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Abstract: The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)
piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited
the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported.
Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and
the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown
via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary
carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-
1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-
carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB
inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively.
The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such
as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore,
these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional
theory calculations suggested possibilities for other analogs of NPB that may be more suitable for
further development.

Keywords: BAD phosphorylation; Petasis reaction; lead optimization; drug design; human mam-
mary carcinoma

1. Introduction

BCL-2-associated death promoter (BAD) is a modulator of apoptosis, which when
unphosphorylated directly interacts with BCL-w, BCL-2, and BCL-xL, amongst other pro-
teins [1]. Phosphorylation of BAD (pBAD) is required for its heterodimerization with
14-3-3 protein and promotion of cancer cell survival [2,3]. Specifically, the phosphory-
lation of human (h)BAD at Ser-75, Ser-99, and Ser-118 is required to promote cancer
cell survival [4]. Human BAD is phosphorylated independently at Ser-75 and Ser-99 by
RAS/RAF/MAPK and PI3K/AKT/mTOR pathways, respectively [5]. In addition, all three
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PIM kinase family members may also phosphorylate hBAD on multiple sites but require
prior phosphorylation of Ser-75 or Ser-99 and function as rescue kinases for BAD phos-
phorylation upon inhibition of RAS/RAF/MAPK and PI3/AKT/mTOR pathways [5–8].
Hence, as a common downstream cell survival mediator of both the RAS/RAF/MAPK and
PI3K/AKT/mTPR pathways, phosphorylated BAD has been demonstrated to be critically
involved in cancer development, progression, and therapeutic resistance. [5]. Therefore,
pharmacological inhibition of BAD phosphorylation may be of utility to enhance therapeu-
tic outcomes in oncology. Towards this goal, a novel bioactive small molecule called NPB
[N-cyclopentyl-3{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl} methyl) benza-
mide] was previously identified, which specifically inhibited the phosphorylation of hBAD
on Ser-99 in various carcinoma cells independent of kinase activities [9,10]. Furthermore,
NPB enhanced the efficacy of cisplatin in ovarian carcinoma and synergized with AZD5363,
an AKT inhibitor in cisplatin resistant ovarian cancer [3]. Herein, the synthesis, characteri-
zation, and efficacy of newer NPB analogs with replacement of different substituents (R1,
R2, and R3) is reported (Figure 1) [11–16].
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Figure 1. Changes in NPB structure after replacement with new R1, R2, and R3 groups is shown.

2. Results and Discussion

The NPB analogs were synthesized based on the Petasis borono−Mannich reaction
using N-substituted-piperazines, salicylaldehyde, and various boronic acids as the nu-
cleophilic reagent [17–21]. In this multicomponent reaction, the iminium ion formation
occurs initially, which reacts with boronic acid to form a tetracoordinate boronate in situ
intermediate, and eventually the product formation occurs by intramolecular delivery of
the organic group to iminium carbon (Scheme 1). The structures of all NPB analogs were
characterized by LCMS, 1H NMR, and 13C NMR spectroscopic techniques (Table 1, refer
supplementary spectra of all the compounds).
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Table 1. Physical data and cell viability studies of NPB analogs in human mammary carcinoma
(MCF-7 cells) cells.

Entry Structure MCF-7
IC50 (µM) Yield (%) M.P (◦C)

4a
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0.71073 Å wavelength. The procedure and reduction of the data set was accomplished
using SAINT PLUS. SHELXS and SHELXL programs were adopted to solve and refine
the structure, respectively [23,24]. The geometrical calculations, molecular figures, and
crystal packing were generated and visualized by PLATON and MERCURY software,
respectively (Table 2) [25]. CCDC number 2027110 contains full crystallographic data
of 4r and is available online at the Cambridge crystallographic data center. The ORTEP
diagram was obtained for compound 4r (Figure 2a). The crystal packing of the structure
(Figure 2b) revealed the importance of the oxygen atom in the hydroxy group (i.e., present
in all 4a-s) and the chlorine atom in the para position of the phenyl ring (i.e., especially
in the more potent compounds 4e and 4f), which confirms their participation in potential
hydrogen bond formation via O and Cl atoms to form a three-dimensional supramolecular
hydrogen-bonded network. This reflects the importance for compound stability and its role
in interaction with other molecules. Such information is helpful in structure and activity
relationships that provide a solid basis for structure-based optimization in the future
design of further compounds. Structural analysis revealed that both phenyl and thiophene
rings exhibited planar conformation, while the six-membered piperazine is in a chair
conformation exhibiting puckering parameters: amplitude (Q) = 0.5535 Å, Theta = 4.61◦,
and Phi = 154.0425◦. The planarity conformation of the phenyl and thiophene rings allows
for the partial overlapping of aromatic rings, which play an important role in biological
activity [26]. In addition, the hybridization of the C-C bond which is considered as one of
the most important and common chemical elements, especially for organic connections, is
usually formed by s and p orbitals of the second shell in carbon and lead to the formation
of different bonds. Among several types of this hybridization, the 4r molecule exhibited
sp2 hybridization that formed with two single bonds and one double bond between three
atoms showing a 120◦ angle value between bonds. This type of hybridization was observed
in phenyl and thiophene rings. On the other side, the piperazine ring exhibited sp3

hybridization in which the carbon atom is bonded to four other atoms forming only a
single bond. Here, 1s orbital and 3p orbitals in the same shell of an atom combine to form
four new equivalent orbitals. The presence of different types of hybridization enhances the
bond strength, stability, and reactivity of the molecule.

Table 2. Crystal data and structure refinement details of 4r molecule.

CCDC No 2027110

Empirical formula C23 H23 Cl N2 O2 S
Formula weight 426.94

Temperature 293 K
Wavelength 0.71073Å

Reflns. for cell determination 1802
θrange for above 3.643◦ to 58.989◦

Crystal system P-1
Space group Triclinic

Cell dimensions a = 11.4518(8)Å, b = 13.5450(10)Å, c = 14.7351(7)Å
α = 101.790(4)◦, β = 102.701(4)◦, γ = 96.286(4)◦

Volume 2153.8(2) Å3

Z 4
F000 896

θ range for data collection 2.215◦ to 25.827◦

Index ranges −14< = h< = 14; −16< = k< = 16; −18< = l< = 18
Reflections collected 43,360

Independent reflections 8277
Refinement method Full-matrix least-squares on Fˆ2

Data/restraints/parameters 8277/36/538
Goodness-of-fit on F2 1.015

Final [I > 2σ(I)] R1 = 0.0545, wR2 = 0.1249
R indices (all data) R1 = 0.1243, wR2 = 0.1639

Largest diff. peak and hole 0.333 and −0.536 eA◦−3

** Carbonyl group of one molecule with disorder sites of occupancy ratio of 0.23 and 0.77 were refined with
SADI/SAME/SIMU SHELXL instructions.
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Since NPB was previously reported to inhibit the viability of various carcinoma
cells, its analogs were tested for their ability to inhibit mammary carcinoma cell viabil-
ity using the reported protocol [27,28]. The results of the study revealed that the com-
pounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methylphenol (4e),
5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl]methylfuran-2-carbaldehyde (4f),
3[(2-hydroxyphenyl)4(p-tolyl)piperazin-1-yl]methylbenzaldehyde (4i) as well as NPB in-
hibited the viability of MCF-7 cells with an IC50 values of 5.9, 3.11, 7.68, and 6.53 µM,
respectively (Table 1). Interestingly, the compounds 4e, 4f, 4i, and NPB inhibited the
viability of normal breast cell MCF10A, with higher IC50 values of 33.8, 61.4, 28.5, and
110.6 µM, respectively. The NPB analogs synthesized by adding newer substituents such
as naphthalene and furan-2-carbaldehyde in place of N-cyclopentylbenzamide of NPB
slightly enhanced the loss of cell viability in MCF-7 cells. It was important to note that
the dichlorophenyl group in NPB and its analogs seems quite important; however, some
of the tested NPB analogs, which were synthesized by replacing the dichlorophenyl,
and N-cyclopentylbenzamide group of NPB with 4-p-tolyl-group and benzaldehyde sub-
stitution, also exhibited enhanced loss of cell viability. Among 4-chloro-phenyl group
containing piperazine compounds, 4b and 4c showed better inhibitory effects on viability
of MCF-7 cells with IC50 values of 20.91 and 23.83 µM, whereas for the tolyl group added
piperazine compounds such as 4l and 4m, IC50 values were observed to be 63.66, and
45.73 µM, respectively.

As the tested NPB analogs produced loss of cell viability to variable extents in mam-
mary carcinoma cells, in silico density functional theory calculations were performed in
order to understand the structure activity relationship of NPB analogs against the loss of
cell viability (Supplementary Figure S1). The highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) energy values showed the electron do-
nating and accepting ability of NPB analogs, respectively. Computed HOMO and LUMO
eigen functions indicated that the donor–acceptor nature of NPB analogs localized with
MOs at different regions (Figures 3 and 4). Therefore, the substitutions at both ends were
observed to significantly alter the electronic density levels. The computed data indicated
that IC50 decreases with decreasing EHOMO for NPB analogs, which bear electronically
similar functional groups. Calculated HOMO and LUMO values are in the range of −5 to
−6.5 eV and −1.5 to 2.5 eV (Table 3). Molecular electrostatic potential shows the charge
separation between the two ends within the molecule. Improved loss of cell viability is
observed with NPB analogs which possess similar functional groups. Hence, the NPB
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analogs, which possess electron donor function as three separate classes, were analyzed.
In the first set, amongst the tested compounds, i.e., 4a, 4b, 4c and 4r, the compound 4b
has comparatively lower EHOMO of -6.16 eV and ELUMO of −2.70 eV values. Due to the
relatively smaller HOMO-LUMO gaps, electronegativity and electrophilicity values, and
chemical hardness of 4b, the lower the observed IC50 in mammary carcinoma cells. In
the second class of NPB analogs, namely 4d, 4e, 4f, 4g, and 4h, the activities are arranged
in ascending order of EHOMO and ELUMO values, i.e., 4g < 4d < 4h < 4e < 4f, which is in
accordance with their respective IC50 values (Figure 5). In the last class of tolyl group
containing molecules such as 4i, 4j, 4k, 4l, 4m, 4n, 4o, 4p, and 4q, the molecule 4i found to
be highly effective against MCF-7 cells, which possess lower electronic factors compared to
the other similar functional group tagged molecules. DFT studies predicted the activity of
the molecule in line with experimental predictions. Among the molecules studied here, 4f
exhibits higher activity than other molecules.
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Table 3. Computed EHOMO, ELUMO, HOMO-LUMO gap (∆), chemical hardness (η), electronegativ-
ity (χ), and electrophilicity index (ω) in eV for all the synthesized molecules.

Entry EHOMO ELUMO ∆ η χ ω

4a −5.87 −1.55 4.32 2.16 3.71 3.19
4b −6.16 −2.68 3.48 1.74 4.42 5.60
4c −5.71 −1.52 4.19 2.10 3.61 3.11
4r −5.91 −2.25 3.66 1.83 4.08 4.55
4d −5.36 −1.96 3.40 1.70 3.66 3.93
4e −6.48 −4.49 1.98 0.99 5.48 15.16
4f −6.50 −4.89 1.61 0.80 5.69 20.14
4g −5.24 −1.18 4.05 2.03 3.21 2.54
4h −5.75 −2.90 2.85 1.43 4.32 6.55
4i −5.92 −2.65 3.27 1.64 4.28 5.61
4j −4.97 −1.64 3.33 1.66 3.31 3.29
4k −5.26 −1.65 3.60 1.80 3.46 3.31
4l −5.64 −2.06 3.58 1.79 3.85 4.14

4m −5.67 −2.10 3.56 1.78 3.88 4.23
4n −4.68 −1.58 3.10 1.55 3.13 3.16
4o −3.97 −1.42 2.55 1.27 2.69 2.84
4p −5.51 −2.02 3.49 1.74 3.77 4.07
4q −5.69 −2.11 3.57 1.79 3.90 4.26
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Figure 5. Molecular electrostatic charge distribution plots for 4e, 4f and 4i (highly active molecules) with an isovalue of
0.004 Å−3.

As phosphorylation of hBAD at Ser-99 promotes cancer cell survival and NPB was
reported to specifically inhibit BAD-Ser99 phosphorylation, western blot analysis was
performed to evaluate the efficacy of the most active NPB analogs (4f, 4e, and 4i) on BAD-
Ser99 phosphorylation in MCF-7 cells. All the tested compounds decreased the pBAD at
Ser-99 without change in total BAD expression (Figure 6).
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Figure 6. Western blot analysis of expression of hBAD (BAD) and Ser-99 phosphorylation (pBAD) of hBAD after treatment
of MCF-7 cells with NPB analogs (4f, 4e, and 4i). β-ACTIN was used as input control.

Since the active compounds (4e, 4f, 4i, and NPB as a comparison) displayed efficacy
against MCF-7 cells, the in silico ADMET properties (8 parameters) of these compounds
were determined by using vNN-ADMET online platform [29]. The results are tabulated
in Table 4. The in silico analyses of active compounds predicted that the compounds
(4e, 4f, 4i) would not exhibit hepatotoxicity.

Table 4. The vNN-ADMET predictions for active compounds 4e, 4f and 4i.

Query
Liver

Toxicity
Metabolism

CYP Inhibitors for

DILI CT HLM 1A2 3A4 2D6 2C9 2C19

4e Na Yb N N N N N N
4f N Y Y N N N N N
4i N N Y N N N N N

NPB Y N Y N N N N N

Note: Yb, Yes; Na, No; DILI, drug-induced liver injury; CT, cytotoxicity; CYP, cytochrome P450; HLM, human
liver microsomes. Predictions and interpretations using online server and a restricted/unrestricted applicability
domain are represented.

3. Materials and Methods

Materials and reagents were purchased from commercial suppliers and used as in-
structed. Melting points were determined through an open capillary method using Sigma
melting point apparatus (Sigma, Bangalore, India) and are uncorrected. IR spectra were
recorded on Shimadzu IR spectrophotometer (Shimadzu USA manufacturing Inc., Canby,
OR, USA). 1H NMR and 13C NMR spectra were recorded on Bruker/Agilent NMR spec-
trometer operating at 400 and 100 MHz, respectively, using TMS as internal standard;
chemical shifts are in d. Mass spectroscopic analysis was performed on Shimadzu LC-MS.
Analytical TLCs were implemented on pre-coated Merck 0.25 mm silica gel 60F254 plates
using 40% ethylacetate in n-hexane as eluent and the spots were detected under UV light.
All other chemicals were of analytical grade and were purchased from Sisco Research
Laboratories (SRL, Mumbai, India).

General procedure for synthesis of NPB analogs. The piperazines (1eq) and salicy-
laldehydes (1eq) were taken in a round bottom flask and stirred with dioxane as a solvent
for 10 min. After 10 min the aryl boronic acid (1eq) was added to the mixture and refluxed
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for 8 h on a hot plate at 90 ◦C with continuous stirring. After 8 h, ethyl acetate and water
were added to the reaction mixture, separating the ethyl acetate layer using a separate
funnel, and drying over anhydrous sodium sulphate. Ethyl acetate was evaporated to
produce the product. The desired phenolic compound product was obtained by column
chromatography [10].

Characterization of 3(4(4-chlorophenyl)piperazin-1-yl) (2hydroxyphenyl)methyl)-
N-cyclopen tylbenzamide (4a) Off-white solid; mp 128–130 ◦C; 91% yield; 1H NMR
(CDCl3, 400 MHz) δ:11.49 (s, 1H), 7.84 (s, 1H), 7.64–7.59 (m, 2H), 7.36 (t, J = 8Hz,1H),
7.19 (d, J = 4Hz, 2H), 7.14 (t, J = 8Hz, 2H), 6.96 (d, J = 4Hz, 1H), 6.87 (d, J = 8Hz, 1H), 6.79
(d, J = 8Hz, 1H), 6.75–6.72 (m, 1H), 6.10 (s, 1H), 4.53 (s, 1H), 4.41–4.36 (m, 1H), 3.20 (s, 4H),
2.83–2.59 (m, 4H), 2.08 (s, 2H), 1.73–1.65 (m,2H), 1.52–1.42 (m,2H), 1.34–1.26 (m, 2H); 13C
NMR (CDCl3, 100 MHz) δ:166.8, 156.2, 149.4, 140.3, 135.6, 131.1, 129.3, 129.1, 128.9, 127.6,
126.3, 125.2, 124.6, 119.8, 117.8, 117.2, 114.5, 76.1, 51.9, 51.6, 49.3, 33.2. 23.8; HRMS (ESI-TOF)
m/z: [M+H]+ calcd for C29H32ClN3O2, 490.2261; found, 490.2259.

Characterization of 2(4(4-chlorophenyl)piperazin-1-yl) (6-methylpyridin-3-yl)
methyl)phenol (4b) Off-white solid; mp 210–212 ◦C; 88% yield; 1H NMR (CDCl3, 400 MHz)
δ: 11.50 (br-s, 1H) 8.55 (s, 1H) 7.80–7.78 (m, 1H) 7.26–7.15 (m, 4H) 6.99 (d, J = 8Hz, 1H) 6.93
(d, J = 8Hz, 1H) 6.86–6.79 (m, 3H) 4.55 (s, 1H) 3.33–3.22 (m, 4H) 2.82–2.66 (m, 4H) 2.56 (s,
3H); 13C NMR (CDCl3, 100 MHz) δ:158.7, 156.2, 149.4, 149.2, 136.2, 132.0, 129.2, 129.1,125.3,
124.3,123.8, 119.8, 117.7,117.7,117.3, 73.2,51.5, 49.3, 24.1; HRMS (ESI-TOF) m/z: [M+H]+

calcd for C23H24ClN3O, 394.1686; found, 394.1682.
Characterization of 3(4(4-chlorophenyl)piperazin-1-yl) (4(diethylamino)-2-

hydroxyphenyl) methyl)-N-cyclopentylbenzamide (4c) Brown solid; mp 178–180 ◦C; 81%
yield; 1H NMR (CDCl3, 400 MHz) δ: 11.23 (br-s, 1H), 7.78 (s, 1H), 7.97 (d, J = 8Hz, 2H),
7.38–7.34 (m, 1H), 7.18 (d, J = 8Hz, 2H), 6.80–6.73 (m, 2H), 6.18 (s,1H), 6.08–6.01 (m, 2H),
4.44 (s, 1H), 4.39 (s, 1H), 3.30–3.27 (m, 4H), 3.25–3.19 (m, 4H), 2.62–2.52 (m, 2H), 2.06–2.10
(m, 3H), 1.71–1.48 (m, 8H), 1.12 (t, J = 8Hz, 6H); 13C NMR (CDCl3, 100 MHz) δ: 166.9, 157.1,
149.5, 148.9, 141.0, 135.4, 131.2, 129.9, 129.7, 129.1, 127.3, 125.9, 124.9, 117.3, 111.6, 103.5,
99.7, 75.4, 51.8, 51.4, 49.3, 44.2, 33.2, 23.8,12.7; HRMS (ESI-TOF) m/z: [M+H]+ calcd for
C33H41ClN4O2, 561.2996; found, 561.2998.

Characterization of 1(5((4(2,3-dichlorophenyl)piperazin-1-yl) (2-hydroxyphenyl)
methyl)thiophen-2-yl)ethanone (4d) White solid; mp 130–132 ◦C; 89% yield; 1H NMR
(CDCl3, 400 MHz) δ: 11.14 (br-s, 1H) 7.60 (d, J = 4Hz, 1H) 7.25–7.17 (m, 4H) 7.06–6.93 (m,
3H) 6.84–6.80 (m, 1H) 4.87 (s, 1H) 3.19–3.16 (m, 4H) 2.89–2.79 (m, 4H) 2.55 (s, 3H); 13C
NMR (CDCl3, 400 MHz) δ:190.5, 155.9, 150.6, 150.5, 144.4, 134.2, 132.4, 129.5, 128.9, 127.7,
127.6 (2C), 125.1, 124.0,119.8,118.7, 117.4, 70.6, 51.5, 51.2, 26.7; LCMS m/z: [M+H]+ calcd
for C23H22Cl2N2O2S, 461.0857; found, 460.9520.

Characterization of 2-((4-(2,3-dichlorophenyl)piperazin-1-yl)(naphthalen-1-yl)
methyl)phenol (4e). Brown solid; mp 78–80 ◦C; 78% yield; 1H NMR (CDCl3, 400 MHz)
δ:8.08 (d, J = 8Hz, 1H) 7.91–7.74 (m, 3H) 7.93–7.33 (m, 2H) 7.22–7.14 (m, 2H) 6.98 (d, J = 8Hz,
1H) 6.90–6.83 (m, 1H) 6.78–6.55 (m, 3H) 6.60–6.59 (m, 1H) 5.37 (s, 1H) 4.23 (s, 1H) 3.37–3.28
(m, 4H) 3.04–2.33 (m, 4H); 13C NMR (CDCl3, 100 MHz) δ:155.8, 154.8, 136.7, 135.1, 134.1,
131.1, 130.9, 129.3, 129.2, 128.9, 128.6, 128.4, 126.1, 125.8, 125.4, 124.1, 123.7, 120.6, 119.9,
117.0, 116.9, 74.0, 52.7, 52.5; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C27H24Cl2N2O,
463.1343; found, 463.1340.

Characterization of 5(4(2,3-dichlorophenyl)piperazin-1-yl) (2-hydroxyphenyl)
methyl)furan-2-carbaldehyde (4f) Brown solid; mp 128–130 ◦C; 83% yield; 1H NMR
(CDCl3, 400 MHz) δ:10.06 (s, 1H) 8.20 (s,1H) 8.07–7.90 (m, 1H) 7.74–7.44 (m, 2H) 7.20–7.12
(m, 1H) 6.96–6.87 (m, 1H) 6.35–6.33 (m, 1H) 6.21–6.12 (m, 1H) 5.29 (s,1H) 4.41 (s,1H),
3.41–3.04 (m, 4H) 2.34–2.10 (m, 4H); 13C NMR (CDCl3, 100 MHz) δ: 177.6, 158.4, 156.7,
152.4,150.4, 134.1, 129.8, 128.9, 127.6, 127.5, 125.1, 121.9, 121.3, 119.8,111.6, 117.2, 112.0,
67.7, 51.2, 50.6; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C22H20Cl2N2O3, 431.0929; found,
431.0924
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Characterization of 2(4(2,3-dichlorophenyl)piperazin-1-yl) (6-methylpyridin-3-yl)
methyl)phe nol, 4g Yellow solid; mp 208–210 ◦C; 83% yield; 1H NMR (CDCl3„ 400 MHz)
δ:11.50 (br-s, 1H), 8.55 (s, 1H), 7.80–7.77 (m, 1H), 7.25–7.16 (m, 4H), 7.00–6.78 (m, 4H), 4.55
(s, 1H), 3.26 (s, 4H), 2.81–2.66 (m, 4H), 2.58 (s, 3H); 13C NMR (CDCl3„ 100 MHz) δ:158.7,
156.2, 149.4, 149.2, 136.1, 132.0, 129.5, 129.1,129.0,125.2, 124.3, 124.1, 124.0, 123.8, 119.8,
117.5, 117.3, 73.2,51.5, 49.3,24.1; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C23H23Cl2N3O,
428.3542; found, 428.0576.

Characterization of N-cyclopentyl-3(4(2,3-dichlorophenyl)piperazin-1-yl) (4(diethy-
lamin o)-2-hydr oxyphenyl) methyl) benzamide, 4h. White solid; mp 160–162 ◦C; 81%
yield; 1H NMR (CDCl3, 400 MHz) δ:7.78 (s,1H) 7.58–7.56 (m,1H) 7.38–7.34 (m, 1H) 7.18
(d J = 8Hz, 2H) 6.80–6.73 (m, 2H) 6.18 (s, 1H), 6.09–6.00 (m, 2H) 4.44 (s, 1H) 4.41–4.34 (m,
1H) 3.40–3.19 (m, 6H) 3.19–3.10 (m, 2H); 13C NMR (CDCl3, 100 MHz) δ: 168.4, 154.6, 149.4,
137.5, 133.8, 132.5,128.9, 128.4, 128.2, 127.4, 127.0, 126.6, 125.8, 125.6, 119.2, 118.5, 110.2,
103.4, 101.2, 68.2, 51.5, 48.8, 44.8, 33.2, 29.6, 24.3, 13.1; HRMS (ESI-TOF) m/z: [M+H]+ calcd
for C33H40Cl2N4O2, 595.2606; found, 595.2601.

Characterization of 3(2-hydroxyphenyl) (4(p-tolyl)piperazin-1-yl)methyl)
benzaldehyde, 4i Brown; mp 120–123 ◦C; 88% yield; 1H NMR (CDCl3, 400MHz) δ: 11.66
(s, 1H), 10.03 (s, 1H), 7.97 (s, 1H), 7.83 (d, J = 8 Hz, 2H), 7.55–7.52 (m, 1H), 7.20–7.17 (m,
1H), 7.10 (d, J = 8 Hz, 2H), 7.00 (d, J = 8 Hz, 1H), 6.92 (d, J = 8 Hz, 1H), 6.86 (d, J = 8 Hz,
2H), 6.80–6.77 (m, 1H), 4.62 (s, 1H), 3.25 (s, 4H), 2.66 (s, 4H), 2.29 (s, 3H); 13C NMR (CDCl3,
100MHz) δ: 192.3, 156.4, 148.8, 141.2, 137.2, 134.6, 130.1, 130.0, 129.9, 129.5, 129.3, 124.7,
120.0, 117.6, 116.8, 76.2, 52.0, 50.0, 50.1, 20.7; LCMS m/z: [M+H]+ calcd for C25H26N2O2,
386.1994; found, 387.2418.

Characterization of N-cyclopentyl-3(2-hydroxyphenyl) (4(p-tolyl)piperazin-1-yl)
methyl)benzamide (4j); Brown; mp: 114–117 ◦C; 87% yield; 1H NMR (CDCl3, 400 MHz)
δ: 11.72 (s, 1H), 7.87 (s, 1H), 7.64 (d, 2H, J=8Hz), 7.39 (t, 1H, J = 6Hz), 7.16 (t, 1H, J = 6Hz),
7.10 (d, 2H, J = 8Hz), 6.86 (m, 5H), 6.16 (s, 1H), 4.57 (s, 1H), 4.41 (m, 1H), 3.23 (s, 4H), 2.63
(s, 4H), 2.30 (s, 3H), 2.12 (s, 2H), 1.72 (m, 4H), 1.53 (m, 2H); 13C NMR (CDCl3, 100MHz) δ:
166.8, 156.2, 148.6, 140.4, 135.5, 131.1, 129.8, 129.7, 129.3, 128.8, 127.9, 126.3, 124.7 (2C), 119.7,
117.2, 116.6, 76.1, 51.8, 49.8, 33.2, 29.7, 29.4, 23.8, 20.5; HRMS (ESI-TOF); m/z: [M+H]+ calcd
for C30H35N3O2, 469.2729; found, 469.2726.

2(pyrimidin-5-yl) (4(p-tolyl)piperazin-1-yl)methyl)phenol (4k); Off-white solid; mp:
157–161 ◦C; 84% yield; 1H NMR (CDCl3, 400MHz) δ:9.16 (s, 1H), 8.84 (s, 2H), 7.19 (t, 1H,
J = 4Hz), 7.07 (d, 2H, J = 4Hz), 6.92 (m, 2H), 6.81 (m, 3H), 4.50 (s, 1H), 3.89 (s, 1H), 3.20 (m,
4H), 2.74 (m, 4H), 2.27 (s, 3H); 13C NMR (CDCl3, 100MHz) δ: 158.7, 157.1, 156.2, 148.5, 130.6,
130.3, 129.9, 129.9, 129.8, 128.9, 127.7, 123.2, 120.3, 117.8, 117.2, 116.8, 71.8, 51.9, 49.9, 29.8,
20.6, 14.2; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C22H24N4O;360.1950 found, 360.1953.

Characterization of 2(2-fluoro-3-methylpyridin-4-yl) (4(p-tolyl)piperazin-1-yl)
methyl)phenol (4l); Yellow solid; mp: 102–104 ◦C; 80% yield; 1H NMR (CDCl3, 400MHz)
δ:8.00 (d, 1H, J = 4Hz), 7.54 (d, 1H, J = 4Hz), 7.19 (t, 1H, J = 4Hz), 7.10 (d, 2H, J = 8Hz), 6.96
(d, 1H, J = 8Hz), 6.92 (d, 1H, J = 8Hz), 6.84 (d, 2H, J = 4Hz), 6.78 (t, 1H, J = 4Hz), 4.94 (s,
1H), 3.23 (s, 6H), 2.47 (s, 4H), 2.29 (s, 4H); 13C NMR (CDCl3, 100MHz) δ: 163.4, 161.5, 156.1,
148.4, 145.0, 144.9, 129.7, 129.3, 128.6, 123.4, 120.1, 119.8, 117.5, 116.6, 68.9, 49.8, 49.6, 20.3,
11.35; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C24H26FN3O, 391.2060; found, 391.2057.

Characterization of 2(5,6-dimethylpyridin-3-yl) (4(p-tolyl)piperazin-1-yl)methyl)
phenol (4m); Off-white solid; mp: 147–159 ◦C; 86% yield; 1H NMR (CDCl3, 400MHz)
δ:11.66 (s, 1H), 8.34 (s, 1H), 7.56 (s, 1H), 7.15 (t, 1H, J = 4Hz), 7.07 (d, 2H, J = 8Hz), 6.94 (d,
1H, J = 4Hz), 6.89 (d, 1H, J = 8Hz), 6.81 (d, 2H, J = 4Hz), 6.75 (t, 1H, J = 4Hz), 4.48 (s, 1H),
3.21 (s, 4H), 2.62 (s, 3H), 2.26 (d, 6H, J = 8Hz); 13C NMR (CDCl3, 100MHz) δ: 157.4, 156.2,
148.6, 146.4, 132.6, 129.7, 129.1, 128.8, 124.4, 119.6, 117.2, 116.6, 73.2, 49.8, 29.6, 22.2, 20.4,
19.3; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C25H29N3O, 387.2311; found, 387.2316.

Characterization of 2(1H-pyrazol-4-yl) (4(p-tolyl)piperazin-1-yl)methyl)phenol (4n);
Off-white solid; mp: 151–153 ◦C; 83% yield; 1H NMR (CDCl3, 400MHz) δ: 7.59 (s, 2H), 7.15
(t, 1H, J = 8Hz), 7.05 (d, 2H, J = 8Hz), 6.94 (d, 1H, J = 8Hz), 6.87 (d, 1H, J = 8Hz), 6.80 (d, 2H,
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J = 8Hz), 6.74 (t, 1H, J = 4Hz), 4.63 (s, 1H), 3.14 (d, 4H, J = 8Hz), 2.67 (s, 4H), 2.25 (s, 3H); 13C
NMR (CDCl3, 100MHz) δ: 156.5, 148.6, 133.7, 129.8, 129.6, 128.8, 128.6, 125.4, 119.3, 118.0,
116.8, 116.6, 65.6, 50.7, 49.8, 29.6, 20.4; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C21H24N4,
332.2001; found, 332.2005.

Characterization of 2(2-aminopyrimidin-5-yl) (4(p-tolyl)piperazin-1-yl)methyl)
phenol (4o); Yellow solid; mp: 131–134 ◦C; 91% yield; 1H NMR (CDCl3, 400MHz) δ:8.32 (s,
2H), 7.16 (t, 1H, J = 6Hz), 7.05 (d, 2H, J = 8Hz), 6.88 (t, 2H, J = 6Hz), 6.77 (m, 3H), 5.44 (s,
2H), 4.36 (s, 1H), 3.19 (s, 4H), 2.65 (s, 4H), 2.25 (s, 3H); 13C NMR (CDCl3, 100MHz) δ: 162.8,
158.6, 156.3, 148.4, 129.9, 129.7, 129.0, 128.7, 123.8, 122.2, 119.7, 117.3, 116.6, 51.3, 49.8, 20.4;
HRMS (ESI-TOF) m/z: [M+H]+ calcd for C22H25N5O, 375.2059; found, 375.2056.

Characterization of 5(2-hydroxyphenyl) (4(p-tolyl)piperazin-1-yl)methyl)furan-2-
carbaldehyde (4p); Off-white solid; mp 94–97 ◦C; 87% yield; 1H NMR (CDCl3, 400MHz) δ:
10.9 (s, 1H), 9.62 (s, 1H), 7.22 (t, 1H, J = 4Hz), 7.07 (d, 2H, J = 4Hz), 6.95 (d, 1H, J = 8Hz), 6.91
(d, 1H, J = 8Hz), 6.81 (t, 1H, J = 4Hz), 6.62 (s, 1H), 4.82 (s, 1H), 3.20 (s, 4H), 2.75 (s, 4H), 2.27
(s, 3H); 13C NMR (CDCl3, 100MHz) δ: 177.9, 158.8, 157.1, 152.7, 148.8, 130.5, 130.1, 130.1,
129.2, 121.7, 120.1, 117.9, 117.0, 112.3, 68.0, 51.3, 50.2, 20.8; HRMS (ESI-TOF) m/z: [M+H]+

calcd for C23H24N2O3, 376.1787; found, 376.1783.
Characterization of 2(6-methylpyridin-3-yl) (4(p-tolyl)piperazin-1-yl)methyl)

phenol (4q): Yellow solid; mp: 152–154 ◦C; 93% yield; 1H NMR (CDCl3, 400MHz) δ:11.61
(s, 1H), 8.51 (s, 1H), 7.75 (d, 1H, J = 8Hz), 7.17 (d, 1H, J = 8Hz), 7.12 (d, 1H, J = Hz), 7.07
(d, 2H, J = 8Hz), 6.94 (d, 1H, J = 12Hz), 6.89 (d, 1H, J = 8Hz), 6.81 (d, 2H, J = 12Hz), 6.76
(t, 1H, J = 8Hz), 4.51 (s, 1H), 3.21 (s, 4H), 2.62 (s, 4H), 2.53 (s, 3H), 2.27 (s, 3H); 13C NMR
(CDCl3, 100MHz) δ: 158.7, 156.4, 149.3, 148.7, 136.2, 132.2, 129.9, 129.8, 129.2, 129.1, 124.5,
123.9, 119.8, 117.3, 116.7, 73.3, 51.7, 49.9, 24.2, 20.5; HRMS (ESI-TOF) m/z: [M+H]+ calcd
for C24H27N3O, 373.2154; found, 373.2151

Characterization of 1(5(4(4-chlorophenyl)piperazin-1-yl) (2-hydroxyphenyl)methyl)
thiophen-2-yl)ethanone (4r): Off-white solid; 1H NMR (CDCl3, 400 MHz) δ: 10.98 (br-
s,1H) 7.60 (d, J = 4Hz,1H) 7.27–7.20 (m, 4H) 7.04–7.02 (m, 1H) 6.94 (d, J = 8Hz, 1H) 6.87–6.81
(m, 3H) 4.83 (s, 1H) 3.22–3.33 (m, 4H) 2.83–2.55 (m, 4H) 2.55 (s, 3H); 13C NMR (CDCl3,
100 MHz) δ:190.4, 155.9, 150.5, 149.3, 144.3,132.4, 129.6, 129.1, 128.9, 127.6, 125.3, 123.9,
119.9, 117.5, 117.4, 70.5, 51.1, 49.3, 26.7; LCMS m/z: [M+H]+ calcd for C23H23ClN2O2S,
427.1247; found, 427.0009.

Alamar Blue assay: The potency of title compounds against MCF-7 cells was deter-
mined using the Alamar Blue assay, following the procedure described earlier [30–38]. Com-
pounds were dissolved in DMSO at 10 mg/mL concentration and stored at −20 ◦C. The
dilutions were diluted in culture medium before treatment. A total of 10 × 103 cells/well
were plated in 96-well plates. After 6 h of plating, the cells were treated with different
concentrations of compound in triplicates. Reagent (20 µL of 5 mg/mL) was added to
the cells during the last 4h of their time point for 48 h as per manufacturer’s instructions.
The medium was removed from the wells 4 h after the reagent addition, after which the
absorbance was measured at 590 nm in an enzyme-linked immunosorbent assay reader.

In silico DFT calculations: The DFT calculations for the molecules (4a-4r) were car-
ried out using B3LYP hybrid functional with 6-31 + g (d) all electron basis set utilizing
the Gaussian 09 package [39]. All structures were optimized without any restraints. Par-
tial Mulliken charges were calculated using the same level of theory to determine the
charge distribution in the system. The electronic properties such as chemical hardness
[η = (LUMO–HOMO)/2], electronegativity [χ =−(HOMO+LUMO)/2], chemical potential
[µ = (H + L)/2], and electrophilicity index (ω = µ2/2η) were calculated using the energies
of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO). Chemical hardness (η) was used as a tool to understand the chemical reactivity of
the molecular system. The concept of electronegativity (χ) is introduced as the power of
an atom in a molecule to attract electrons onto itself. Electrophilicity (ω) is proposed as a
measure of lowering of energy due to maximal electron flow between donor and acceptor.
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Conclusively, the HOMO-LUMO (∆) gap establishes the correlation between chemical
structure and biological activity.

Western blot analysis: Western blot analysis was carried out by using the earlier
reported protocol. pBad (Ser136: equivalent to human BADSer99) and hBAD antibodies
were procured from Cell Signaling and similarly mouse anti-β-ACTIN from Santa Cruz
Biotechnology [9].

4. Conclusions

In summary, from the synthesis of a series of novel NPB analogs using the Petasis
reaction, based on their efficacy against mammary carcinoma cells, compounds such
as 2(4(2,3-dichlorophenyl)piperazin-1-yl) (naphthalen-1-yl)methyl)phenol (4e), 5(4(2,3-
dichlorophenyl)piperazin-1-yl) (2-hydroxyphenyl)methyl)furan-2-carbaldehyde (4f), and
3(2-hydroxyphenyl) (4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i) were found to
inhibit the viability of mammary carcinoma cells. In addition, the crystal structure of the
compound 4r, which was grown via a slow-solvent evaporation technique, is reported.
Furthermore, we identified that compounds 4f, 4e and 4i decreased the phosphorylation
of hBAD-Ser99. Such studies using NPB analogs will contribute to the lead optimization
process of BAD phosphorylation inhibitors in oncology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms222011002/s1.
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