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Abstract

Bayesian inference has become an attractive choice for scientists seeking to incorporate prior 

knowledge into their modeling framework. While the R community has been an important 

contributor in facilitating Bayesian statistical analyses, software to evaluate the impact of prior 

knowledge to such modeling framework has been lacking. In this article, we present BayesESS, 

a comprehensive, free, and open source R package for quantifying the impact of parametric priors 

in Bayesian analysis. We also introduce an accompanying web-based application for estimating 

and visualizing Bayesian effective sample size for purposes of conducting or planning Bayesian 

analyses.
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1. Motivation and significance

In Bayesian inference, the current state of knowledge or uncertainty about a parameter is 

expressed as a probability distribution or, in short, prior [1]. Such a state of knowledge is 

updated by data, resulting in a new distribution or, in short, posterior. Inference about the 

parameter of interest is conducted using the posterior distribution, which is a reflection of 

the information from both the prior distribution and the data [1].

The open source software community has actively facilitated computational tools for 

Bayesian analysis, with at least 113 software packages related to Bayesian inference 

currently reposited in the Comprehensive R Archive Network (CRAN). However, there is a 

void in software to evaluate the impact of prior knowledge in such a modeling framework.

In the design and analysis of clinical trials under the Bayesian paradigm, it is often of 

interest to assess the amount of information on the posterior, which is influenced by the 

selection of the informative prior [2–4]. The impact on the posterior distribution from 

choosing a certain prior distribution is discussed as the effective sample size (ESS) in 

the statistical literature [4]. The ESS quantifies the level of influence on the posterior 

distribution posed by the choice of prior distribution in the unit of sample size. The approach 

has been widely accepted in the biostatistical literature because the quantification into the 
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unit of sample size is in accordance with the process of sample size determination when 

designing a study.

A distinction should be made between the ESS discussed in this article and effective sample 
size discussed in the context of Markov Chain Monte Carlo (MCMC) sampling. While the 

former (ESS, as defined in this article) is used to quantify and communicate the impact of 

priors, the latter is used to measure the effectiveness of MCMC samples.

2. Software description

We present BayesESS, a free, open-source, comprehensive R package and a web-based 

application for quantifying the impact of parametric priors in Bayesian analysis. Our R 

package can be used for determining the ESS for trivial cases where the closed-form 

solution exists (e.g., conjugate models such as beta-binomial, gamma-exponential, gamma-

Poisson, dirichlet-multinomial, normal–normal model), and also for non-trivial cases when 

the ESS is determined numerically (e.g., linear regression, logistic regression, or time-to-

event model). The R package is available from CRAN at https://cran.r-project.org/web/

packages/BayesESS/. An accompanying interactive web-based application is available 

from https://biostatistics.mdanderson.org/shinyapps/BayesESS/ to allow the user to further 

explore the impact of parametric priors through visualization. The web-based application 

can also be used in place of the R package by scientists who are unfamiliar with the 

R programming language. In this article, we demonstrate the software for estimating the 

Bayesian ESS for purpose of planning or conducting Bayesian analyses.

2.1. Model description

Whereas parameters are assumed to be fixed quantities in the frequentist framework, they 

are treated as random variables in the Bayesian perspective [1]. In this section, we introduce 

some notations to illustrate approaches commonly used in Bayesian inference.

Let y = y1, …, yn be a random sample of size n from a random variable Y. Suppose that we 

are interested in a parameter θ. Then we denote p y ∣ θ  as a family of density functions over 

y, parameterized by the random variable θ. We call this family p y ∣ θ  a likelihood function 

or likelihood model for the data y, given the model specified by any value of θ. The prior 
distribution that describes the uncertainty about the parameter θ is denoted as p θ . From 

these quantities, the objective of Bayesian inference is to obtain the updated uncertainty 

about the parameter of interest θ  after observing the data. Such updating is expressed in a 

density called the posterior denoted as p θ ∣ y . Using the Bayes’ rule, the posterior can be 

identified as:

p θ ∣ y = p y ∣ θ p θ
p y = p y ∣ θ p θ

∫ p y ∣ θ′ p θ′ dθ′ .

2.1.1. Types of priors—The prior distribution plays a central role in Bayesian analysis. 

Priors that contain minimal information are referred to as non-informative priors (also 

known as the reference or the objective priors). Informative priors are utilized when it is 
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essential to incorporate existing (e.g., clinical) knowledge in the model (see Appendix 1 

for an example of a Bayesian model using an informative prior). Elicitation of informative 

priors can be based on pure judgment, a mixture of data and judgment, or data alone [1].

2.1.2. An analytical method for determining the ESS—Some simple Bayesian 

models (see conjugate models described in Appendix 2) offer a closed-form quantification 

for the impact of a parametric prior [1]. However, many commonly used statistical models 

such as linear or logistic regression or time-to-event models do not extend a closed-form 

expression for the ESS [2–4] (see model details described in Appendices 1, 6, and 7).

A technique proposed by Morita et al. [4,5] can be used to determine the ESS under 

general conditions, even when the posterior distribution is intractable. Assume that we have 

a random sample of dataY, generated from an underlying distribution with parameter θ. The 

main idea behind the method of Morita et al. [4] is to compute the distance between the prior 

distribution of interest (denoted p θ ∣ θ , where θ indicates hyperparameters) and a posterior 

distribution qm θ ∣ θ0, ym  generated using a prior having a negligible amount of information 

(denoted q0 θ ∣ θ0 , where θ0 indicates hyperparameters). The reference prior q0 θ ∣ θ0  is 

specified with the same mean (and the same correlation structure among parameters if the 

prior distribution is specified with multiple parameters), while inflating the variance. The 

posterior qm θ ∣ θ0, ym  is assumed to have an independently and identically distributed (i.i.d) 

sample of size m. The ESS is identified as a sample size (m) that minimizes the distance 

between the prior distribution of interest p θ ∣ θ  and the posterior qm θ ∣ θ0, ym . The ESS 

provides an intuitive assessment of the impact of prior specification, with reference to the 

sample size in the observed data. For example, if a prior of interest suggests an ESS of 50 

when the observed data to be analyzed has 25 observations, then clearly, this implies that the 

prior will dominate the posterior inference. In the following section, we illustrate how ESS 

is identified in a simple Bayesian conjugate model.

2.1.3. Illustration of ESS in a conjugate model (Beta-binomial)—Given a data 

set with distribution p y ∣ θ , a family of distributions is said to be conjugate to the given 

distribution if the posterior is in the conjugate family whenever the prior is in the conjugate 

family, regardless of the observed value of the data [1] (see Appendix 2 for examples of 

conjugate priors). Such prior elicitation is often used because the posterior is easily tractable 

this way (i.e., there is no need to compute the integral ∫ p y ∣ θ′ p θ′ dθ′ in the denominator 

of Bayes’ rule). In this section, we illustrate the definition of ESS in a beta-binomial model.

Suppose that we have data generated from m exchangeable Bernoulli trials y1, …, ym, where 

yi = 1 is labeled as a “success” and yi = 0 is labeled as a “failure”. Then the number of 

successes in m trials is represented as a binomial distribution ∑i
n Y i Bin m, θ , such that:

fm ym ∣ θ = m
y θy 1 − θ

m − y
.
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Suppose that we are interested in using a beta prior (with hyperpriors α and β) for θ. To 

identify an ESS, a posterior distribution qm θ ∣ θ0, ym  can be formulated using a beta prior 

distribution specified with the same mean and an inflated variance as the following, where c 
is assumed to be a very large constant.

q0 θ ∣ θ0 = p θ ∣ α
c , β

c = B α
c , β

c θ
α
c − 1 1 − θ

β
c − 1

∝ θ
α
c − 1 1 − θ

β
c − 1

,

Note that the objective of ESS computation is to provide an intuitive assessment of the 

impact of prior specification, with reference to the sample size (m) in the observed data. 

Therefore, the ESS is identified as a sample size (m) that minimizes the distance between the 

prior distribution of interest p θ ∣ θ  and the posterior qm θ ∣ θ0, ym , written as

qm θ ∣ θ0, ym ∝ θy + α
c − 1 1 − θ

m − y + β
c − 1

.

Let us write the distance between the prior distribution of interest and the posterior as 

δ m, θ−, p, q0 . In this simple Bayesian model, a closed-form solution for the distance is 

available as the following (see Appendix 3 for full algebraic details).

δ m, θ−, p, q0 = α − 1
θ−2 + β − 1

1 − θ− 2

−
y‾ + α

c − 1

θ−2 +
m − y‾ + β

c − 1

1 − θ− 2 .

If we are interested in the information contained in the prior θ Beta 3,7  (i.e., α = 3 and 

β = 7 , then θ− = 3/ 3 + 7 = . 3, and y‾ = . 3m. When c is set to be very large constant:

δ m, θ−, p, q0 = 2
. 32 + 6

. 7 2 −
. 3m + 3

c − 1

. 32 +
m − . 3m + 7

c − 1

. 7 2 ≈ 2
. 32 + 6

. 7 2 − . 3m − 1
. 32 + . 7m − 1

. 7 2 .

Plotting the function δ m, θ−, p, q0 , for increasing values of m, we can see that the minimizer 

of δ m, θ−, p, q0  is m = 10. The plot is a reproduction of Fig. 1 in the paper by Morita et al. [4].

2.2. Software architecture

The following code can be used to install the R package BayesESS.

R> install.packages (“BayesESS”)
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We provide an accompanying interactive web-based application Bayesian Effective 

Sample Size Calculator to allow individuals without knowledge of the R programming 

language to easily calculate the ESS (Fig. 2). The application and its usage manual can be 

accessed from https://biostatistics.mdanderson.org/shinyapps/BayesESS/.

2.3. Software functionalities

The R package BayesESS can be used for determining the ESS for trivial cases where 

the closed-form solution exists (e.g., conjugate models such as beta-binomial, gamma-

exponential, gamma-Poisson, dirichlet-multinomial, normal–normal model), and also for 

non-trivial cases (e.g., linear regression, logistic regression, or time-to-event model) when 

the ESS is determined numerically using a technique proposed by Morita et al. [4] (see 

Section 2.1.2; further details of the approximation strategy can be found in Appendix 5).

3. Illustrative examples

3.1. Finding the ESS in conjugate models

Below, we illustrate the use of BayesESS R package in identifying the ESS for the beta-

binomial example discussed in the previous section. Option model=‘betaBin’ is specified for 

the beta-binomial model, with prior information detailed under prior. In this trivial example, 

the ESS is 10 as we have identified in Fig. 1.

R> library (BayesESS)

R> ess (model=‘betaBin’, prior=c (‘beta’, 3,7))

ESS was calculated for a beta-binomial model 

ESS for the beta (alpha, beta) prior is: 10.

The function ess is used universally within the R package BayesESS to compute ESS for 

various Bayesian models. Options model and prior are used to specify the model details. 

Option details are available in the package manual. Further examples for using BayesESS in 

computing the ESS for conjugate Bayesian models are available in Appendix 2.

3.2. Finding ESS in linear regression model

A closed form solution is not available for many commonly used statistical models, 

including the linear regression (see model details in Appendix 6). The BayesESS can be 

used to determine the ESS for such cases, using a simulation-based numerical approximation 

as described by Morita et al. [4] (see details of the approximation strategy in Appendix 

5). Suppose that we have a random sample of size m, y1, …, ym, from a normal distribution 

Y i ∣ Xi, θ N μi, 1/τ , where μi = α + β Xi − X‾ , and τ denotes a precision parameter.

p yi ∣ Xi, θ = τ
2π

1/2
exp − τ

2 yi − μi
2

= τ
2π

1/2
exp − τ

2 yi − α + β Xi − X‾ 2 , i = 1, …, n,
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The likelihood for a random sample of size m can be written as:

fm y ∣ X, θ = τ
2π

m/2
exp − τ

2 ∑
I = 1

n
(yi − α + β Xi − X ) 2 ,

where the parameter vector θ contains three parameters θ = θ1, θ2, θ3 = α, β, τ . A prior 

distribution for θ can be specified as

p θ ∣ θ = p1 θ1, θ2 ∣ θ1, θ2 p2 θ3 ∣ θ3 = N θ1 ∣ μα, σα
2 ⋅ N θ2 ∣ μβ, σβ

2 ⋅ Gamma θ3 a, b

where θ1 (i.e., μα, σα
2 , θ2 (i.e., μβ, σβ

2) and θ3 (i.e., a, b) represent hyperparameters for θ1, θ2 and 

θ3.

Below, we illustrate the use of BayesESS in identifying the ESS for a linear regression 

model with one covariate. Option model=‘linreg’ is specified for the linear regression model, 

with prior information detailed under prior. Option label is used to provide labels for the 

output, ncov to specify the number of covariates in the linear regression, m=50 to specify 

a positive integer for the maximum value in which ESS is searched, n=1000 to specify the 

number of simulations for numerical approximation. Further input details are discussed in 

the package manual.

library(BayesESS)

# Linear regression model with one covariate

# Priors specified as:

# beta0 ~ N(0,1), beta1 ~ N(0,1), tau ~ Gamma(1,1) 

> ess(model=‘linreg’,label=c(‘beta0’,’beta1’,

‘tau’), 

+ prior=list(c(‘norm’,0,1),c(‘norm’,0,1),

c(‘gamma’,1,1)),

+ ncov=1,m=50,nsim=1000,svec1=c(0,1,0),

svec2=c(0,0,1))

ESS was calculated for a linear regression model

ESSsubvector1: ESS for the first sub-vector (beta1)

ESSsubvector1: ESS for the second sub-vector (tau)

$ESSsubvec1

[1] 3.056997

$ESSsubvec2

[1] 1.9998
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4. Impact

Bayesian inference has received increased attention from scientists seeking to incorporate 

prior knowledge into their modeling framework. While some simple Bayesian models (e.g., 

conjugate models such as beta-binomial, gamma-exponential, normal–normal models as 

described in later sections) offer a simple, closed-form quantification for the impact of 

a parametric prior [1], many commonly used statistical models such as linear or logistic 

regression do not extend a closed-form expression for the ESS [4], and software to evaluate 

the impact of prior knowledge to such modeling framework has been lacking.

We present BayesESS, a software for quantifying the impact of parametric priors in 

Bayesian analysis. The R package BayesESS also has an accompanying interactive web-

application, which allows the user to further explore the impact of parametric priors through 

visualization. The web-application also works in place of the R package for applied scientists 

unfamiliar with the R programming language.

5. Conclusions

The package BayesESS is a comprehensive, open-source software that can be used for 

quantifying the impact of parametric priors in Bayesian analysis. Unique contributions of 

our software include: (i) capability to determine the ESS for both trivial and non-trivial cases 

requiring numerical estimation, (ii) accompanying web-based application for determining 

ESS, and (iii) additional functions to perform ESS estimation for some of the models widely 

used in clinical trials (see Appendices 1, 5 and 7). For efficiency, we augmented some of the 

key functions in the BayesESS package with C++ language.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Plot of function δ m, θ−, p, q0 .
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Fig. 2. 
ESS calculation using the web-based application.
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