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Abstract: A multi-camera dense RGB-D SLAM (simultaneous localization and mapping) system has
the potential both to speed up scene reconstruction and to improve localization accuracy, thanks to
multiple mounted sensors and an enlarged effective field of view. To effectively tap the potential of
the system, two issues must be understood: first, how to calibrate the system where sensors usually
shares small or no common field of view to maximally increase the effective field of view; second,
how to fuse the location information from different sensors. In this work, a three-Kinect system is
reported. For system calibration, two kinds of calibration methods are proposed, one is suitable
for system with inertial measurement unit (IMU) using an improved hand–eye calibration method,
the other for pure visual SLAM without any other auxiliary sensors. In the RGB-D SLAM stage,
we extend and improve a state-of-art single RGB-D SLAM method to multi-camera system. We track
the multiple cameras’ poses independently and select the one with the pose minimal-error as the
reference pose at each moment to correct other cameras’ poses. To optimize the initial estimated
pose, we improve the deformation graph by adding an attribute of device number to distinguish
surfels built by different cameras and do deformations according to the device number. We verify the
accuracy of our extrinsic calibration methods in the experiment section and show the satisfactory
reconstructed models by our multi-camera dense RGB-D SLAM. The RMSE (root-mean-square error)
of the lengths measured in our reconstructed mode is 1.55 cm (similar to the state-of-art single camera
RGB-D SLAM systems).
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1. Introduction

An important characteristic in visual RGB-D SLAM for accurate localization is a wide field of
view, and a wide field of view system can not only improve the RGB-D camera pose tracking but also
increase the efficiency of map building. Nowadays, RGB-D camera electronics get cheaper and smaller,
using multiple RGB-D cameras in a robot or other platform is highly feasible, which provides potential
for a wide field of view.

To achieve a wide field of view system by multiple RGB-D cameras, we need to do extrinsic
calibration first between different RGB-D cameras. Villena-Martínez et al. [1] made a comparative study
of different calibration methods. They focus on the intrinsic and extrinsic parameters between RGB
sensor and depth senor. In our work, we suppose the above parameters have been calibrated, and focus
on the extrinsic calibration between different RGB-D cameras. Most of the extrinsic calibration methods
make use of the overlapping fields of view of the cameras. However, in robotic and unmanned fields,
cameras are usually mounted around the rig in a ring and point outwards with little overlapping fields
of view. It is not easy to calibrate such a system using existing calibration toolboxes by chessboard
or circular-dot patterns [2] due to the minimal overlapping fields of view. Accordingly, Li et al. [3]
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designed a feature descriptor-based calibration pattern which is easy of detection even when the
cameras observe partially of the board. Su et al. [4] proposed a novel algorithm to calibrate the RGB-D
camera networks by using a spherical calibration object. Recently, as inertial sensors appear on robots,
hand–eye calibration usually be used to calibrate the extrinsic parameters of the cameras. Tsai et al. [5]
proposed a classical hand–eye calibration approach which requires the sensors rotate around at least
two different axes. In [6–8], an improved hand–eye calibration algorithm was proposed where the
sensors only rotate around one axis. In addition to hand–eye calibration, some visual method based
on reconstruction can also calibrate non-overlapping multi-camera-rig. Esquivel et al. [9] performed
individual structure from motion computation for each camera separately, then aligned the trajectories
in 3D to estimate the relative camera poses. Carrera et al. [10] matched the trajectories by feature
matching, estimated the initial transformation under random sample consensus (RANSAC) paradigm,
and optimized the estimation using bundle adjustment. In our work, we use two different methods
for calibrating non-overlapping fields of view RGB-D cameras. One is based on hand–eye calibration,
which is for the system with inertial odometer. The other is based on visual RGB-D SLAM, using pose
graph optimization to estimate the extrinsic parameters between RGB-D cameras without resorting to
any other auxiliary.

Some methods of visual RGB-D SLAM use one RGB-D camera for visual odometry and mapping.
Di et al. [11] proposed a new RGB-D SLAM based on extended bundle adjustment with integrated 2D
and 3D information. Tang et al. [12] presented a novel approach to geometrically integrate the depth
scene and RGB scene to enlarge the measurement distance of RGB-D sensors and enrich the details of
model generated from depth images. Fu et al. [13] proposed a real-time dense mapping system using a
local map and a global map with surfels. Huang et al. [14] described a system for visual odometry
and mapping using an RGB-D camera, and its application to autonomous flight. Other methods
used multiple cameras to improve the robustness of localization. Early traditional offline approaches
use multi-camera system in structure from motion research [15]. Kaess et al. [16] presented a sparse
SLAM approach, suitable for real-time reconstruction from multi-camera configurations. Sola et al. [17]
proposed a multi-camera visual SLAM method using the extended kalman filter for simultaneous
localization and mapping (EKF-SLAM). Urban et al. [18] extended the state-of-the-art oriented fast and
rotated brief for simultaneous localization and mapping (ORB-SLAM) to a multi-fisheye camera system.
However, the above methods all use multi-camera in sparse SLAM system, which can improve the
localization accuracy but lack the efficiency for real-time 3D reconstruction. We propose a multi-camera
dense RGB-D SLAM system, which can not only position the robot accurately but also build the dense
3D model in real time efficiently.

In this work, we report a multi-camera dense RGB-D SLAM system. In our system, multiple
RGB-D cameras are mounted around a rig in a ring as Figure 1. All cameras are linked to a workstation
using cables. The multi-camera-rig can be fixed to a robot or a tripod with a pulley and capture the
images in synchronization. Alexiadis et al. [19] proposed a method to more precisely synchronize the
cameras using an audio synchronization scheme. Because the robot or tripod are moved slowly and all
RGB-D cameras are linked the same computer, the images captured are considered to be synchronized
and we do not adopt [19]. Next, we estimate the extrinsic parameters of the multi-camera-rig using
two automatic procedures. One is for a robot with inertial sensors system, the other is for a tripod
with the camera only system. Then we track each camera’s pose independently and transform them
into a fixed coordinate system. We make the cameras’ poses assist each other by the known extrinsic
parameters to enhance the robustness of camera pose tracking. In the pose optimization section, we use
an improved deformation graph [20] to optimize the camera pose and align the map surface.

The main contributions of our work contain:

1. Two kinds of extrinsic calibration methods for three-Kinect system are proposed, one is suitable
for system with IMU using an improved hand–eye calibration method, the other for pure visual
SLAM without any other auxiliary sensors.
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2. We extend the state-of-the-art ElasticFusion [20] to a multi-camera system to get a better dense
RGB-D SLAM.
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Figure 1. Example of three-Kinect arrangement.

2. Extrinsic Calibration of Multiple Cameras

2.1. Odometer-Based Extrinsic Calibration

We run RGB-D visual odometry (VO) for each camera in a feature-rich scene to estimate a set
of camera poses which is required for the subsequent step of hand–eye calibration. Our RGB-D
VO method is similar to [21], which is the classical VO method for RGB-D SLAM. We perform
a dense iterated close point (ICP) method to estimate the camera pose, using a projective data
association algorithm [22] to obtain correspondence and a point-to-plane error metric for pose
optimization. Then we solve the optimization problem based on the GPU’s parallelized processing
pipeline. The point-to-plane error energy for the desired camera pose estimate T is

E = ∑
u∈Ω

((Tvk(u)− vk−1(u))·nk−1)
2. (1)

We track the current camera frame by aligning a live surface measurement (vk, nk) against the
model prediction from the previous frame (vk−1, nk−1), where Ω ⊂ N2 is the image space domain, v is
vertex, n is normal, and k is the timestamp. With the VO method, we obtain a set of camera poses.

Then we use the hand–eye calibration method of [7] to estimate each camera-odometry
transformation. The unknown camera-odometry transformation is estimated in two steps. In the
first step, the rotation cost function is minimized to estimate the pitch and roll angles of the
camera-odometry transformation. In the second step, the translation cost function is minimized
to estimate the yaw angle and the camera-odometry translation. The relationship between camera and
robot can be expressed as a rotation formula and a translation formula as

Ri+1
Ri
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Ci
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In the above, the rotation is represented by quaternion, and the translation by a vector. The robot’s
transformation between time i and time i + 1 is denoted by the vector Ri+1

Ri
p and the unit quaternion

Ri+1
Ri

q, which can be obtained from the robot’s inertial measurement unit. Ci+1
Ci

p and Ci+1
Ci

q represent
the camera’s transformation between time i and time i + 1 which can be obtained by the above VO
method. R

Cp and R
Cq represent the transformation between the robot and the camera. In the first step,
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we decompose the unknown unit quaternion R
Cq into three unit quaternions, corresponding to Z–X–Y.

Euler angles α, β, γ as
R
Cq = qz(α)qxy(β, γ). (4)

Since both Ri+1
Ri

q and qz(α) represent rotations around the z axis, they satisfy commutative law.
After simplifying Function (2), the rotation residual term becomes

ηi =
Ri+1
Ri

q qxy(β, γ)− qxy(β, γ)
Ci+1
Ci

q. (5)

Then residual term ηi is minimized to estimate qxy(β, γ), similarly to [8]. In second step, we
expand Function (3) and formulate a translation cost function to estimate the remaining unknowns

εi =

[
cos φi − 1 − sin φi

sin φi cos φi − 1

][
px

py

]
−
[

cos α − sin α

sin α cos α

][
pi1
pi2

]
+

Ri+1
Ri

p, (6)

where φi is the angle that the robot rotates around the z axis, px, py are the translation components
of the camera-odometry transformation, α is the yaw angle of the camera-odometry transformation,[

pi1 pi2

]T
denotes R

(
qxy(β, γ)

) Ci+1
Ci

p. We minimize the residual term εi by linear least squares
method to estimate px, py, and α. Note that this method cannot estimate the translation component
along the z axis.

We estimate the camera-odometry transformation for each camera using the above hand–eye
calibration. Because all the cameras transform with respect to the same inertial measurement unit,
we can estimate the extrinsic parameters between any two cameras via this inertial measurement unit

H1−2 = HCR1
−1 HCR2, (7)

where HCR1 and HCR2 are the camera-odometry transformations of two cameras, H1−2 is the extrinsic
transformation matrix between these two cameras.

2.2. SLAM-Based Extrinsic Calibration

We run a simple multi-camera RGB-D slam to estimate the extrinsic parameters between the
cameras by pose graph optimization. Firstly, we control the multi-camera rig rotate around itself to
ensure different cameras have some overlapped view in the data capture stage. Then in the simple
RGB-D visual odometry, we use SIFT features to match the images and solve the transformation T
between two frames by classical ICP method [23] which use the following point-to-point error energy

E = ∑N
i=1(pi − Tqi)

2, (8)

where 〈pi, qi〉 is a pair of matching points, N is the total number of matching points.
We divide the process of SLAM into two stages. In the front end stage, we run VO independently

for each camera to estimate its initial pose. In the back end stage, we add a set of constraints for the
camera pose and use pose graph optimization to adjust the pose.

During the VO process, some keyframes are chosen such that they have more inliers, and a new
keyframe should be neither too far nor too close to the last chosen keyframe. The initial pose graph is
obtained after VO, with the keyframes as vertices and the transformation between two neighboring
keyframes as edges (Figure 2a). Then we add loop constraints to the graph. To find loop constraints,
we determine all the keyframes before the current keyframe to see whether these keyframes have a
successful feature matching with the current keyframe. If feature matching is successful, we add an
edge between the two frames in the pose graph (Figure 2b). From the multiple cameras we choose
one camera as the reference camera whose first frame’s coordinate system is defined as the world
coordinate system. Then we add edges between the reference camera’s first pose and other cameras’
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first poses separately, set the transformation matrix as the identity matrix (Figure 2c). We fix the
reference camera’s first pose and optimize the pose graph by G2O (an open-source C++ framework for
optimizing graph-based nonlinear error functions). After the optimization, we obtain all cameras’ first
poses, which are the relative transformations between cameras and the reference camera. The extrinsic
parameters of multiple cameras are estimated.

In the above procedure, if have initial extrinsic parameters—for example obtained from
odometer-based calibration—we can set the edge value between the reference camera’s first pose and
other cameras’ first poses with the available initial extrinsic parameters. By this way, the two extrinsic
calibration methods are combined.Sensors 2018, 18, x 5 of 11 
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Figure 2. The sketch map of the pose graph. (a) is the initial pose graph obtained by VO where the
blue edges are the transformations between two nearby keyframes. (b) is obtained after the closing
loop detection and the red edges connect the frames satisfying the loop constraints. (c) denotes the
relationship between two cameras, where black vertices are the poses of one camera and brown vertices
belong to another camera, the green edge means the extrinsic parameters which can be initially set to
the identity matrix.

3. Multi-Camera RGB-D SLAM

3.1. Tracking

We extend the state-of-the-art ElasticFusion [20] to multi-camera system to get a better dense
RGB-D SLAM. Before the visual odometry, we give each camera’s first frame an initial pose from the
extrinsic calibration. Then we track the pose of each camera respectively by minimizing the geometric
and photometric joint cost function

Etrack = Eicp + wrgbErgb, (9)

where wrgb is the weight and was set empirically to 0.1 to reflect the difference in metrics used for ICP
and RGB costs (meters and 8-bit intensity respectively). Eicp is the cost over the point-to-plane error
between 3D back-projected vertices

Eicp = ∑
k

(
(vk − Tvk

t )·nk
)2

. (10)

Ergb is the cost over the photometric error between pixels

Ergb = ∑
u∈Ω

(I(u, Ct)− I(π(K Tp(u,Dt)), Ct−1))
2, (11)

where vk
t is the back-projection of the k-th vertex in the current depth image, vk and nk are the

corresponding vertex and normal represented in the last predicted depth image. Vertices are associated
using projective data association. Ct is the current color image and Ct−1 is the last predicted color
image. I(u, C) refers the intensity value of a pixel u given a color image C. p(u,D) means the 3D
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back-projection of a point u given a depth map D. π(p) means the perspective projection of a 3D point
p. We minimize the joint cost function Etrack, obtain the transformation matrix T, and finally estimate
the current pose of each camera.

In the multi-camera system, we can obtain multiple poses from different cameras at the same
moment. We choose one pose with minimum joint error as the reference pose and compute other
cameras’ poses from it. For example, if we have three cameras to capture images and have estimated
their extrinsic parameters H1−2, H1−3 by extrinsic calibration method. At the current moment, the pose
of camera 2 is the reference pose P2, then other cameras’ poses are

P1 = P2 H1−2
−1, (12)

P3 = P2 H1−2
−1 H1−3. (13)

Using the above undertaking, when one of the cameras track fails, the poses of other cameras can
be used to prevent this pose from drifting. Actually, if only one camera is successful in tracking, all the
other cameras’ poses can be computed.

3.2. Mapping

In the back end optimization part, we use the deformation graph to optimize the camera pose.
The deformation graph is a non-rigid space map deformation method which is better than the pose
graph optimization in the dense SLAM system. We extend the deformation graph method to a
multi-camera system.

Similar to Elasticfusion [20], we represent the 3D model by an unordered list of surfels M
which possess some attributes, including position, normal, color, weight, radius, initial timestamp,
last updated timestamp, and device number (which represent the first camera number to construct
this surfel). The deformation graph is composed of nodes and edges. Nodes denoted as G, are
randomly selected from surfels and each node has a position, a timestamp, a set of neighbor nodes,
a device number, and an affine transformation (including a rotation matrix and a translation vector).
The neighbors of each node make up the edges of the graph. After optimizing the deformation graph
by the closed loops in the SLAM process [20], we use these nodes to deform the other surfels in the
map. Because there are multiple cameras in the system, when a closed loop is detected, we need to
confirm which camera’s frame trigger the closed loop and in the next step we only deform the surfels
whose device numbers belong to the triggering camera.

Md is the surfel which has the same device number of d with the loop trigger frame. We want
to deform it by some optimized deformation nodes. Firstly, in the set of deformation nodes with
device number of d, we select a set of closest nodes toMd in time and form a set. Then we choose
some closest nodes in distance withMd from the above set, and make up a new set of influencing
nodes of surfelMd as I(Md,Gd). We deform the position and normal of the surfelMd by the above
influencing nodes

M̂p
d = ∑n∈I(Md ,Gd)

ωn(Md) [GR
d,n (Mp

d − G
g
d,n) + G

g
d,n + G

t
d,n], (14)

M̂nor
d = ∑n∈I(Md ,Gd)

ωn(Md) GR
d,n−1

T Mnor
d , (15)

ωn(Md) = (1− ‖Mp
d − G

g
d,n‖2/dmax)

2
, (16)

whereMp
d represents the surfel’s position before deformation, M̂p

d represents the surfel’s position after
deformation;Mnor

d represents the surfel’s normal before deformation, M̂nor
d represents the surfel’s

normal after deformation. Gd,n denotes the n-th influencing node, ωn(Md) is the influence scalar
of the node Gd,n, GR

d,n represents the node’s rotation matrix, Gg
d,n represents the node’s position, G t

d,n
represents the node’s translation vector. dmax is the maximal distance from influence nodes toMd.
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4. Experiment

Firstly, we verify the accuracy of extrinsic calibration by a two-Kinect system, one Kinect towards
the left and another towards the right, with approximate 180◦ relative rotation. In the calibration scene,
we put the calibration board in each Kinect’s field of view respectively, which is shown in Figure 3.
We measure the distance of the two boards from point A to point B (in Figure 3) by laser rangefinder
and make it as the ground truth. Then we estimate the extrinsic parameters of the two Kinects by
odometer-based and SLAM-based methods, separately and in combination, and build three dense 3D
models using the above extrinsic parameters as cameras’ initial poses and measure the distance of the
calibration boards in the three 3D models respectively. Table 1 compares the distance results generated
by the three methods with ground truth. As shown in Table 1, the combination method of odometer
and SLAM performs better.Sensors 2018, 18, x 7 of 11 
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Table 1. Accuracy comparison among three extrinsic calibration methods

Sequence Ground Truth Odometer Calib SLAM Calib Odo + SLAM Calib

1 2.510 m 2.489 m 2.481 m 2.490 m
2 1.969 m 1.953 m 1.940 m 1.955 m

For all experiments, we run our system on a desktop with an Intel Xeon E5-1620 CPU (DELL,
Xiamen, China) at 3.7 GHZ, 32 GB of RAM, and an NVidia GeForce GTX 1060 GPU (ASUS, Suzhou,
China) with 6 GB of memory.

We use three Kinects to test the efficiency of the multi-camera RGB-D SLAM system. The three
Kinects’ position relationships from the top view are shown in Figure 4. In the experiment, we compare
the reconstructed result of single camera SLAM and three-camera SLAM with same movement of
the rig. As shown in Figure 5, three-camera SLAM can build a larger map. Thus using multi-camera
in RGB-D SLAM can improve the efficiency of reconstruction significantly. As shown in Figure 6,
the execution time of our system increases with the number of surfels in the map, the overall average
time is 23 ms per frame.
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Figure 6. Frame time vs. number of surfels.

We also use monocular RGB-D SLAM InfiniTAM [24] to reconstruct the 3D model (Figure 7) of
the same area as Figure 5. To illustrate the reconstruction accuracy of real-world scenes, we compare
the actual lengths of seven line segments on the scenes with the lengths measured in the reconstructed
model. The selected line segments and their lengths are depicted in Figure 8 and Table 2. The RMSE of
the lengths measured in our reconstructed mode is 1.55 cm and the RMSE of the lengths measured
in the reconstructed mode by InfiniTAM is 1.34 cm. From which we know that our reconstruction
accuracy is fairly accurate.

To verify the robustness of our multi-camera RGB-D SLAM system, we make a pedestrian occlude
one of the cameras during the SLAM process and compare the result of single-camera SLAM and
two-camera SLAM. As shown in Figure 9, the single-camera SLAM fails to track the camera pose as a
pedestrian occludes the camera and the two-camera SLAM can continue tracking with the help of the
other camera.
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Table 2. Comparison between the actual lengths of seven line segments with the lengths measured in
the reconstructed model

Line Segment Length in Our
Reconstructed Model

Length in the Reconstructed
Model by InfiniTAM Actual Length

AB 28.64 cm 27.51 cm 29.50 cm
CD 26.37 cm 27.02 cm 27.00 cm
EF 44.80 cm 44.06 cm 44.30 cm
GI 121.13 cm 118.48 cm 118.50 cm
HJ 62.84 cm 61.82 cm 62.10 cm
KL 63.44 cm 61.20 cm 62.30 cm
LM 168.37 cm 172.87 cm 170.50 cm

RMSE 1.55 cm 1.34 cm /
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Figure 9. Comparison of single-camera SLAM result and two-camera SLAM result when one of the
cameras is occluded. (a) is the single-camera SLAM result; (b) is the two-camera SLAM result.

From the above experiments, we firstly demonstrate the accurate extrinsic calibration with
multiple cameras which share no common field of view for two different applications, one is for a robot
with inertial sensors system, the other is for a tripod with the camera only system. The accuracy of
odometer-based calibration method is more accurate than SLAM-based calibration method. However,
the accuracy of combined method is the most accurate method. How to choose the calibration method
is based on the hardware. Secondly, we show that our tracking and mapping method can make an
accurate 3D reconstruction and the RMSE of the lengths measured in our reconstructed mode is 1.55 cm
(similar to the state-of-art single camera RGB-D SLAM systems). The overall average processing time is
23 ms per frame and can be used for real-time operation. Thirdly, we make the pipeline robust to breaks
in monocular visual odometry which occur in areas with low texture or occluded by pedestrians.

5. Conclusions

In this paper, we propose a multi-camera dense RGB-D SLAM system. We use two kinds of
extrinsic calibrations, one for system with inertial measurement unit, and the other for system with only
camera sensors. These two kinds of calibration methods both can estimate the extrinsic parameters
between cameras lacking a common field of view. After calibration, we extend a state-of-the-art dense
single RGB-D SLAM method [20] to multi-camera system. In the tracking stage, multiple cameras do
visual odometry independently and the minimal-error camera pose is chosen as the reference pose
and used to correct the other cameras’ poses in case of some camera tracking fails. In the mapping
stage, we add a device number attribute to the map surfels, and surfels with different device numbers
do different deformations. It is shown our multi-camera dense RGB-D SLAM greatly increased the
efficiency of reconstruction as well as improve the accuracy and robustness of localization. In the
future, we will consider a multiple-sensor-fusion approach to improve the robustness of the system.
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