novel genomic approaches could track molec-
ular signals of emerging resistance to aid in resistance manage-
ment. To test this, we quantified patterns of genomic change in
Helicoverpa zea, a major lepidopteran pest and target of trans-
genic Bacillus thuringiensis (Bt) crops, between 2002 and 2017 as
both Bt crop adoption and resistance increased in North America.
Genomic scans of wild H. zea were paired with quantitative trait
locus (QTL) analyses and showed the genomic architecture of
field-evolved Cry1Ab resistance was polygenic, likely arising from
standing genetic variation. Resistance to pyramided Cry1A.105
and Cry2Ab2 toxins was controlled by fewer loci. Of the 11 previ-
ously described Bt resistance genes, 9 showed no significant
change over time or major effects on resistance. We were unable
to rule out a contribution of aminopeptidases (apns), as a cluster
of apn genes were found within a Cry-associated QTL. Molecular
signals of emerging Bt resistance were detectable as early as 2012
in our samples, and we discuss the potential and pitfalls of whole-
genome analysis for resistance monitoring based on our findings.
This first study of Bt resistance evolution using whole-genome
analysis of field-collected specimens demonstrates the need for a
more holistic approach to examining rapid adaptation to novel
selection pressures in agricultural ecosystems.

Helicoverpa zea j Bt resistance j temporal genomic change j polygenic
adaptation

The study of rapid evolutionary responses to natural selec-
tion has gained momentum in the past decade, and along

with it recognition of the relevance of pest adaptation to con-
trol measures (1). Melander published the first observation of
insecticide resistance evolution in 1914 (2), and since then pests
and weeds have adapted to myriad chemical, biological, and
cultural control measures (3–6). While there has been an
emphasis on finding alleles at single genetic loci that confer
resistance to pesticides, recognition that surviving insecticide or
herbicide applications could involve a suite of genomic changes
has increased (7). A clear understanding of the timing and
complexity of changes associated with adaptation to agricultural
ecosystems is lacking, however (8).

The bacterium Bacillus thuringiensis (Bt) produces one or
more crystalline (Cry) proteins that are each toxic to a narrow
range of insect pests when ingested. Genes encoding Cry toxins
were engineered into cultivated crops to reduce pest damage,
producing so-called Bt crops. This major innovation in agricul-
tural pest management has been adopted globally (9). The
economic and environmental benefits of this technology are sig-
nificant. They can replace synthetic insecticides, which have
damaging off-target effects on pollinators and natural enemies,
and contribute to area-wide pest suppression in non-Bt crops
(9–11). Many pest species have evolved resistance to one or
more Cry toxins, and there is concern about the durability of
these transgenic crops (12). Resistance management strategies

have been implemented effectively for a few major pest species
with high susceptibility to the toxins (9). Inadequacy of these
strategies for species with only moderate susceptibility to Cry
toxins has provided opportunities for resistance evolution (12).

Discovery of resistance-conferring genes has been of long-
standing interest, in part due to expectations that this
knowledge could lead to molecular diagnostic approaches that
facilitate detection of emerging resistance in pests (13, 14).
Molecular signals of resistance could then serve as triggers for
regulatory actions that would minimize resistance risk and
preserve environmentally sustainable technologies, like Cry
toxins (13). Genes discovered to have major impacts on Cry
resistance are used to a limited extent for molecular monitoring
(15–18). To date, there are at least 11 such genes in the
Lepidoptera (19, 20), many of which were discovered in
laboratory-selected populations and from screening wild
populations for single genes of major effect (16–18, 21). It is
unclear whether molecular monitoring of these genes over time
would effectively track resistance evolution in wild populations.

Helicoverpa zea is a migratory pest species (22) which com-
prises a single panmictic population in North America (23). It
has been controlled with Bt crops since 1996, when corn
expressing Cry1Ab and cotton expressing Cry1Ac became com-
mercially available (24). Corn expressing Cry1F, a toxin with
lower protein structure similarity to Cry1Ab and Cry1Ac, was
commercialized in 1998 (24), and in 2003 corn cultivars
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expressing multiple toxins (i.e., pyramids) were introduced.
One pyramided corn cultivar relevant to this work expresses a
hybrid Cry1Ac and Cry1F toxin called Cry1A.105, as well as
Cry2Ab2. Over the past 20 y, North American H. zea have been
exposed to all of these toxins with varying protein structure sim-
ilarity (24) and which were initially protective to the plants that
expressed them (25–27).

North American adoption rates of Bt crops grew from 8 and
15% of corn and cotton acreage in 1997 to 82 and 88% by
2020. This rapid expansion placed significant selection pressure
on target pests, including H. zea, which showed widespread,
damaging levels of resistance by 2016 (27–30). Existing Bt corn
and cotton cultivars do not produce a high dose of Cry toxin
relative to what is required to kill H. zea larvae that are hetero-
zygous for resistance alleles (31). This likely contributed to
their recent resistant status (12). Under these conditions, resis-
tance to Cry toxins was predicted to be polygenic (32, 33) and
to arise from standing genetic variation (34). Furthermore, as
resistance evolves to one toxin, cross-resistance can occur to
others, suggesting that some genetic mechanisms of resistance
are shared between toxins. H. zea selected for resistance to one
toxin are more likely to have heightened resistance to others if
the amino acid sequences of the toxins are similar (35).

H. zea is an ideal pest for examining the timing and complex-
ity of resistance evolution due to its high levels of gene flow,
recently described Bt resistance in wild populations, and previ-
ous predictions of polygenic resistance. Between 2002 and
2017, we saved ca. 1,000 adult moths in ethanol each year, and
we used these collections to track genomic changes in H. zea
over time. Instead of simply monitoring for changes in previ-
ously identified candidate genes, we used a gene-agnostic
approach to identify genomic regions associated with H. zea
Cry resistance. Our study aimed to 1) identify contiguous win-
dows of the H. zea genome with strong temporal allele fre-
quency changes as an indicator of field-evolved Bt resistance,
2) separately determine the genomic architecture of Cry1Ab
and pyramided Cry1A.105+Cry2Ab2 resistance by quantitative
trait locus (QTL) analysis, and 3) compare these two datasets
to explore the timing and complexity of resistance evolution.
None of the 11 previously described Cry resistance candidate
genes showed significant allele frequency changes when whole-
genome sequenced H. zea collected in 2002 and 2017 were
compared. Our QTL analysis also revealed no major role for
nine of those candidate genes. However, a Cry-associated QTL
contained a cluster of aminopeptidases, a gene family known
for involvement in Bt resistance. We found that the genomic
architecture of Cry1Ab resistance was polygenic and Cry1Ab
resistance QTL were identified on several chromosomes. A
major QTL spanning most of one chromosome strongly and
significantly impacted weight gain in larvae exposed to the
Cry1A.105+Cry2Ab2 pyramid. Cry-associated QTL directly
overlapped with only a subset of genomic regions that under-
went significant temporal allele frequency change, highlighting
both potential and pitfalls of genomic monitoring for detection
of emerging resistance.

Results
Superscaffolding of the H. zea Genome. The H. zea genome
[v. 1.0, GCA_002150865.1 (36)] consisted of 2,975 scaffolds,
making it difficult to identify contiguous genomic regions. We
superscaffolded this fragmented assembly by aligning it to the
more contiguous Helicoverpa armigera genome (v. 1.0,
GCF_002156985.1). Resulting superscaffolds were organized
into chromosomes using a linkage map [Rqtl v. 1.47-9 (37)]
generated from one of the F2 genetic crosses used for QTL
analysis. The final assembly contained 2,732 of the original
2,975 H. zea scaffolds and consisted of 31 linkage groups (LGs;

equivalent to the 31 H. zea chromosomes) plus 15 unplaced
superscaffolds (Dataset S1). The first 28 H. zea LGs were
named according to their homologous Bombyx mori chromo-
some (v. 1.0, GCF_014905235.1).

Temporal Allele Frequency Shifts Occurred throughout the
Genomes of Wild H. zea. We initially studied the changes that
occurred in the years following Bt crop adoption, by sparsely
sampling and analyzing the genomes of H. zea collected in
2002, 2007, 2012, and 2016. Archived males (n = 265) collected
from pheromone-baited traps (38) in Bossier Parish, LA (SI
Appendix, Table S1), were used to generate double-digest
restriction site-associated DNA sequencing (ddRADseq) librar-
ies and sequenced according to Fritz et al. (39, 40). Following
filtering and genome alignment, we identified 14,398 single
nucleotide polymorphisms (SNPs) from 259 individuals (SI
Appendix, Fig. S1). Nucleotide diversity (π) and heterozygosity
(F) did not change between years, indicating there had been no
strong population contraction (SI Appendix, Table S2). Overall
genomic divergence was low according to Weir and Cocker-
ham’s FST (FST < 0.004; SI Appendix, Table S3), and this low
divergence was also supported by a sequential k-means analysis
that found our archived H. zea were best described as a single
genetic cluster (SI Appendix, Fig. S2).

Genetic divergence between 2012 and 2016 was three times
higher (FST = 0.0025) than for any other sequentially sampled
period (SI Appendix, Table S3). We further explored this accel-
erated temporal genetic change with a discriminant analysis of
principal components (DAPC). This identified SNP combina-
tions that clustered individuals into groups (k = 2 to 4) by maxi-
mizing between-group and minimizing within-group variation.
Using these SNP combinations, we estimated posterior mem-
bership probabilities for each individual. When k was equal to
2, samples from 2002, 2007, and 2012 were assigned to both
genetic clusters. Samples collected in 2016 were strongly biased
toward a single genetic cluster (Fig. 1), and this trend persisted
regardless of k-value (SI Appendix, Fig. S3). During this period
(2010 to 2016), the mean area consumed per ear of Cry1A.
105+Cry2Ab2-expressing sweet corn increased from near 0 to
ca. 3 cm2, and the proportion of two-toxin-expressing ears con-
taining late instars grew from near 0 to 75% (27).

To identify SNPs with the greatest influence on this genomic
shift between 2012 and 2016, we removed the top 1%, 2.5%,
and 5% of variance-contributing SNPs from our dataset and
reevaluated population membership probability. Removal of
5% (n = 720 SNPs) resulted in nearly complete assignment of
all individuals to a single genetic cluster, indicating that all con-
tributed to the observed 2012-to-2016 genomic shift (SI
Appendix, Fig. S4). We used a second approach, FST outlier
analysis (41), to identify genomic regions that underwent signif-
icant temporal divergence and detected 53 (of 14,398) ddRAD
SNPs as having greater than expected change (FST =0.068 to
0.278; SI Appendix, Fig. S5). Twenty-one of those 53 were
among the top variance contributing SNPs from our DAPC.
This conservative set of outlier SNPs, generated from both FST

outlier and DAPC analyses, were found on 12 LGs: 1, 5, 8, 9,
10, 11, 13, 15, 17, 22, 24, and 28. Altogether, this demonstrated
that among-year population genetic divergence was low for H.
zea from LA, but allele frequency changes mildly increased
after 2012. The SNPs that contributed most to these temporal
changes were not concentrated in a single genomic region but
spread across multiple chromosomes.

Whole-Genome Analysis of Temporal Allele Frequency Change in H.
zea. To further examine temporal changes, we sampled entire
genomes of a smaller number of wild H. zea males from Bossier
Parish, LA, using Illumina whole-genome sequencing (WGS).
Thirteen males collected in 2002, along with 11 males each
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from 2012 and 2017, were sequenced and produced a genome-
aligned, filtered dataset containing 4,999,128 SNPs (SI
Appendix, Table S4). Using this SNP dataset, we conducted
pairwise analyses of genomic divergence between populations
collected from 2002, 2012, and 2017 using 5-, 10-, 20-, and
40-kb sliding window-averaged Weir and Cockerham’s FST. We
report the 10-kb sliding window analysis because it captured
the major genomic changes that occurred for all sliding window
sizes, but all analyses are in SI Appendix, Fig. S6. Our empirical
threshold for statistical significance in a pairwise comparison
was 6 SDs (ZFST > 6) from the mean FST value in a 10-kb win-
dow (42). Because both genetic drift and selection influence the
landscape of genomic divergence between populations, we
quantified the frequency with which our empirical threshold,
calculated from the comparison of 2002-to-2017 samples (FST

= 0.078), could be reached due to drift alone using genotypic
simulations (43). These simulations demonstrated the probabil-
ity was very low (P = 0.0180 to 0.0003) and negatively corre-
lated with present-day population size (SI Appendix, Fig. S7
and Table S5).

In total, 69 H. zea scaffolds on 30 LGs or unplaced super-
scaffolds contained 10-kb windows with greater-than-expected
allele frequency change in the pairwise comparison of 2002 and
2017 samples. For comparisons from 2002 to 2012 and 2012 to
2017, 91 scaffolds and 79 scaffolds, respectively, each on 31
LGs or unplaced superscaffolds, contained 10-kb windows with
greater than expected change. The greatest changes between
2002 and 2017 occurred on LG13 at four linked scaffolds (scaf-
folds 173, 569, 1612, and 759), where windowed-FST values
greatly exceeded those from any other region of the genome
(scaffold 1612; max FST = 0.292). LG9 showed the second high-
est degree of change (scaffold 332; max FST = 0.198), followed
by LGs including but not limited to 14, 19, and 23 (SI
Appendix, Fig. S8). Adjacent windows were merged together if
their FST values were significant, and we identified 11 windows,
including one on LG13, with elevated FST in both 2002-to-2012
and 2012-to-2017 comparisons. Additional LGs containing win-
dows of elevated FST in multiple by-year comparisons were 4, 5,
14, 21, 28, 31, and superscaffold 44. Temporal changes at LG9,
our second-highest FST peak, were complex and found within
the same superscaffold (NW_018395585.1 and NW_018395392.
1), but no windows were shared among by-year comparisons.
Regions of genomic divergence were compared with our
ddRAD outliers, and 3 (of 21) SNP outliers were within or
adjacent to windows of elevated FST. Two were within windows
on LG13, and one was on LG9 within 20 kb of a window (SI
Appendix, Fig. S8). This supported the signatures of temporal
change at the two largest peaks in our WGS analysis, but with a
much larger sample size.

Allele Frequency Changes at Candidate Bt Resistance Genes. To
determine whether these significant allele frequency changes
occurred at the 11 previously reported candidate Bt resistance
genes (Table 1), we examined 10-kb sliding window-averaged
FST values for the length of each gene using specimens col-
lected in 2002 and 2017. FST ranged from �0.018 to 0.052
(Table 1 and SI Appendix, Fig. S9), with the strongest changes
occurring at apn4. No 10-kb window exceeded our genome-
wide empirical threshold for significant divergence, however.
These modest allele frequency changes indicated that de novo
mutations in the cis-regulatory or coding sequences of these
genes were unlikely to be the cause of field-evolved Bt resis-
tance in H. zea. Two additional candidate genes for resistance
to synthetic pyrethroid insecticides, the voltage-gated sodium
channel gene (vgsc) (53) and cyp337b3 (54), were also exam-
ined for evidence of allele frequency change, but none
was found.

QTL Analysis of Cry 1Ab, Cry1A.105, and Cry2Ab2 Resistance. We
conducted a QTL analysis to identify genomic regions that
strongly contributed to H. zea Cry resistance. The average
weight of field-collected Cry-resistant larvae was 5.4 times
greater than that of the laboratory-reared Cry-susceptible lar-
vae after 7 d on a diet containing a diagnostic dose of lyophi-
lized Cry1Ab-expressing leaf tissue and 13.8 times greater on
diet containing a diagnostic dose of Cry1A.105+Cry2Ab2-
expressing leaf tissue (SI Appendix, Fig. S10). Differences
between resistant and susceptible populations were significant
according to a Mann–Whitney U test (Cry1Ab: df = 1, W =
189, P < 0.001; Cry1A.105+Cry2Ab2: df = 1, W = 38.5, P <
0.001). First instar F2 offspring from each of two genetic crosses
between resistant and susceptible grandparents (n for F2s =
153 and 160) were split between bioassays on a diagnostic dose
of Cry-expressing leaf tissue and a control containing nonex-
pressing leaf tissue. The controls were used to identify QTL for
larval growth unrelated to Cry resistance. The family exposed
to Cry1Ab-expressing leaf tissue had a mean 7-d larval weight
of 77.7 mg (SEM = 5.3) compared to 173.1 mg (SEM = 10.6)
on the untreated control (W = 4805, P < 0.001). Mean 7-d
weights of the family exposed to Cry1A.105+Cry2Ab2-express-
ing leaf tissue were 61.1 mg (SEM = 4.3) and 166.5 mg (SEM
= 7.2) on treated diet and the untreated control (W = 5869, P
< 0.001). Weight distributions of F2 offspring on Cry-treated
diets were continuous, and few Cry-exposed larvae reached the
resistant grandparent’s weight, suggesting that resistance was
polygenic (SI Appendix, Fig. S10).

Two hundred seventy-seven F2 offspring from the four treat-
ments were used to generate ddRAD libraries with their
parents and grandparents, and all samples were sequenced to

Fig. 1. Posterior membership probabilities for H. zea individuals collected in Bossier Parish, LA, in 2002, 2007, 2012, and 2016. Genotypic clustering used
ddRAD SNPs and assumed a prior number of clusters (k) equal to 2.

A
G
RI
CU

LT
U
RA

L
SC

IE
N
CE

S

Taylor et al.
Genome evolution in an agricultural pest following adoption of transgenic crops

PNAS j 3 of 10
https://doi.org/10.1073/pnas.2020853118

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental


an average coverage depth of 76.7× per locus. Following read
filtering and genome alignment, we applied a Bayesian sparse
linear mixed model [BSLMM; GEMMA v.0.98.4 (55, 56)] to
6,756 to 6,268 filtered SNPs to identify the genomic architec-
ture of Cry resistance. For F2s exposed to Cry1Ab, the propor-
tion of phenotypic variance explained by all ddRAD SNPs was
0.345 [0.035, 0.711], and less than half of this genetic variance
could be explained by SNPs of major effect (genetic variance
explained by sparse effects [PGE] = 0.415 [0.000, 0.964], n
SNPs = 57.61 [0, 270]). For F2s exposed to Cry1A.105+-
Cry2Ab2, a greater proportion of variance in larval growth
could be explained by our full SNP dataset (phenotypic vari-
ance explained [PVE] = 0.576 [0.363, 0.783]), and SNPs of
large effect size explained more of the total genetic variance
(PGE = 0.770 [0.315, 0.989], n SNPs = 7.87 [1, 58]). Results
from these single-family crosses indicated that H. zea resistance
to Cry1Ab was polygenic, but fewer loci controlled resistance to
Cry1A.105+Cry2Ab2.

We identified windows of SNPs throughout the H. zea
genome with statistically significant additive effects on 7-d lar-
val weight gain using a univariate linear mixed model [LMM;
GEMMA v.0.98.4 (55)]. QTL windows consisted of one or
more neighboring SNPs with likelihood ratio test (LRT) P val-
ues < 0.01. Significant SNPs within a window were never inter-
rupted by more than 20 nonassociated SNPs, and we required
that each QTL window contain at least one SNP with a poste-
rior inclusion probability >0.01 in the BSLMM to make our
analysis more conservative. Fourteen windows on eight LGs (3,
7, 9, 10, 15, 18, 21, 24) and unplaced superscaffold 41 influ-
enced 7-d larval weights on the Cry1Ab diet (SI Appendix, Fig.
S11). Of these, alleles from the resistant grandparent had posi-
tive effects on growth in all QTL windows on LGs 9 (number
of windows = 2), 10 (n = 3), and 18 (n = 3), suggesting a role
in Cry resistance for each LG. Yet, no QTL windows were sig-
nificant when we lowered our LRT significance threshold (α = 1
× 10�6), as would be expected if Cry1Ab resistance resulted
from many genes of small effect size. For Cry1A.105+Cry2Ab2,
we identified one QTL window spanning most of LG9 (SI
Appendix, Fig. S11), and this remained the same at our more
conservative LRT significance threshold (α = 1 × 10�6).

Detecting QTL of small effect requires large sample sizes
(57), and our power to detect such QTL was unclear, particu-
larly for the more polygenic Cry1Ab resistance. We conducted
multiple power analyses because our true “alpha” value fell
within the range of 0.01 and 1 × 10�6 due to our two test

criteria. These analyses also allowed for different levels of poly-
genic contribution to trait variance (57). We estimated that our
family sizes allowed us to detect QTL explaining a minimum of
10 to 30% of the trait variance, depending upon α value (0.01
or 1 × 10�6) and level of polygenic contribution to trait vari-
ance (SI Appendix, Fig. S12).

We attempted to separate QTL which provided a general
growth advantage from those contributing to Cry resistance by
comparing QTL for growth on Cry-expressing leaf tissue with
growth on the nonexpressing control for each family (SI
Appendix, Fig. S11 and Datasets S2–S5). QTL associated with
growth on diet containing Cry1A.105+Cry2Ab2 never over-
lapped with those for its control diet. Two QTL windows were
associated with growth on both diet containing Cry1Ab-
expressing leaf tissue and its control: one on LG9 (scaffold
1124) and another on LG10 (scaffold 143). For both LGs, resis-
tant grandparent alleles significantly increased 7-d larval weight
on Cry1Ab-expressing and nonexpressing leaf tissue, indicating
they provided a general growth advantage. Resistant grandpar-
ent alleles within the large Cry1A.105+Cry2Ab2 QTL on LG9
also increased larval weight after feeding on toxin-treated diet,
and this QTL overlapped with the LG9 growth-associated
QTLs in the presence of both Cry1Ab and its control. The
breadth of the Cry1A.105+Cry2Ab2 QTL was greater, and its
effect size was nearly twice that of the Cry1Ab-associated QTL,
however. We further analyzed the proportion of PVE by all
SNPs on LG9 (GEMMA, BSLMM) because a similar amount
of weight gain represented different proportions of total body
mass in the toxin-containing and control treatments. Our esti-
mates for LG9 PVE were 0.31 [0.05, 0.73] for Cry1Ab, 0.43
[0.23, 0.70] for Cry1A.105+Cry2Ab2 and 0.18 [0.01, 0.58] and
0.09 [0.00, 0.36] for their respective controls. Altogether, this
indicated that a portion of LG9 conveys a general growth
advantage to H. zea and enhances growth in the presence of
Cry1Ab, Cry1A.105, and Cry2Ab2. Yet, most of LG9 is strongly
associated with Cry1A.105+Cry2Ab2 resistance.

Genome positions of candidate Bt resistance genes were
compared with QTL positions, and the average additive effect
sizes of SNPs near candidate genes were calculated, providing
insight into whether any were likely to play a role in H. zea Cry
tolerance (Table 1). All apn genes, including apn1 and apn4,
were within Cry1Ab and Cry1A.105+Cry2Ab2 QTL, but not
within the general growth-associated QTL on LG9. A field par-
ent allele at the SNPs near apn1 and apn4 on average increased
offspring weight by 18.1 mg for the Cry1Ab treatment, 29.0 mg

Table 1. Average FST values and additive effect sizes of SNPs near Bt resistance candidate genes

Gene Ref.
Average FST (no.

of SNPs) Cry1Ab effect size

Cry1A.105 +
Cry2Ab2 effect

size
Providence

control effect size
Obsession control

effect size

alp 44 �0.011 (171) �10.4 2.6 �14.0 1.2
apn1 45 0.014 (152) 18.1* 29.0* 16.2 14.7
apn4 46 0.052 (188) 18.1* 29.0* 16.2 14.7
abcA2 47 0.011 (155) �3.5 11.1 �33.6* 20.6
abcC2 48 �0.005 (100) �7.8 3.1 �4.8 7.4
white 49 0.014 (197) 11.2 �3.8 32.0* �15.2
calp 16 0.012 (221) 2.4 NA �18.2 NA
cad2 50 �0.001 (118) 5.3 2.1 �10.9 0.7
cad-86C 51 �0.008 (1079) 6.7 4.8 5.5 3.2
map4K4 52 �0.018 (65) �8.4 �0.3 �4.4 1.8
tspan1 18 �0.007 (165) 11.4 �3.9 34.3* �15.0

Additive effect sizes are the average value of β (LMM) for SNPs within 250 kb of either side of each gene. They represent differences from the mean 7 d
weight (milligrams) associated with a single copy of a field parent allele. Averages were calculated from between 1 and 16 SNPs. SI Appendix, Table S9
provides their UniProt/GenBank IDs and genome positions for each gene. Field-collected WGS samples from 2002 and 2017 were used to calculate FST
values across the number of SNPs in parentheses. Asterisks denote that the candidate gene is found within a QTL window. NA indicates that no SNPs were
within 250 kb of the candidate gene.
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for the Cry1A.105+Cry2Ab2 treatment, and 16.2 mg and 14.7
mg for their respective controls. Yet, some offspring that were
homozygous for the susceptible grandparent allele at the SNP
nearest apn1 and apn4 (within 20 kb) grew to be some of the
largest larvae after feeding on toxin-containing diet (SI
Appendix, Fig. S13). While we could not rule out the possibility
that apn1 and apn4 play a role in H. zea Cry resistance, wild
resistance alleles at these genes were not necessary for larval
weight gain on either Cry-treated diet. No other candidate
genes were within Cry-associated QTL, although abcA2 was
within 100 kb of a negative growth-associated QTL (LG17) on
untreated diet. Genes white and tspan1 were within a large, pos-
itive growth-associated QTL (LG10) on untreated diet. As
described above, this overlapped with a QTL for Cry1Ab, but
this Cry1Ab QTL consisted of a single SNP which was more
than 2Mb from white and tspan1, suggesting they are not
involved in Cry1Ab resistance.

Resistance-Associated QTL Overlap with a Subset of FST Outliers.
Windows of temporal genomic divergence that do not overlap
with Cry-associated QTL would refute a strong contribution of
cis-regulatory or coding sequence mutations in these regions to
resistance. This was true of many regions with elevated FST in
our wild H. zea. Yet, overlapping Cry-associated QTL with sig-
nificant temporal genomic change in wild H. zea should support
involvement of those regions in resistance. We compared the
results of our FST and QTL analyses and identified windows
that overlapped by >1 bp. LGs 9 and 18 contained regions of
strong temporal divergence in wild H. zea, as well as Cry-
associated QTL (Fig. 2). Many windows of the H. zea genome
showed elevated levels of divergence, however, leading us to

quantify the probability that overlaps between the QTL and
FST outlier windows could be expected by chance alone. We
conducted a permutation test, which fixed the QTL positions
on our superscaffolded genome, then randomly shuffled the
positions of our FST outlier windows 10,000 times and counted
their overlaps with fixed QTL (58). Observed overlap between
Cry-associated QTL and FST outlier windows was greater than
the average numbers of overlaps due to chance alone, but this
difference was only significant for the Cry1A.105+Cry2Ab2
treatment (SI Appendix, Table S6), likely due to the breadth of
the QTL. Some of the FST outlier windows in the Cry1A.
105+Cry2Ab2 may contain protein-coding or cis-regulatory
mutations linked to field-evolved resistance, but we were
unable to demonstrate that FST outlier windows which over-
lapped with Cry1Ab QTL were not due to chance alone. For
the control treatments, overlap was not significantly greater
than would be expected by chance (SI Appendix, Table S6).

Notably, LG13 showed the greatest allele frequency changes
between 2002 and 2017, yet it did not contribute to growth dif-
ferences on either Cry1Ab- or Cry1A.105+Cry2Ab2-containing
diet (Fig. 2 and SI Appendix, Fig. S11). These strong changes
on LG13 provided us the opportunity to compare them with
the strength of selection observed in Cry-associated regions of
LGs 9 and 18. Linkage disequilibrium (LD) extended for 3 kb
along most of the genome, including on Cry-associated scaf-
folds (SI Appendix, Fig. S14). Correlations among alleles on
LG13 (scaffolds 1612 and 569) were high relative to the
genome-wide average in all years, however, and increased over
time. This buildup of LD over time was not observed on
Cry1Ab- or Cry1A.105+Cry2Ab2-associated scaffolds.

The magnitude of the SNP frequency changes between 2002
and 2017 was also greater on LG13 scaffolds 569 and 1612
compared to Cry-associated scaffolds. The maximum change
was 0.69 for both scaffolds on LG13 but only 0.59 for Cry-
associated scaffolds. We quantified changes in haplotype fre-
quency within windows of elevated FST for Cry-associated LGs
9 and 18, as well as LG13. For Cry1Ab-associated regions of
LG18, the dominant haplotype in 2017 was at higher frequency
in 2002 and declined over time (Fig. 3). This contrasted with
the dominant haplotypes on LG9 near both Cry1Ab and
Cry1A.105+Cry2Ab2 QTL, whose frequencies were lowest in
2002 then increased (Fig. 3). By 2017, haplotypes at all Cry-
associated regions were at intermediate frequencies: 0.38 to
0.46. Like LG9, haplotype frequencies at LG13 were low in
2002, but unlike for LG9, haplotypes at LG13 underwent strong
and sustained directional change over time (Fig. 3).

Such strong directional selection on LG13 haplotypes led us
to examine H. zea collected from our Louisiana trapping sites
in 1998, to determine whether allele frequencies were even
lower in that year. Moths from 1998 had DNA quality that was
too low for use in ddRADseq and WGS analyses, but short

Fig. 2. Genomic divergence in Cry-associated regions of the H. zea
genome. SNP additive effect sizes, β (LMM), of the resistant parent allele
are plotted for Cry1Ab (A) and Cry1A.105+Cry2Ab2 (B). All SNPs in signifi-
cant QTL windows are in color. Genome-wide divergence in field-collected
H. zea from Louisiana (2002-2017) are in C. Alternating light and dark
gray points represent pairwise FST values for 10-kb windows with a 1-kb
step. Points above the red line underwent significant temporal genomic
divergence. Points in color were also associated with increased growth on
Cry1Ab (red), Cry1A.105+Cry2Ab2 (blue), or both (purple) in our QTL
analysis.

Fig. 3. Haplotype frequency changes at two Cry-associated LGs (9 and 18)
and LG13, which was not associated with resistance to Cry toxins. Haplotype
frequencies in red were associated with Cry1Ab resistance, blue with
Cry1A.105+Cry2Ab2, and purple with both Cry1Ab and Cry1A.105+Cry2Ab2.
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fragments could be PCR-amplified. Two genes on LG13, one
carboxypeptidase q (cpq1) and one cytochrome p450
(cyp333b3), contained nonsynonymous mutations (SI Appendix,
Table S7) and fell within regions of significant temporal diver-
gence in our genome scan. Sanger sequencing of ca. 200-bp frag-
ments spanning one nonsynonymous mutation in each of cpq1
and cyp333b3 indicated their frequencies in 1998 were 0.07 and
0.1, respectively. These same mutations had frequencies of
0.27 and 0.35 in 2002 and 0.86 and 0.82 in 2017 (SI Appendix,
Table S7). Such strong directional change and buildup of LD is
consistent with a hard selective sweep in this region of the genome
(59), but likely in response to some factor other than the Cry tox-
ins studied here. Cry1Ab- and Cry1A.105+Cry2Ab2-associated
regions of the genome did not show these same patterns, however.

Contemporary Patterns of Cry-Associated Selection in H. zea.
Ongoing selection in Cry-associated regions of the genome
were examined by collecting fifth and sixth instar H. zea from
ears of two sweet corn varieties grown in Central Maryland
Research and Education Center (CMREC) plots in 2017:
Cry1A.105+Cry2Ab2 expressing Obsession II (n = 8) and its
non-Bt isoline, Obsession I (n = 8). The genomes of these indi-
viduals were sequenced with Illumina short reads. H. zea popu-
lations are considered panmictic due to their large effective
population sizes and migratory behavior (60). We reasoned that
the same LGs under selection by Cry1Ab, Cry1A.105, and
Cry2Ab2 in H. zea from LA, would be involved in resistance in
MD. We confirmed panmixia by comparing 2017 LA and MD
samples using a filtered dataset of 14,697 SNPs. The pairwise
genome-wide FST value was 0.0004, and the 95% confidence
intervals around this value (�0.0002, 0.0008) overlapped with
zero, demonstrating little divergence between populations. We
then used our full SNP dataset to examine 10-kb window-averaged
FST values, which identified differences in allele frequencies for
larvae that survived on Cry1A.105+Cry2Ab2-expressing sweet
corn relative to its non-Bt isoline. No differences between larvae
collected from Cry-expressing and nonexpressing corn were
observed at LG9, but significant divergence was found in the
Cry1Ab QTL region on LG18 (SI Appendix, Fig. S15). The
Cry1Ab QTL on LG18 was very large (SI Appendix, Fig. S11), and
regions of divergence between MD field collections did not overlap
with regions of temporal change in LA between 2002 and 2017.
Potential hypotheses to explain this lack of overlap are below.

Discussion
We paired QTL analyses of Cry resistance with a whole-
genome analysis of wild H. zea specimens collected over time
and space to quantify resistance-associated changes that
occurred following adoption of Bt crops in the United States.
Our results supported previous predictions that resistance to
Cry1Ab and, to a lesser extent, pyramided Cry1A.105+
Cry2Ab2, was the result of polygenic adaptation from standing
genetic variation. Substantial allele frequency changes occurred
throughout the genomes of wild H. zea in concert with increas-
ing resistance to Cry toxins, but none occurred at previously
identified lepidopteran Cry resistance genes. While candidate
genes apn1 and apn4 showed some potential for involvement in
Cry resistance according to QTL analysis, our QTL results also
indicated the possibility of a general growth advantage from
wild H. zea alleles in a nearby region of the same chromosome.
Combined QTL and whole genome analyses identified several
major Cry-associated changes that occurred in novel genomic
regions in wild H. zea over our 15-y sampling period, shedding
light on the evolution of resistance in this pest. Results from
our study also offer insight into how, when, and whether geno-
mic approaches could be used for future resistance risk
monitoring.

For four decades there has been an emphasis on identifying
single genes that confer resistance to control measures in insect
pests and weeds, and we now have a catalog of such genes
(5, 61–63). There are cases where a single (64) or multigene
diagnostic targeting previously established candidate genes (65)
have been useful for resistance monitoring. Yet, recently there
has been concern that these focused approaches could mislead,
as resistance evolves due to alleles already at low to intermedi-
ate frequencies in unexpected (63) or even multiple genes (5, 8,
66). Our work demonstrates that these concerns are appropri-
ate. Aminopeptidases, for example, have been identified as
functional receptors of Cry1A toxins (67). Temporal genomic
divergence at apn4 was highest of all candidate genes, making
it the most promising for resistance diagnostics, but allele fre-
quency changes at this gene were not statistically significant.
Alleles near apn4 from field-collected resistant individuals pro-
vided a modest general growth advantage and a Cry tolerance
advantage in our QTL analysis, yet some of the largest larvae in
our growth assays were homozygous for the susceptible apn4
allele. These results indicate that use of candidate genes, even
apn4 which showed strongest potential for involvement in Cry
resistance, can be problematic. In our case, resistance to
Cry1Ab and Cry1A.105+Cry2Ab2 pyramids may be aided by,
but did not require, apn4, likely because it (or a neighboring
apn) is one of many genes that impact growth on Cry toxins.
Solely focusing on this most promising candidate gene for resis-
tance diagnostics would have missed the coming problem.

Instead, our combined QTL analyses and genome scans
identified novel regions of the H. zea genome likely under
selection by Cry toxins expressed in Bt corn and cotton.
According to our GEMMA analysis, Cry1Ab resistance was
polygenic, where SNPs of major effect explained less than half
of the genetic variance contributing to larval growth (PGE =
0.415). Our sample size was sufficient to detect QTL explaining
> 10 to 30% of the variance in larval weight, and we identified
multiple regions of LGs 9, 10, and 18 where alleles from the
field-collected, resistant grandparent increased larval growth
(Fig. 2). Yet, it is likely that many Cry1Ab resistance-conferring
loci of minor effect remain to be discovered. Resistant grand-
parent alleles in some LG9 and 10 QTLs also increased larval
growth on a diet containing leaf tissue without Cry toxins, indi-
cating they provide a general growth advantage and have a low
fitness cost in the absence of Cry toxins.

When we examined temporal allele frequency changes in
wild H. zea within Cry1Ab QTL we were unable to show that
more FST outliers occurred within these QTL than expected by
chance alone. This highlights one major challenge for molecu-
lar resistance monitoring. When traits are polygenic and arise
from extensive standing variation in nature, selection can act
upon many variants, each of small effect size (68). All of the
minor effect variants segregating in natural populations may
not be represented by a single mapping family, like the one
used here. Therefore, some of the temporal allele frequency
changes observed in wild H. zea may represent changes at loci
of small effect that were not detectable in our QTL analysis.
Separating selection events that occur at minor-effect resistance
loci from those caused by other environmental factors repre-
sents a challenge for molecular resistance monitoring, due to
the large numbers of samples required to link loci of minor
effect to a trait.

QTL results for larval growth on diet containing
Cry1A.105+Cry2Ab2 revealed that most of LG9 strongly
impacted larval growth. Due to its breadth, this QTL encom-
passed the Cry1Ab and control growth-associated regions of
LG9, but portions were uniquely associated with growth on
Cry1A.105+Cry2Ab2. One Cry1A.105+Cry2Ab2-associated
region corresponded to the second greatest temporal change
observed in field-collected samples (Fig. 2) and may be
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uniquely linked to Cry2Ab2 resistance. Previous studies of
resistance mechanisms support this conclusion. Cry1A.105
competes with Cry1Ab and Cry1Ac for the same lepidopteran
midgut receptors (69), and selection for resistance to one of
these toxins results in cross-resistance for the others (35). Yet,
major cross-resistance to Cry1A and Cry2A toxins is uncom-
mon (70), including for H. zea (71), and is likely due to their
distinct larval midgut receptors (72–74). This difference sup-
ports a genetic mechanism for Cry2Ab2 resistance that is dis-
tinct from Cry1A. Although we found a single, large QTL for
Cry1A.105+Cry2Ab2 resistance, Yang et al. (75) found that
phenotypic variance for Cry2Ab2 resistance fit a polygenic
model. Perhaps loci of small effect size on other chromosomes
were not detectable in our QTL analysis (SI Appendix, Fig.
S12) and further study would reveal those loci.

Our data begin to shed light on the time course of field-
evolved Cry resistance evolution in H. zea. Modest changes
on a superscaffold in a Cry1Ab-associated region of LG18
(NW_018395428.1) and a Cry1A.105+Cry2Ab2-associated
region of LG9 (NW_018395392.1) occurred between 2002 and
2012 (SI Appendix, Fig. S8). These genomic changes were
detectable as early as 2012, when Dively et al. (27) was detecting
damaging levels of phenotypic resistance to Cry1Ab-expressing
sweet corn and growing damage to Cry1A.105+Cry2Ab2-expressing
sweet corn. This offers some hope that genomic monitoring could
be useful for predicting emerging resistance, but future work
should be directed at identifying the earliest time point these
changes would have been detectable.

Further changes on Cry1Ab-associated LG18 (NW_
018395783.1) and the Cry1A.105+Cry2Ab2-associated region
of LG9 (NW_018395392.1) occurred between 2012 and 2017 in
wild LA H. zea (SI Appendix, Fig. S8). Notably, the same
regions of Cry1A.105+Cry2Ab2-associated LG9 were under
selection in both time periods (2002 to 2012 and 2012 to 2017),
but patterns of selection were more complex for Cry1Ab-
associated LG18. Changes on LG18 were observed on multiple
superscaffolds over time: NW_018395428.1 showed changes
between 2002 and 2017 and NW_018395783.1 between 2012
and 2017, while NW_018395637.1 and NW_018395512.1 dif-
fered between our 2017 Maryland populations, which indicated
selection is ongoing on this LG (Fig. 2 and SI Appendix, Fig.
S15). Such complexity is in line with selection for a polygenic
trait from standing genetic variation, where multiple variants of
small effect size are differentially selected among populations.
The detectable Cry1Ab-associated QTL on LG18 covered hun-
dreds of kilobases and may contain multiple variants of small
effect, considering the polygenic nature of Cry1Ab resistance.
Each of these variants may be seized upon by selection differ-
ently in independent populations over time, or by the distinct
Cry1A toxins (Cry1Ab and Cry1A.105 toxins) examined here.

Although we detected genomic windows within Cry1Ab- and
Cry1A.105+Cry2Ab2-associated QTL that underwent strong,
significant changes over the 15-y sampling period, the strongest
changes occurred in a broad region of LG13. Independence of
this region from our Cry-associated QTL refutes its strong con-
tribution to Cry1Ab, Cry1A.105, or Cry2Ab2 resistance in H.
zea. Interestingly, three genes in this sweep region, cpq1, cpq2,
and cyp333b3, have previously been linked to xenobiotic resis-
tance (76–78), as well as binding of Cry1Ac toxins in H. armi-
gera (79). Perhaps this region plays a role in resistance to Cry
toxins that we did not study (e.g., Cry1Ac, Cry1Fa). Despite
this finding, we compared the strong changes on LG13 to those
on Cry-associated scaffolds, which offered insight into both the
polygenic nature of field-evolved Cry resistance and challenges
for genomic monitoring.

The strong directional changes observed for both SNP and
haplotype frequencies (Fig. 3), combined with the buildup of
LD over time (SI Appendix, Fig. S14), indicated a hard selective

sweep occurred on LG13 (59). Unlike patterns observed on
LG13, the 2017 dominant haplotypes at two (of three) LG9
regions started at low frequency but rose to and remained at
intermediate frequency in 2017, suggesting a partial selective
sweep, or recombination linking resistance alleles to previously
susceptible haplotypes over time. In contrast to both LGs 13
and 9, the dominant 2017 haplotype in a Cry1Ab-associated
region of LG18 started at high frequency and declined over
time, likely due to a decline of susceptible haplotypes and
replacement by resistant ones. The decline was modest, and
high haplotype variation was maintained in this region of LG18
in 2017 (Dataset S6). We speculate that putatively susceptible
haplotypes were replaced by resistance alleles linked to multi-
ple haplotypes, consistent with a sweep from standing genetic
variation (80). Altogether, our results underscore that use of
genomic approaches to study rapid adaptation for polygenic
pesticide resistance is challenging but feasible under the right
experimental conditions. Allele frequency changes were
detected in Cry-associated regions of LGs 9 and 18 in our
study, but they did not show the same strength and breadth as
the hard sweep on LG13.

Use of genomic approaches to study rapid evolution in natu-
ral populations has recently gained momentum (40, 65, 81–84),
yet few studies have applied them to study pest adaptation to
agricultural systems (85). As these approaches are applied to a
variety of agricultural systems, species- and method-specific
issues will need to be addressed to ensure accuracy. Not all
genomic changes identified through resistance monitoring will
be the result of selection from the control tool being studied.
Deployment of pest management innovations do not take place
in the absence of other environmental selection pressures.
When Bt crops were introduced into North America, agricul-
tural use of synthetic insecticides was reduced, though certainly
not eliminated. In a previous study, we found that another pest
of cotton, Chloridea virescens, did not experience changes in the
frequency of Bt resistance candidate genes. Rather, changes in
the frequency of a pyrethroid resistance mutation were
detected (40). Indeed, we found that the greatest allele fre-
quency changes in H. zea were not associated with Cry1Ab,
Cry1A.105, or Cry2Ab2 resistance. Therefore, confirming the
strength of association between any major genomic change with
a resistance phenotype is critical.

Confirmation testing can be conducted using the types of
simple crosses and QTL analyses carried out in our study. Such
assays can determine the importance of rapidly changing loci to
resistance phenotypes but require large sample sizes to detect
loci of minor effect. In cases similar to H. zea on Cry-expressing
crops, where the control tactic does not kill all pest individuals
or has sublethal effects, collections from paired sentinel plots
could also point to genomic regions associated with resistance.
Such paired sentinel plots are already being used for determin-
ing the current extent of resistance but typically monitor dam-
age to the crop rather than the genetics of the pest (27, 86).

A second concern is that population demographic processes,
including migration patterns and population expansion, can
result in the appearance of genome-wide shifts in allele fre-
quency not due to selection. When this occurs, there is a risk
that genomic monitoring would falsely implicate a genomic
change as a sign of evolving resistance. We were fortunate to be
studying a highly migratory species (22, 23, 87) with little popu-
lation structure over large geographic areas (23, 88), and this
was supported by our low genome-wide pairwise FST for H. zea
from Louisiana and Maryland. Additionally, H. zea feeds on
many host plant species, resulting in relatively stable population
densities even after release of Bt crops (89). For a species that
interbreeds over such a large area, population demographic
processes are unlikely to result in detection of false positives.
Had we been studying an insect or weed with strong local

A
G
RI
CU

LT
U
RA

L
SC

IE
N
CE

S

Taylor et al.
Genome evolution in an agricultural pest following adoption of transgenic crops

PNAS j 7 of 10
https://doi.org/10.1073/pnas.2020853118

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020853118/-/DCSupplemental


population structure, or one in which the control measure caused
severe reduction and resurgence of the pest, our experimental
and computational approaches would have required additional
careful consideration. Fortunately, new computational approaches
which can better differentiate population demographic processes
from selection, including soft and partial sweeps, are now avail-
able, even for temporal datasets (90, 91).

The benefits of genomic monitoring of pest species go
beyond identifying the mechanisms of resistance and risk miti-
gation. Adoption of genomic approaches for resistance moni-
toring will be crucial for addressing the decades-long debate on
exactly how pests rapidly adapt to management practices (92).
Here we present evidence on the complex nature of genomic
change during expansion in use of a major agricultural innova-
tion. Extension of carefully designed genomic monitoring pro-
grams to additional pest species sampled over broad spatial and
temporal scales could provide critical insight into the nature of
adaptation to human-imposed selection.

Methods
Insect Collections for ddRADseq and WGS Analyses. H. zea adults were col-
lected by pheromone-baited trap twice weekly and pooled by collection date
from May through September in Bossier Parish, LA (SI Appendix, Table S1) in
2002, 2007, 2012, 2016, and 2017. Late instar (fifth to sixth) H. zea were also
collected in 2017 at the University of Maryland CMREC farms in Prince
George’s County, MD, and reared to adulthood prior to genomic analysis.

Genetic Crosses for Linkage Mapping and QTL Analysis. In 2019, we collected
Cry resistant late instar (fifth to sixth) H. zea larvae from the ears of
Cry1A.105+Cry2Ab2-expressing sweet corn planted in Prince George’s County,
MD, and reared them to pupation on a meridic diet in the laboratory. Upon
emergence, pairs of field-collected adults were mated and their larval prog-
eny were bioassayed on a Cry-containing diet alongside susceptible Benzon
larvae (Benzon Research Inc.) according toDively et al. (27) (SI Appendix). After
confirming differences in Cry susceptibility for Benzon and field strains, we
single-pair-mated them to produce F2 progeny from twomapping families.

Superscaffolding of the H. zea Genome. The H. zea reference genome was
superscaffolded by alignment to the H. armigera genome using RagTag
[v. 1.1.1 (93)]. A linkagemapwas produced using the Cry1A.105+Cry2Abmap-
ping family with R package qtl [v. 1.47-9 (37)]. Markers with a logarithm of
the odds score of 16 or greater and a recombination fraction less than 0.2
were placed into LGs and reordered iteratively until order quality plateaued.
H. zea superscaffolds were grouped into chromosomes and ordered with the
linkage map. Chromosome homology to B. mori was determined by aligning
the superscaffolded H. zea assembly to the B. mori assembly (v1.0,
GCF_014905235.1) using RagTag. Throughout our study, all sequencing reads
were aligned to the originalH. zea assembly for variant calling, but SNPs were
ordered using our superscaffolded genome for visualization and down-
stream analyses.

ddRADseq Library Preparation of Wild H. zea and Bioinformatic Analysis.
Specimens from 2002, 2007, 2012, and 2016 were prepared into ddRADseq
libraries for population genomic analysis according to Fritz et al. (39, 40) and
sequenced on eight runs of an Illumina MiSeq. Merged, filter-trimmed reads
were aligned to the H. zea genome [v. 1.0, NCBI Bioproject PRJNA378438 (36)]
with Bowtie2 (94). SNP genotypes were called with BCFtools (95), and SNP fil-
tering criteria are provided in SI Appendix.

We calculated average nucleotide diversity (π) and heterozygosity (the
inbreeding coefficient F) values for populations collected in each year and
examined genome-wide divergence for each pair of years using pairwise FST
(96). A k-means analysis in R (97) modeled the number of putative populations
or clusters (k = 1:10) into which the LA H. zea fit according to genotype [ade-
genet v. 2.1.1 (98, 99)]. Using the three best-fitting numbers of clusters (k =
2:4) as priors, we applied a DAPC in adegenet to identify groups of genetically
similar H. zea individuals. Weir and Cockerham’s FST was calculated for each
SNP to quantify genetic divergence across years and identify thosewith higher
than expected divergence over time [OutFLANK v. 0.2 (41)].

WGS Library Preparation of Wild H. zea and Bioinformatic Analysis. DNA
from additional males collected in 2002 (n = 13), 2012 (n = 11), and 2017 (n =
11) was prepared into two Illumina TruSeq LT libraries (Illumina, Inc.) and
sequenced on two Illumina NextSeq500 runs. Following filter-trimming and
genome alignment, SNP genotypes were called with BCFtools. Temporal
change at Bt resistance candidate genes was measured by pairwise FST aver-
aged across SNPs foundwithin each gene. We applied a sliding-window analy-
sis, where windows with an average FST value greater than 6 SDs from the
mean (ZFST >6) were considered to have undergone statistically significant
divergence (42).

Sliding window averaged FST values were also used to identify novel signa-
tures of selection across the genome using 10-kb windows with a 1-kb step.
Additional sliding-window and step sizes were also examined (SI Appendix,
Fig. S6). Genotype simulations under neutral expectations using realistic popu-
lation demographic conditions generated a distribution of FST values, which
were compared against empirical FST values from our genome scan as a sec-
ondary approach to examining statistical significance (43) (SI Appendix).

QTL Analysis of Cry1Ab, Cry1A.105, and Cry2Ab2 Resistance. Progeny from
each of the two mapping families were assayed for 7-d weight gain on diets
containing conventional (nonexpressing) or Cry-expressing leaf tissue col-
lected from sweet corn isolines, where one family was exposed to Cry1Ab and
its nonexpressing isoline (Providence). The other family was exposed to
Cry1A.105+Cry2Ab2 and its nonexpressing isoline (Obsession). Following phe-
notyping, both families were prepared into ddRADseq libraries (SI Appendix)
and sequenced on one lane of an Illumina NovaSeq. 6000. Genotypes were
called from filtered and genome-aligned reads and then associated with 7-d
growth phenotypes for all treatments using an LMM and a BSLMM in GEMMA
0.98.4 (55, 56). The intersection of our full list of 10-kb genomic windows
showing significant temporal changes and our Cry-associated QTL gave the
putative genomic regions under selection by Cry1Ab and Cry1A.105+Cry2Ab.

Genome Similarity between H. zea Collected from Maryland and Louisiana in
2017. A global FST analysis compared H. zea collected at CMREC in Prince
George’s County, MD, in 2017 to those collected in Bossier Parish, LA, in 2017.
Nonoverlap of the bootstrapped 95% confidence intervals with zero deter-
mined statistical significance. Maryland samples collected from Cry1A.105+
Cry2Ab2-expressing and nonexpressing sweet corn were examined by a pair-
wise FST sliding window analysis, as described above.

Frequency of Nonsynonymous Substitutions Prior to 2002. Genomic DNA was
isolated from H. zea collected in 1998 from Hartstack traps in Bossier Parish,
LA, PCR-amplified using primers flanking nonsynonymous mutations in cpq1
and cyp333b3 (SI Appendix, Table S8), and Sanger-sequenced to determine
their frequency prior to 2002.

Analysis of LD. Decay of LD was measured using R2 for H. zea scaffolds under
Cry selection in LGs 9 and 18 and compared with genome-wide patterns, as
well as those at LG13. Changes in haplotype frequency were measured on Cry-
associated LGs 9 and 18, as well as regions of LG13. We included SNPs that
were present in >90% of our samples after thinning to 1 per 500 bp. Haplo-
type frequencies were calculated from called genotypes using the R package
haplo.stats (100).

Data Availability. Raw and genome-aligned sequence data for the Louisiana
andMaryland field collections have been deposited at NCBI with BioProject ID
PRJNA751583. Sequence data from linkage mapping and QTL analysis have
been deposited at NCBI with BioProject ID PRJNA732682. Scripts and barcodes
files have been deposited at GitHub (https://github.com/mcadamme/FieldHz_
Pop_Genomics).
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