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Abstract

Fitting canine cancer incidences through a conventional regression model assumes con-

stant statistical relationships across the study area in estimating the model coefficients.

However, it is often more realistic to consider that these relationships may vary over space.

Such a condition, known as spatial non-stationarity, implies that the model coefficients need

to be estimated locally. In these kinds of local models, the geographic scale, or spatial

extent, employed for coefficient estimation may also have a pervasive influence. This is

because important variations in the local model coefficients across geographic scales may

impact the understanding of local relationships. In this study, we fitted canine cancer inci-

dences across Swiss municipal units through multiple regional models. We computed diag-

nostic summaries across the different regional models, and contrasted them with the

diagnostics of the conventional regression model, using value-by-alpha maps and scalo-

grams. The results of this comparative assessment enabled us to identify variations in the

goodness-of-fit and coefficient estimates. We detected spatially non-stationary relation-

ships, in particular, for the variables related to biological risk factors. These variations in the

model coefficients were more important at small geographic scales, making a case for the

need to model canine cancer incidences locally in contrast to more conventional global

approaches. However, we contend that prior to undertaking local modeling efforts, a deeper

understanding of the effects of geographic scale is needed to better characterize and iden-

tify local model relationships.

Introduction

Recent advances in comparative oncology have confirmed that dogs can serve as valuable

models for the spontaneous development of cancer in humans [1,2]. These insights have

mostly been derived from experimental studies, but spatial analyses of canine cancer can also

enable the detection of risk factors for human populations, as the two species share their living
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environment, intimately. Such an approach to comparative oncology could be of high rele-

vance to reducing cancer incidence in humans [3,4]. However, spatial analyses comparing

canine and human cancers are currently limited, mostly because canine cancer data sources

are scarce and often incomplete [5,6]. Furthermore, existing canine cancer data sources are

typically compiled only within the catchment area of veterinary hospitals, thus impeding

meaningful insight into risk factors for both species [7,8].

Given these data limitations, the Swiss Canine Cancer Registry (SCCR) can be considered

an exceptional data source, consisting of canine cancer diagnostic records, retrospectively col-

lected across Switzerland over a period of fifty-eight years [9,10]. Case-control studies of the

SCCR have highlighted important relationships between canine cancers and a number of bio-

logical risk factors [11,12]. The same biological risk factors were also studied through spatial

analyses, using conventional regression models, but the model coefficients revealed very differ-

ent relationships to canine cancers [13–15]. While these results have evinced that risk factors

for individuals may be difficult to detect among populations [16,17], partly as a consequence

of the modifiable areal unit problem (MAUP) [18], as noted by the original authors, a number

of issues still needed to be addressed in modeling canine cancer incidences [13–15].

Among these modeling issues, misspecification is especially critical in spatial analysis

[19,20]. This issue can affect the estimation of the model coefficients, causing an incorrect

determination of relationships between the dependent variable and the independent variables

accounting for potential risk factors [21,22]. On top of this, in a conventional regression

model, the coefficients are estimated “globally,” thus assuming constant relationships across all

spatial units within the study area [23,24]. However, it is often more realistic to expect that the

model coefficients may vary across space, because relationships are expected to change, among

others, by local context. This condition, known as spatial non-stationarity, implies that the

conventional regression model is inadequate [23,24], and spatial variations in the model coeffi-

cients should be computed through local models [19,25].

An essential characteristic of local models is the geographic scale, in other words, the spatial

extent that is considered for estimating the local model coefficients [26,27]. One often

neglected aspect is the question whether the local model coefficients depend on the geographic

scale for estimation. The existence of such geographic-scale dependency could be highly prob-

lematic for the interpretation of local relationships, as there could be uncertainty as to which

local coefficient better estimates the relationship of interest [26,27]. Hence, awareness of

potential effects of spatial non-stationarity and geographic scale can improve the understand-

ing of local relationships, and support a more informed interpretation of the local model coef-

ficients. Local models enable to assess these effects by varying the bandwidth parameter [25]

but have known limitations in the specification of spatial weights [28, 29].

To overcome these limitations, we designed a modeling framework inspired by the concept

of regional models [30, 31]. We defined multiple regions according to a set of nearest-neigh-

boring municipal units. Each region was identified by its central municipal unit and its geo-

graphic scale, in other words, the number of nearest-neighboring municipal units. Regional

models were then fit to regions involving all possible centers and geographic scales, and

selected model diagnostics were computed, summarized and visualized through value-by-

alpha maps [32] and scalograms [33]. The visual representations were perused to contrast the

regional models with the conventional regression model. Such a comparative assessment

enabled us to uncover effects of spatial non-stationarity and geographic scale in our model of

canine cancer incidences and provided elements for more informed spatial analyses of the

SCCR and similar canine cancer data sources.

The importance of regional models in assessing canine cancer incidences in Switzerland
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Materials and methods

Data and pre-processing

The SCCR consists of diagnostic cases collected retrospectively in Switzerland between 1955

and 2013 [9,10]. The diagnostic examinations were performed through necropsy, biopsy, and

cytology tests at the reference laboratories for animal cancer diagnosis in Zurich and in Berne,

as well as at a private laboratory located in the Zurich area [11,12]. Based on anonymized resi-

dential addresses (i.e., postcodes only) stored in the diagnostic data, we computed canine can-

cer incidences at the municipal level on a yearly basis for the period 2008–2013. For each

municipal unit, the incidences were then summed over the six years. Over this period 20,209

new cancer cases were recorded in Switzerland, with a median yearly value of 3,350, and an

IQR value of 127. Despite the relative stability of the yearly incidences at the country level, they

vary considerably at the municipal level, with 28% of the municipal units having a median

value equal or even lower than the IQR. Such a local variability justifies the aggregation of the

canine cancer incidences across six years, to avoid spurious results associated with temporal

variability. All types of malignant tumors were considered as cancer cases, and dogs diagnosed

with more than one cancer where considered single cases.

We also accessed the Swiss canine population database, which is compiled by Animal Iden-

tity Service (ANIS) AG following the legal obligation for dog microchipping and registration

established in Switzerland in 2006 [34]. Since 2008 its completeness has constantly been evalu-

ated above 95% [12]. Using the residential address of the registered dogs, we retrieved the

number of at-risk dogs at the municipal level on a yearly basis for the period 2008–2013. No

exclusion criterion, as to age and sex was adopted. Similarly to the canine cancer incidences,

we aggregated the population counts for each municipality over the six years, to avoid extreme

fluctuations due to sample variability [21,35]. Based on the total number of incidences and the

population counts recorded within municipalities over the six years, we were able to compute

the average canine cancer incidence rates for the period 2008–2013.

Using the dogs registered in the Swiss canine population database, we also derived variables

associated with known biological risk factors for several canine cancers [36–38] (Table 1).

These variables were studied in previous spatial analyses using the SCCR data through conven-

tional regression models [13–15]. The variables are Average Age (in months), Females per Male
(in percent), and Average Weight (in kilograms) of the dogs registered in the different munici-

pal units each year, during the period 2008–2013. We could not include other important bio-

logical risk factors (e.g., spaying/neutering, etc.) in this study because this information is

currently not stored in the Swiss canine population database. Environmental risk factors, such

as environmental tobacco smoke or air pollution in general are also not included in the current

study, as these variables are difficult to obtain or impossible to compute retrospectively across

Swiss municipalities for the given study years. Nevertheless, we retrieved three additional vari-

ables accounting for potential underascertainment of canine cancers (Table 1), a potential con-

founding factor, known to affect the study of canine cancer registry data [5,6].

The first confounding variable refers to the urban character of municipalities. This is

because lower levels of underascertainment of canine cancers are expected to occur in urban

locations, where veterinary check-ups are typically more frequent [7,39]. For this purpose, we

computed Dogs per Capita (in percent) across municipalities, using the Swiss canine popula-

tion database data [34] and the Swiss Federal Statistical Office census data [40] for the period

2008–2013. This is because, different characteristics such as the status of the dog (i.e., compan-

ion versus working animal) and the type of households (i.e., smaller versus larger living spaces)

in Switzerland influence the number of dogs per capita living in urban and rural municipalities

[9].

The importance of regional models in assessing canine cancer incidences in Switzerland
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Second, we considered that wealthier municipalities have reduced levels of underascertain-

ment of canine cancers as well, because of the availability of financial means for regular veteri-

nary check-ups [39,41]. Hence, we calculated Income Tax per Capita (in 1,000 Swiss Francs—

CHF), by normalizing municipal income tax information collected by the Swiss Federal Tax

Administration [42] and the Swiss Federal Statistical Office census data [40] for the period

2008–2012. We could not access income tax information for 2013 because the data was not

publicly available at the time of the study. Despite the fact that this variable might be somehow

correlated with urban status, we decided to include it separately to explore potential changes

in relationships across regional models.

Third, we further addressed the frequency of regular veterinary check-ups by computing

Distance to Veterinary Care (in kilometers) within municipal units. This was done by creating

a hectometric raster (i.e., with a 100m x100m resolution) representing distances to veterinary

services along roads, and averaging the raster values within those municipal units [43]. The

raster was created using the addresses of the 938 veterinary services registered in the official

Swiss Yellow Pages online database in 2014 [44]. The Swiss road network for 2014 was

obtained as vector data from the VECTOR25 data model of the Swiss Federal Office of Topog-

raphy [45]. We could not access information on the addresses of veterinary services for previ-

ous years because such historical information was not easily available to us. The projection for

the raster and shapefile presented above was the Universal Transverse Mercator (UTM).

Regression model specification and diagnostics

We fitted the average canine cancer incidence rates using a Poisson regression framework, as

this is one of the most common methods for modeling disease incidences and rates of rare dis-

eases, such as cancer [46,47]. In doing so, we relied on the assumption that the data was Pois-

son distributed, in particular, having the property that the conditional variance is equal to the

conditional mean [48]. However, mild violations of this assumption have often been reported

and accepted [49]. Given the purpose of our study, we do report the results of the over-disper-

sion test [50] (α = 0.05), but we did not consider alternatives to the Poisson model. This was

because we focused on the systematic comparison of the model parameters and diagnostics

rather than on a thorough investigation of the assumptions required for both distributions

[51].

As the Poisson model is designed for modeling count data, we first fitted the observed

canine cancer incidences between 2008 and 2013 (y) through the following independent vari-

ables (x)—Average Age (in months), Females per Male (in percent), Average Weight (in kilo-

grams), Dogs per Capita (in percent), Income Tax per Capita (in 1,000 CHF), and Distance to
Veterinary Care (in kilometers), according to Eq 1. The first three variables involve known bio-

logical risk factors for canine cancer, while the last three variables correct for potential under-

ascertainment of canine cancers. The fitted canine cancer incidences were then adjusted

Table 1. Median, interquartile range (IQR), minima, and maxima for the different independent variables perused in this study.

Variable Median IQR Minima Maxima

Average Age (month) 81.9 13.7 47.7 138.0

Females per Male (percent) 51.3 6.6 0.0 83.7

Average Weight (kilogram) 22.6 3.7 8.2 41.3

Dogs per Capita (percent) 13.2 8.0 1.8 276.0

Income Tax per Capita (1,000 CHF) 0.6 0.5 0.1 30.3

Distance to Veterinary Care (kilometer) 3.0 2.9 0.4 33.0

https://doi.org/10.1371/journal.pone.0195970.t001
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according to the at-risk canine population between 2008 and 2013 (e), and then log-trans-

formed, thus computing average canine cancer incidence rates for the period. In Eq 1, α is the

intercept and β the multiplicative coefficient estimated for each independent variable. Note

that the at-risk canine population (e) is treated differently compared to the other independent

variables (x), as this is assumed to be a constant of proportionality, to allow different at-risk

populations, rather than a variable used to model risk itself [46,47].

logðyjxÞ ¼ α þ β1x1 þ β2x2 . . . βnxn þ logðeÞ ð1Þ

To assess the performance of our baseline model, we perused various diagnostics about the

effects (i.e., exp(ß)) resulting from the model coefficients, 95% confidence intervals (CIs), and

significance levels (α = 0.05) [46,47]. The effects are interpreted as the impact of a one-unit

increase in each independent variable on the expected canine cancer incidence, while the

other variables are kept constant. The relative 95% CIs are also reported. When computing the

significance levels and 95% CIs, we considered robust standard errors to account for possible

mild deviations from the Poisson distribution [50]. We also tested the independent variables

for multicollinearity to detect critical correlations among the independent variables, as this

may introduce problems in the estimation of the model coefficients [52]. For this purpose, we

employed the variance inflation factor (VIF) as a diagnostic and reported its square root value

(SQRVIF). This is because a SQRVIF greater than 2.0 indicates a critical level of multicolli-

nearity [53].

We then evaluated whether our baseline model provided a significant (α = 0.05) improve-

ment over the null model, that is, the model with the intercept only. In doing so, we performed

a likelihood ratio test [54] and reported the chi-squared statistic (χ2) [55]. To assess the good-

ness-of-fit, we computed the McFadden pseudo-R-squared (R2
McFadden) statistic [56]. Similar

to the likelihood ratio test, the R2
McFadden statistic evaluates the improvement of the baseline

model over the null model with respect to the explained variability. As with the standard R-

squared statistic, as a R2
McFadden statistic approaches 0, it indicates a lower model fit; a value of

1 indicates a perfect model fit [57]. In practice, the R2
McFadden statistic is more conservative,

and the respective values are considerably lower than standard R-squared values. Values

between 0.2 and 0.4 already suggest an excellent model fit [58].

Spatial non-stationarity and geographic scale

In order to advance the understanding of effects of spatial non-stationarity and geographic

scale, we employed the concept of regional models. This concept has been recently proposed

for robust analysis and diagnostic of spatial non-stationarity and aggregation effects in epide-

miologic and demographic studies [28,29]. The most important characteristic of regional

models is that they keep the structure of the conventional regression model unaltered, as

effects of spatial non-stationarity and geographic scale are implicitly embodied through the

region to which the regression model is fit [28,29]. This results in a relatively simple modeling

framework that, unlike existing local models, does not incorporate uncertainties associated

with the specification of spatial weights [28, 29]. To build the regional models, we fitted the

baseline model presented above within multiple regions based on a set of nearest-neighboring

municipal units.

We defined the modeling regions by first considering every municipal unit as a center. Sec-

ond, considering the Euclidean distance between the different centers, we iteratively selected

nearest neighboring units spanning from one to the total number of municipal units within

the study area [25]. These steps allowed us to define the multiple regions as a function of their

centers and the number of nearest neighboring municipal units. On the one hand, this enabled

The importance of regional models in assessing canine cancer incidences in Switzerland
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us to fit models to each of the regions, thus assessing potential spatial non-stationarity in esti-

mated relationships across regions. On the other hand, we were also able to examine the effects

of geographic scale—estimated by the number of nearest neighboring municipal units

involved in the regions—on these statistical relationships. However, as the geographic scale

decreases, sample-size effects become critical to the regional models. For this reason, we

enforced a minimum number of nearest neighboring municipal units, to ensure acceptable

statistical power (β = 0.80), given a standard significance level (α = 0.05), and a small effect size

(f 2 = 0.04) [59].

We contrasted the regional models using the diagnostic tools presented above, by assessing

potential changes in the direction of the effects resulting from the significant model coeffi-

cients (α = 0.05) [46,47], as well as in the relative goodness-of-fit [56]. This to highlight inher-

ent geographic variations both in the biologic risk factors and the variables accounting for the

underascertainment of canine cancers. To facilitate this comparative task, we computed sum-

mary statistics for the diagnostics of the different regional models. The summary statistics

were classified into quartiles to produce robust measures of central tendency (i.e., the median)

and spread (i.e., the interquartile range—IQR) across the multiple diagnostics [60]. We also

reported the results of the over-dispersion test (α = 0.05) for the regional models.

We then mapped the spatial distribution of both median and IQR measures for the regional

models, using the location of the regions’ centers. In doing so, we built value-by-alpha maps to

simultaneously depict median values through a standard continuous color scale and IQR val-

ues through variations in the alpha parameter, in other words, the opacity level [32]. This map-

ping technique was meant to enable a first insight into potential effects of spatial non-

stationarity and geographic scale across the multiple regional models. To further investigate

effects of geographic scale, we also perused scalograms, a visualization technique to assess

changes in the model diagnostics across the different nearest neighboring municipal units

used to define the regions [33]. On the y-axis of the filled-area plots, we present the summary

statistics according to the quartile classification method, and on the x-axis, we indicate the

number of nearest neighboring municipal units characterizing the regional models.

Data pre-processing, analysis, and visualization were carried out using RStudio Server

v1.0.44 [61] on a Ubuntu-based computational machine (32 VCPUs and 125GB RAM), set up

within the Science Cloud infrastructure of the University of Zurich, Switzerland. The following

R packages were used in this study—foreach [62], gdistance [63], ggplot2 [64], maptools [65],

parallel [61], plyr [66], pwr [67], reshape [68], rgdal [69], sandwich [70], and selfea [71].

Results

Conventional regression model

Fig 1 shows the spatial distribution of the observed average canine cancer incidence rates for

the period 2008–2013 in Switzerland, as fitted in the conventional regression model. The val-

ues are classified according to the quantile classification method to facilitate the visual inter-

pretation. Overall, the rates ranged between 0.00% and 4.91% and presented distinct regional

patterns. These patterns were dominated by higher rates in the municipal units located in the

eastern part of the country, across the Cantons of Zurich and Schaffhouse (North-East), in the

Canton of Grisons (East) and in the Canton Ticino (South-East). We identified additional

regional patterns associated with a rural-urban cleavage. Municipal units belonging to the

major urban agglomerations exhibited substantially higher rates than the rural hinterland,

namely, the Cantons of Vaud, Fribourg and Berne (West), the Alps (South), and the Jura

Mountain Range (North-West). Fitting the baseline model through a conventional regression

model resulted in a likelihood-ratio test statistic of χ2 = 3,878.6 (P< 0.001), confirming an
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improvement over the model with the intercept only. Also, the R2
McFadden statistic was 0.197,

suggesting a relatively good model fit. The overdispersion test returned a value of 4.3

(P< 0.001), indicating significant overdispersion.

Table 2 shows that all model coefficients were statistically significant (P< 0.05), and the

SQRVIF values were consistently below 2.0, indicating the absence of critical multicollinearity.

Biological risk factors, such as Average Age presented a negative relationship—for each increas-

ing month, the incidences decreased by 2.0%, 95% CI [–2.4, –1.6]. Conversely, both Females
per Male and Average Weight showed positive relationships—for each increasing percentage

unit of female per male and each increasing kilogram, the incidences increased by 2.9%, 95%

Fig 1. Average canine cancer incidence rates observed in Switzerland for the period 2008–2013. The data is classified according to the quantile classification.

https://doi.org/10.1371/journal.pone.0195970.g001

Table 2. Effect, lower and upper 95% CI and SQRVIF for the coefficients estimated through the conventional regression model.

Coefficient Effect Lower CI Upper CI SQRVIF

Average Age (month) 0.980 0.976 0.984 1.09

Females per Male (percent) 1.029 1.021 1.038 1.03

Average Weight (kilogram) 1.040 1.019 1.061 1.22

Dogs per Capita (percent) 0.940 0.928 0.952 1.25

Income Tax per Capita (1,000 CHF) 1.094 1.061 1.129 1.03

Distance to Veterinary Care (kilometer) 0.954 0.939 0.969 1.12

https://doi.org/10.1371/journal.pone.0195970.t002
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CI [2.1, 3.8] and 4.0%, 95% CI [1.9, 6.1], respectively. Confounding variables accounting for

potential underascertainment of canine cancers, such as Dogs per Capita and Distance to Veter-
inary care exhibited negative relationships—for each increasing percentage unit of dogs and

kilometer of distance, the incidences decreased by 6.0%, 95% CI [–7.2, –4.8] and 4.6%, 95% CI

[–6.1, –3.1], respectively. Lastly, Income Tax per Capita exhibited a positive relationship—for

each increasing 1,000 CHF, the incidences increased by 9.4%, 95% CI [6.1, 12.9].

Regional models

The power analysis of the conventional regression model returned a minimum sample size of

347 municipal units. As shown in Fig 2, after excluding the center, the set of nearest-neighbor-

ing municipal units defining the multiple regions could range between 346 and 2,324. Iterating

through all possible regions produced 4,594,548 regional models. In each of these models, the

likelihood-ratio test statistics indicated a significant (P< 0.05) improvement over the model

with the intercept only. The overdispersion tests returned values between 2.0 and 6.3

(P< 0.001), indicating significant overdispersion. None of the regional models produced

model coefficients exhibiting critical multicollinearity (SQRVIF < 2.0), but, occasionally, non-

significant (P> 0.05) model coefficients were recorded. These were discarded when producing

the summary statistics and visualizations, as it is not appropriate to interpret non-significant

model coefficients. Table 3 provides a first insight into the effects related to the coefficient esti-

mated throughout the regional models.

Fig 3A shows the spatial variations in the R2
McFadden statistics through a value-by-alpha

map. We found a clear trend in the median R2
McFadden measures, characterized by higher val-

ues in the center of the country, transitioning into lower values towards the East and the West.

In the Western part of the country, we found very high IQRs, indicating a larger spread of

R2
McFadden measures across geographic scales. Conversely, IQRs were closely centered around

the medians in the Central and Eastern parts of the country. Fig 3B shows the variations in the

R2
McFadden statistics across geographic scales using a scalogram. On the one hand, for smaller

numbers of nearest neighboring units, the R2
McFadden measures exhibited a higher spread,

spanning from extremely low to extremely high values. On the other hand, for larger numbers

Fig 2. Defining regions involving different geographical scales. Example for the regions centered in the municipality of Zurich (A) and Lausanne (B). The center is

highlighted in red.

https://doi.org/10.1371/journal.pone.0195970.g002
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of nearest neighboring units, the R2
McFadden measures exhibited a reduced spread, becoming

increasingly similar to the R2
McFadden statistic of the conventional regression model.

Fig 4 shows the spatial variations in the effects resulting from significant coefficient esti-

mates through value-by-alpha maps. These revealed clear trends in the median effects, mostly

across the East-West axis. In the Eastern part of the country, Average Age (Fig 4A) and Average
Weight (Fig 4C), which even showed contrasting median relationships, both presented nega-

tive median effects. Females per Male (Fig 4B) showed positive median effects across the entire

country. Dogs per Capita (Fig 4D) and Distance to Veterinary Care (Fig 4F) both showed nega-

tive median effects, while Income Tax per Capita (Fig 4E) presented positive median effects.

All effects resulting from the significant coefficient estimates exhibited relatively high levels of

spread across geographic scales, with the highest IQRs reported for Average Weight, Income
Tax per Capita, and Distance to Veterinary Care. Nonetheless, the effects of geographic scale

did not seem to follow any specific spatial distribution.

Fig 5 shows variations in the effects resulting from significant coefficient estimates across

geographic scales through scalograms. These illustrate extremely high spread in the effects at

smaller geographic scales, which transition into lower spreads with increasing geographic

scales. Average Age (Fig 5A), Females per Male (Fig 5B), and Average Weight (Fig 5C) showed

the highest variability of effects, which also resulted in contrasting relationships. This sug-

gested that variables accounting for biological risk factors have both positive and negative

Table 3. Mean, median, lower and upper 95% CI for the effects resulting from the coefficients estimated through the regional models.

Coefficient Mean Median Lower CI Upper CI

Average Age (month) 0.986 0.985 0.986 0.986

Females per Male (percent) 1.601 1.030 1.574 1.629

Average Weight (kilogram) 1.600 1.034 1.572 1.627

Dogs per Capita (percent) 1.521 0.943 1.493 1.548

Income Tax per Capita (1,000 CHF) 1.676 1.087 1.648 1.703

Distance to Veterinary Care (kilometer) 1.519 0.948 1.491 1.546

https://doi.org/10.1371/journal.pone.0195970.t003

Fig 3. Variations of the R2
McFadden measures across (A) the center and (B) the geographic scale of the regional models. The data is classified according to the

quantile classification.

https://doi.org/10.1371/journal.pone.0195970.g003
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effects, depending on the geographic scale under consideration. Conversely, the variables

accounting for confounding associated with potential underascertainment of canine cancers,

such as Dogs per Capita (Fig 5D), Income Tax per Capita (Fig 5E), and Distance to Veterinary
Care (Fig 5F), showed more consistent relationships concerning geographic scale. Only spo-

radically did these variables exhibit both positive and negative effects, evincing important

effects of geographic scale.

Fig 4. Variations of the effects across the center of the regional models for (A) Average Age, (B) Females per Male, (C)

Average Weight, (D) Dogs per Capita, (E) Income Tax per Capita, and (F) Distance to Veterinary Care. The data is

classified according to the quantile classification.

https://doi.org/10.1371/journal.pone.0195970.g004

The importance of regional models in assessing canine cancer incidences in Switzerland

PLOS ONE | https://doi.org/10.1371/journal.pone.0195970 April 13, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0195970.g004
https://doi.org/10.1371/journal.pone.0195970


Fig 5. Variations of the effects across the geographic scale of the regional models for (A) Average Age, (B) Females per Male, (C) Average Weight, (D) Dogs per
Capita, (E) Income Tax per Capita, and (F) Distance to Veterinary Care. The data is classified according to the quantile classification.

https://doi.org/10.1371/journal.pone.0195970.g005
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Discussion

By contrasting the multiple regional models with the conventional regression model, we

uncovered effects of spatial non-stationarity and geographic scale in the model of canine can-

cer incidences. In particular, we observed regional models with a lower goodness-of-fit, indi-

cating regions where a finer specification of the baseline model would be necessary to reflect

the relationships of interest [19,25]. These regions of poor model fit were mostly found in the

rural hinterland and in the mountainous regions of the western part of the country, where

lower average canine cancer incidence rates were also observed. These elements suggest that

different levels of completeness of the SCCR data could be a confounder associated with poten-

tial underascertainment of canine cancers [39,41]. Further, we also identified striking effects of

geographic scale, specifically over small geographic extents, where the goodness-of-fit varied

greatly. These effects suggest the importance of modeling canine cancer incidences locally, in

contrast to more conventional global approaches [25].

We also detected that the same model coefficient could result in contrasting effects when

estimated within different regions, particularly for the variables related to biological risk fac-

tors, thus indicating spatially non-stationary relationships. On the one hand, this result could

be an artifact of local selective underascertainment of canine cancers, as older dogs may be less

likely to undergo regular veterinary check-ups [72]. Thus, the negative effects of Average Age
both in the regional models and the conventional regression model. On the other hand, it is

also likely that local preferences in terms of breeds could result in different effects of Average
Age and Average Weight across the study area [9]. Spatially non-stationary relationships were

less striking for the confounding variables accounting for potential underascertainment of

canine cancers, such as Dogs per Capita, Income Tax per Capita, and Distance to Veterinary
Care, which show more stable effects. We also reported that all relationships were affected by

geographic scale to some extent, with stronger effects for Average Age, Females per Male, and

Average Weight.
Despite these important findings, this study could have been affected by several limitations.

The first set of limitations is linked to the selected modeling framework. The spatial distribu-

tion of the average canine cancer incidence rates showed clear spatial patterns, possibly violat-

ing the assumption of independence both in the regional models and the conventional

regression model [73]. Also, the models were affected by over-dispersion, suggesting that the

data was not perfectly Poisson-distributed [50]. Model misspecification could also be due to

the non-inclusion of independent variables accounting for potential environmental exposure,

such as environmental tobacco smoke [3] or air pollution [7]. The second set of limitations,

which is typical of spatial analysis, is related to the assumption that the analytical units (i.e.,

municipal units and years) are a meaningful reflection of the relationships of interest. Aggre-

gating individual cancer cases over municipal units for longer time spans may reduce spurious

correlations due to sample variability. However, this choice is contingent on several assump-

tions, for instance, concerning the sedentary behavior of dogs within the municipal unit dur-

ing the study period [35].

These issues will drive our future spatial analyses of canine cancer incidences. We will need

to address misspecification, by including additional independent variables in the model of

canine cancer incidences, and peruse a modeling framework that better accommodates the

spatial (i.e., spatial autocorrelation) and statistical (i.e., overdispersion and/or zero inflation)

distribution of the data—possibly through a spatially autoregressive conditional negative bino-

mial model [74]. These measures will be implemented into the same regional modeling frame-

work, where relationships between canine cancer incidences and both biologic risk factors and

confounding factors will be assessed at different geographic scales. In doing so, we will test
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different machine learning methods, for instance, decision trees or clustering, to label the diag-

nostic measures as a function of the geographic scale [75].

Conclusions

This study provides new insights into effects of spatial non-stationarity and scale in a model of

canine cancer incidence. We fitted canine cancer incidences across Swiss municipal units

through multiple regional models over a range of geographic scales. We then computed diag-

nostic summaries across the different spatial units and geographic scales and contrasted them

with the diagnostics of the conventional regression model. The results of this comparative

assessment enabled us to identify remarkable variations in the goodness-of-fit and coefficient

estimates over the study area. On the one hand, this led us to speculate that misspecification

and completeness in the SCCR data could be critical to our model of canine cancer incidences

in some parts of the study area. On the other hand, we were able to contend that relationships

were spatially non-stationary and showed geographic-scale dependency. These modeling

issues were mostly detected at small geographic scales, thus making a case for the constant

debate around the need to model relationships locally or regionally in contrast to more con-

ventional regression approaches.
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