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Abstract

Summary: This note describes nTracer, an ImageJ plug-in for user-guided, semi-automated tracing

of multispectral fluorescent tissue samples. This approach allows for rapid and accurate recon-

struction of whole cell morphology of large neuronal populations in densely labeled brains.

Availability and implementation: nTracer was written as a plug-in for the open source image proc-

essing software ImageJ. The software, instructional documentation, tutorial videos, sample image

and sample tracing results are available at https://www.cai-lab.org/ntracer-tutorial.

Contact: dwcai@umich.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The successful application of multispectral fluorescent labeling tech-

niques [such as Brainbow (Cai et al., 2013; Livet et al., 2007)] to

fully dissect the complex network of neural circuits in the brain has

been hampered by a lack of quantitative analysis tools. Currently,

popular commercial software such as Neurolucida and iMaris allow

either manual or user-guided tracing, but none handle multispectral

images (Parekh and Ascoli, 2013). We thus wrote nTracer, an

ImageJ-based program to facilitate post-acquisition processing and

tracing of Brainbow multispectral images (Supplementary Fig. S1).

Because the current bottleneck in existing fully automated tracing

algorithms is proof reading and error correcting (Chothani et al.,

2011; Liu et al., 2011; Peng et al., 2011), combined with the lack of

any ground-truth Brainbow tracing results for validation, we devel-

oped nTracer as a user-guided semi-automated tracing software

which allows for ‘on-the-fly’ editing of tracing results. We found

nTracer to be a successful platform for accurately tracing a variety

of different neuronal subtypes in the mouse brain at an average rate

of a few hours per neuron. In addition, nTracer’s annotation func-

tion of synaptic sites may be used to establish connectivity between

multiple neurons for network analysis.

The tracing results obtained by current nTracer described here

will also serve as a ground-truth reference for future automatic trac-

ing algorithm development. nTracer will also benefit from adapting
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the more versatile data structure of the ImageJ2/Fiji platform to han-

dle large dataset (Schindelin et al., 2015). Combining Brainbow

labeling with emerging super-resolution light microscopy techni-

ques, such as Expansion Microscopy (Chen et al., 2015) and its vari-

ant protein-retention ExM (Chozinski et al., 2016; Tillberg et al.,

2016), is an exciting possibility for producing images at the spatial

resolutions that are suitable to distinguish the closely positioned syn-

apses and neuronal processes. Nonetheless, the current nTracer pre-

sented herein is an important tool that will allow neuroscience

researchers to analyze morphology and anatomy of large popula-

tions of neurons within single samples using the light microscope.

2 Features

2.1 Post-acquisition processing functions
There are two major sources of color defects when imaging

Brainbow samples. The first is due to absorption, scattering and

photobleaching, which causes a gradual decrease in fluorescence in-

tensity when imaging deeper into the tissue. We added a histogram

matching correction to nTracer to normalize signal intensity while

maintaining the intensity ratios between channels. The user is asked

to select a reference image slice to which nTracer matches the histo-

gram (see below) of each slice in the image stack. While the refer-

ence slice can be chosen from any channel or focal plane, the

optimal reference will contain an evenly distributed histogram with

minimal pixel values >95% of the maximum bin (Supplementary

Fig. S2). This ensures that FP intensity remains constant in any depth

of the 3D stack while minimizing amplification of background noise

(Supplementary Fig. S2). The reference image’s cumulative probabil-

ity distribution function CDFref ðÞ of its histogram Href ðÞ is calcu-

lated. For each target image slice in all channels of the whole 3D

stack, a new histogram HtarðÞ is applied, which satisfies the condi-

tion that for each gray scale level Gref , a Gtar is determined to satisfy

CDFref ðGref Þ ¼ CDFtarðGtarÞ (1)

The second source of color defects results from imperfect optical

alignments and chromatic aberrations in the microscope system.

Eliminating highly correlated background pixels, the masking func-

tion increase the sensitivity of correlating the fluorescent neurons.

Both the intensity correction and channel alignment can be done

in batch mode on all images (e.g. all stacks if a multi-tile image was

taken) in a selected folder. In addition to these corrections, nTracer

provides a 3D stitching function that allows rapid merging from

overlapping Brainbow image tiles to create a single image stack that

covers a large tissue volume.

2.2 Tracing function and data structure
We incorporated two algorithms into nTracer to accurately trace

neurites between user defined anchor points from specific neurons.

The first prevents user error by not allowing anchor points to be

assigned to different neurons, and the second prevents the skeletal

trace from jumping to the wrong neuron when joining anchor

points. To start a tracing, the user identifies a neuron to be traced

and uses a mouse-click to suggest a start point on its process and to

measure the neuron’s color signature around the start point. In most

cases, the mouse clicks hardly land onto the ‘right’ spot, which

results in inaccurate color sampling. nTracer solves this problem by

applying a mean-shift algorithm to automatically refine the user in-

put and settle the start point onto the center or membrane wall of

the targeted neurite with high labeling intensity (Yizong Cheng,

1995) (Fig. 1a). The end point is defined in a similar way with add-

itional constraints set by the color signature sampled around the

start point. The user can therefore avoid setting an end point onto a

different neuronal process due to human visual or computer display

limitations, in particular with Brainbow images composed of more

than three spectral channels (Supplementary Fig. S3). To generate a

smooth track along the neuronal process (Fig. 1b), nTracer utilizes

the A* algorithm (Hart et al., 1968) to connect the two anchor

points with a least-cost path, similar to that implemented in ‘Simple

Neurite Tracer’, which was designed for tracing monochromic

images (Longair et al., 2011). nTracer defines the A* cost at voxel i

as a weighted sum of the normalized spectral and intensity differ-

ence between the start point p and voxel point i, which can be for-

mulated as:

Gi ¼ a� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rnð

Ip;n

�Ip

� Ii;n

�Ip

Þ2
s

þ b�
�����

�Ip � �Il

�Ip þ �Il

�����; with aþ b ¼ 1; (2)

where n denotes the nth spectral channel. (�Ip) and (�Ii) are the

total intensities in all spectral channels at start point p and voxel

point i, respectively. By constraining the pathfinding range to the

voxels enclosing the two anchor points and by choosing optimized

heuristic values calculated based on windowing-smoothed voxels,

nTracer creates an optimal minimal path almost instantaneously,

while variance thresholds ensure that any path containing large in-

tensity or color gaps will be rejected. The tracing speed largely

depends on the complexity of the images, which arises from labeling

density and/or neuronal morphology. Supplementary Figure S4

Fig. 1. nTracer. (a) nTracer uses a mean-shift algorithm to automatically refine

the user mouse clicks near the targeted neurite to precisely define start and

end points. To define the start point (red box), nTracer iteratively calculates

the intensity ‘center-of-mass’ (cross) within a defined window (gray boxes)

and moves the input point to the calculated ‘center-of-mass’ point until the

distance between the previous and current iterations is smaller than one

pixel. The end point (cyan box) is defined in a similar way with additional con-

straints set by the spectral and intensity values sampled around the start

point (red box). The user can therefore avoid setting an end point onto a dif-

ferent neuronal process due to human visual or computer display limitations,

in particular with Brainbow images comprised of more than three spectral

channels. Scale bar is 10 mm. (b) To start tracing, a mouse-click is placed in

the vicinity of the neurite to be traced. nTracer utilizes the color profile and a

mean-shift algorithm to accurately reposition this mouse input onto the neu-

rite as the start point (red box). The tracing end point (cyan box) is deter-

mined in the same way with additional constraints to make sure that the end

point has a similar color profile. A keyboard hotkey is then used to trace as a

neurite in 3D. Scale bar is 5 mm. (c) 3D tracing rendering of a cortical inter-

neuron soma with putative synaptic contacts with neighboring axons. Scale

bar is 10 mm. (d) Diagram of nTracer results data structure
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shows maximum projections from image stacks with different label-

ing densities that were each traced by five users of varying nTracer

experience (from beginner to expert). The rate of tracing from the

sparse image stack (Supplementary Fig. S4a) was 7.6 6 0.78 mm/h

(mean 6 SE) whereas the tracing rate was 4.4 6 0.47 mm/h in the

dense sample (Supplementary Fig. S4b). Conversely, we found the

error rate between users to be dependent on image resolution and

less on complexity. The pixel dimensions in Supplementary Figure

S4b (150�150�300 nm3) were half that of those in Supplementary

Figure S4a and produced inter-user errors at 0.18 and 0.25, respect-

ively, using the DIADEM metric.

3 Analysis

3.1 Data structure
nTracer utilizes the generic JTree structure of JAVA to allow flexible

storage and modification of tracing points of multiple neurons in the

computer memory. Three JTrees are built for each traced cell to

store the tracing points of the somas, processes and spines independ-

ently (Fig. 1d). The soma tree contains parallel nodes, each of which

stores soma tracing points on a Z plane. The process tree contains

parallel nodes, each of which is a bifurcated branching tree that

stores connected branches of an axon, or a dendrite. The soma con-

tour or neurite branch is composed of connected tracing points,

each of which is a seven-element data array containing the type of

the tracing point (Soma, Dendrite, Axon, Spine etc.), x, y, z coordi-

nates, radius at the point (0 for a soma point or for where the pro-

cess radius is not determined), whether or not a synapse and its

connection status. Spines can also be traced off from a dendrite or

soma point (has a type of Spine) and stored as parallel non-

branching nodes in the third tree-structure database. Each spine

tracing point is a six-element data array that stores the type (Spine),

x, y, z coordinates, radius at the point and its locale information

(soma or dendrite name).

3.2 Visualization
The tracing results (including connectivity information), raw image

information and nTracer setting parameters can be saved in files of

custom format and exported as line art image stacks for volume ren-

dering (Fig. 1c; Supplementary Fig. S5 and Supplementary Videos).

These can be used to perform analyses of putative synaptic connec-

tions (Supplementary Fig. S6) and whole populations of neuron sub-

types (Supplementary Figs S7 and S8).

3.3 Quantification
Tracing results of each neuron can also be exported as separate

files in standard SWC format (Cannon et al., 1998) for

morphology analysis and rendering with other software, such as L-

measure (Scorcioni et al., 2008). These can be used to perform

morphometric analyses of many neurons from single densely

labeled samples.
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