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Facing the threats of infectious diseases, we take various actions to protect ourselves, but few studies
considered an evolving system with competing strategies. In view of that, we propose an evolutionary
epidemic model coupled with human behaviors, where individuals have three strategies: vaccination,
self-protection and laissez faire, and could adjust their strategies according to their neighbors’ strategies and
payoffs at the beginning of each new season of epidemic spreading. We found a counter-intuitive
phenomenon analogous to the well-known Braess’s Paradox, namely a better condition may lead to worse
performance. Specifically speaking, increasing the successful rate of self-protection does not necessarily
reduce the epidemic size or improve the system payoff. The range and degree of the Braess’s Paradox are
sensitive to both the parameters characterizing the epidemic spreading and the strategy payoff, while the
existence of the Braess’s Paradox is insensitive to the network topologies. This phenomenon can be well
explained by a mean-field approximation. Our study demonstrates an important fact that a better condition
for individuals may yield a worse outcome for the society.

ecent outbreaks of global infectious diseases, including SARS (Severe Acute Respiratory Syndrome), HIN1

(Swine Influenza) and H5H1 (Avian Influenza), have caused major public healthy threats owing to their

potential mortalities and substantial economic impacts. According to the report of WHO, infectious
diseases cause more than 10 million deaths annually and accounting for 23% of the global disease burden'.
Various interventions thus have been developed to control infectious diseases, such as vaccination, treatment,
quarantining and behavior change programs (e.g., social distancing and partner reduction)’.

Though preemptive vaccination is the fundamental method for preventing transmission of infectious diseases
as well as reducing morbidity and mortality’=, practically, the immunization of individuals is more than a
voluntary behavior owing to the economic costs, logistical limitations, religious reasons, side effects, and so
on®. Therefore, instead of vaccinating, people may prefer to take some self-protective actions including reducing
outside activities, detouring to avoid epidemic areas, wearing face masks, washing hands frequently, and so
forth”''. Generally speaking, these self-protective actions are less costly and cannot guarantee the safety against
the diseases.

Under such complicated environment, an individual’s strategy usually results from a tradeoff between cost and
risk. For instance, people may be laissez-faire to the spreading of common flu, while they will take vaccination for
hepatitis B since the vaccines are very effective and hepatitis B is very difficult to cure. In contrast, people prefer to
take self-protection against HIV since its consequence is terrible while the effectivity and side effects of vaccines
are both unknown. Accordingly, game-theoretic models may be suitable to characterize these decision-making
processes™*'>"7. Bauch et al.>* analyzed population behavior under voluntary vaccination policies for childhood
diseases via a game-theoretic framework, and they found that voluntary vaccination is unlikely to reach the
population-level optimum due to the risk perception in vaccines and the effect of herd immunity. By coupling
game models and epidemic models, Bauch'” and Reluga et al."* demonstrated that the self-interested behaviors of
individuals can lead to oscillations in vaccine uptake over time. Vardavas et al.'* considered the effects of
voluntary vaccination on the prevalence of influenza based on a minority game, and found that severe epidemics
could not be prevented unless proper incentives are offered. Basu et al."> proposed an epidemic game model for
HPV vaccination based on the survey data on actual perceptions regarding cervical caner, showing that the actual
vaccination level is far lower than the overall vaccination goals. Perisic and Bauch'® studied the interplay between
epidemic spreading dynamics and individual vaccinating behavior on social contact networks. Compared with
the homogeneously mixing model, they found that increasing the neighborhood size of the contact network can
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eliminate the disease if individuals decide whether to vaccinate by
accounting for infection risks from neighbors. Under the assumption
that people make decisions based on the information of the prior
seasonal epidemic, Cornforth et al."” found that both the flu vaccina-
tion rate and the disease prevalence are erratic due to the short-
sighted behavior of individuals in contact networks. More recent
progresses in this field are summarized in Refs'®"’.

As mentioned above, in most related works, individuals are usually
divided into two opposite classes: vaccinated and laissez-faire, while
less attention is paid on other alterative strategies in between. In this
paper, we propose an evolutionary epidemic game model to study the
effects of self-protection on the system payoff and epidemic size. We
find a counter-intuitive phenomenon analogous to the well-known
Braess’s Paradox™ in network traffic dynamics, that is, the increasing
of successful rate of self-protection may, on the contrary, decrease the
system payoff. We provide a mean-field solution, which well repro-
duces such observation. This study raises an unprecedent challenge
on how to guide the masses of people to react to the outbreaks of
infectious diseases, since sufficient knowledge about and effective
protecting skills to the infectious disease, which sound very helpful
for every individual, may eventually enlarge the epidemic size and
cause losses for the society. The model details are described in the
Methods section, while here we proceed with presenting the results.

Results

We first study the model in square lattices with von Neumann neigh-
borhood and periodic boundary conditions. Figure 1(a) presents the
effect of the successful rate of self-protection, J (see Methods section
for the description of the model and parameters), on the decision
makings of individuals and the epidemic size. Clearly, as the increas-
ing of 9, the condition gets better and better (the efficiency of self-
protection gets improved as the increase of J). A counter-intuitive
phenomenon is observed when 9 lies in the middle range (~[0.3,
0.4]), during which a better condition leads to a larger epidemic size.
One may think that though the epidemic size becomes larger, the
system payoff (the sum payoff of all individuals) could still get higher
since individuals pay less in choosing self-protection than vaccina-
tion. However, as shown in Fig. 1(b) and Fig. 1(c), the system payoff
is strongly negatively correlated with the epidemic size. That is to say,

a better condition (i.e., a larger 6) could result in worse performance
in view of both the larger epidemic size and the less system payoft (In
Fig. S1, we report the epidemic size as a function of § in square lattices
with different sizes, the simulation results indicate that our main
results are insensitive to the network sizes). This is very similar to
the so-called Braess’s Paradox, which states that adding extra capa-
city to a network when the moving entities selfishly choose their
route, can in some cases reduce overall performance®® 2.

Figure 2 shows the strategy distribution patterns of four repres-
entative cases. When ¢ is small, it is unwise to take self-protection
because of its low efficiency, and people prefer to take vaccination or
laissez faire. As shown in Fig. 2(b), there are only two strategies,
vaccination and laissez faire, and thus 0 has no effect on the epidemic
size. Meanwhile, one can find that the infected laissez-faire indivi-
duals (dark red) and uninfected laissez-faire individuals (light red)
are isolated by the vaccinated individuals and form respective per-
colating clusters. That is to say, the vaccinated individuals play the
role of firewall in preventing the contagion of disease to the whole
system. Of course, this kind of partial separation can only be possible
when the number of vaccinated individuals is considerable, other-
wise, the number of vaccinated individuals is insufficient to cut off
the spreading paths of the disease. When J gets larger (~[0.3, 0.4]),
the advantage of self-protection starts to appear, so more individuals
will take self-protection and fewer individuals take vaccination or
laissez faire. However, low efficiency of self-protection (i.e., small )
cannot offset the losses coming from the reduced vaccinated indivi-
duals, which leads to the increase of the epidemic size (see the dark
red points in Fig. 2(c)) as well as the decrease of the system payoff.
Also as shown in Fig. 2(c), the light-red percolating cluster (i.e.,
uninfected laissez-faire individuals) is fragmented into pieces due
to the decrease of irrelevant individuals (the irrelevant individuals
include both vaccinated and successful self-protective individuals,
see Methods for the definition), which is also a reason of the decrease
of the fraction of laissez-faire individuals: being laissez-faire becomes
more risky now. When ¢ is large, the superiority of self-protection
becomes more striking and no one takes vaccination, then the epi-
demic size decreases as J increases. As shown in Fig. 2(d), only self-
protective and laissez-faire individuals coexist in the lattice. With
further increase the value of d, though the self-protection strategy
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Figure 1| Less payoff in better condition. (a) How the fractions of the three strategies and the epidemic size change with the successful rate of self-
protection 9. (b) The epidemic size R” and the system payoff P as functions of d. (c) Correlation between the system payoff P and the epidemic size R,
where each data point corresponds to a certain d. Panel (a) is divided into three regions by two vertical dash lines: (i) In the left region, no self-protective
individual exists and ¢ has no effect on the epidemic size; (ii) In the middle region, the self-protection strategy gradually replaces vaccination and laissez
faire, and the epidemic size increases with ¢ due to the decrement of vaccination fraction; (iii) In the right region, with high successful rate of self-
protection, individuals are unwilling to take vaccination and the epidemic size decreases with . Parameters are set to be N = 50 X 50 = 2500, 4 = 0.5, u =
0.3,b=10.1,c= 0.4, k = 10 and I, = 5. For this figure and all others (except snapshots), the simulation results are calculated after 1000 seasons when the
system is in a steady state, and each data point is obtained by averaging over 100 independent runs.
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Figure 2 | Strategy distribution patterns. Subgraph (a) shows the epidemic size R* as a function of the successful rate of self-protection d. The window is
divided into three parts according to the tendency of R” — J curve. Subgraphs (b), (c), (d) and (e) are snapshots in the steady state of a season at 6 = 0.2,
0.35, 0.5 and 0.95. The grey, light red, dark red, light blue and dark blue points stand for vaccinated, uninfected laissez-faire, infected laissez-faire,
uninfected self-protective, and infected self-protective individuals, respectively. Parameters are the same as in Fig. 1.

is more efficient, the laissez-faire strategy is more attractive since
successful self-protective individuals becomes more and thus for
susceptible individuals, the risk of being infected becomes smaller.
This is the reason why the fraction of laissez-faire individuals become
larger as  goes approaching to 1. In fact, when 9 is very large, the
uninfected laissez-faire individuals again form a percolating cluster
since the externality effect from the successful self-protective indivi-
duals makes laissez-faire individuals to be free-riders. Please see
Fig. 2(e) for the example at 5 = 0.95.

Previous studies have shown that the contact patterns can dramat-
ically impact the disease dynamics and the individual’s decision
makings'®", so it is necessary to further check our results on other
types of networks. To this end, we implement the model on disparate
networks including the Erdés-Rényi (ER) networks®, the Barabasi-
Albert (BA) networks* and the well-mixed networks (also called
fully connected networks or complete networks). Figure 3 demon-
strates that, in despite of the quantitative difference, the counter-
intuitive phenomenon can be observed for all kinds of networks.
Figures S2-S5 present systematical simulation results about the
effects of different parameters for different kinds of networks and
one can always observe the counter-intuitive phenomenon when the
condition 0 < b < ¢ < 1 is hold.

Although the phenomenon is qualitatively universal for different
kinds of networks, as shown in Fig. 3, there are quantitative differ-
ences between square lattices and other kinds of networks: (i) in ER,
BA and well-mixed networks, the self-protection strategy are further
promoted and could become the sole strategy in a certain range of 6
(Take the case of BA network in Fig. 3(c) as an example, the self-
protection strategy prevails on the whole network when ¢ lies in the
interval ~ [0.3, 0.7]); (ii) the epidemic size in ER, BA and well-mixed
networks is smaller than that in square lattices. In square lattices,
laissez-faire individuals could form clusters that are guarded by the
surrounding irrelevant individuals (i.e., vaccinated and successful
self-protective individuals). Then they paid nothing but can escape
from the infection. On the contrary, ER, BA and well-mixed net-
works do not display localized property and thus to choose laissez-
faire strategy is of high risk. Therefore, with delocalization, the

laissez-faire strategy is depressed while the self-protection strategy
gets promoted and less individuals will get infected.

To verify the above inference, we remove a number of edges in the
square lattice and randomly add the same number of edges. During
this randomizing process, the network connectivity is always guar-
anteed and the self-connections and multi-connections are not
allowed. The number of removed edges, A, can be used to quantify
the strength of delocalization. As shown in Fig. 4, with the increasing
of A, the self-protection strategy gets promoted and the clusters of
uninfected laissez-faire individuals are fragmented into small pieces.
When A gets larger and larger, the strategy distribution pattern
becomes closer and closer to that of ER, BA and well-mixed net-
works. The gradually changing process in Fig. 4 clearly demonstrates
that the main reason resulting in the quantitative differences is the
structural localization effects. In a word, the ER, BA and well-mixed
display essentially the same results since they do not have many
localized clusters.

Figures 5 and 6 report the degree and width of the Braess’s paradox
for well-mixed networks* (Figures S6, S7 and S8 present the degree
and width of the Braess’s paradox for the other three kinds of net-
works under investigation). The degree of the Braess’s paradox is
defined as Dr = R,,..x — Rinisiar Where R, is the maximal value
of epidemic size and R, is the value of epidemic size when the
Braess’s paradox starts to happen. Fig. 5(a) presents an illustration
about the definition of Dg, and Fig. 5(b) plots the value of Dy, for
different parameters. Each subpanel in Fig. 5(b) is associated with a
given (4, p) pair with b and ¢ being two variables. Analogously, the
width of the Braess’s paradox is defined as Ds = 0¢ng — Ostar» Where
Ostare is the starting point corresponding to R;siq and .4 is the right
point when the Braess’s paradox disappears. Fig. 6(a) present an
illustration about the definition of D;. Figure 6(b) plots the value
of D; in the similar way to Fig. 5(b). The simulation results indicate
that when 4 is very small (e.g., A = 0.2 in the top panels of Fig. 5(b)
and Fig. 6(b)), the Braess’s paradox disappears, and with the increas-
ing of the value of 4, the Braess’s paradox becomes more obvious. The
parameters b and c also affect the existence of Braess’s paradox, for
instance, when b and ¢ are all close to 1, the Braess’s paradox

| 3:3292 | DOI: 10.1038/srep03292

3



o
p, Pg p, © R
1.0
Lattice
0.8
a
0.6 %, ( )
o0
e} OOOOO
0.4 $0000000000000600 %o N
OOOOOOOOOOOOO
0.2 1
0.0 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
o
o
p, P p, ° R
1.0
0.8
C
0.6 ( )
%
0.4+ 5o O%o
oo %o
o o
o o
0'2"oooooooooo OOOO
s}
OooooooooooooooOo
0.0 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
o

. P, Ps p, ©° R
0.8 -ER
06, (b)
0.4 ooooO
. OOO OOO
Oooooo %
0.2 OOOO %
0000000 2
©00000000000000,
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
o
» P, Pg p, ° R
s Well-mixed Network |
06 (d)
009
0.4 Oooo oOO
©00000050° OOO
0.2+ Ooooooooooooooooooooooooo
0.0 T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
o

Figure 3 | Insensitivity to the network structures. To explore the impacts of different network structures on the epidemic size and strategy distribution,
we compare the results in square lattices (a), ER networks (b), BA networks (c) and well-mixed networks (d). The parameters are set as b = 0.1,

Iy = 5, c= 0.4, and k = 10. Each data point results from an average over 100 independent runs. The average degrees of the lattices, ER networks and BA
networks are all set to be 4, and the simulations presented in subgraph (a), (b) and (c) are implemented with the same transmission and recovery
rate, 4 = 0.5 and u = 0.3. For the well-mixed network (d), however, the parameters are different from others as 4 = 0.0025 and u = 1 for its different
average degree. The sizes of the ER, BA and well-mixed networks are set to be N = 1000 and the size of the square lattice is N = 2500.

disappears. In most cases, the values of D and D; are larger than 0,
indicating the existence of the Braess’s paradox.

Lastly, we present an approximation analysis based on the mean-
field theory for well-mixed networks (see analysis in the Methods
section), which could reproduce the counter-intuitive phenomenon.
Figure 7 compares the analytical prediction with simulation, indi-
cating a good accordance.

Discussion

Spontaneous behavioral responses to epidemic situation are recog-
nized to have significant impacts on epidemic spreading, and thus to
incorporating human behavior into epidemiological models can
enhance the models’ utility in mimicking the reality and evaluating
control measures'®**'". To this end, we proposed an evolutionary
epidemic game where individuals can choose their strategies as vac-
cination, self-protection or laissez faire, towards infectious diseases
and adjust their strategies according to their neighbors’ strategies and
payoffs.

Strikingly, we found a counter-intuitive phenomenon that a better
condition (i.e., larger successful rate of self-protection) may unfortu-
nately result in less system payoff. It is because when the successful
rate of self-protection increases, people become more speculative and
less interested in vaccination. Since a vaccinated individual indeed
brings the ‘externality’ effect to the system: the individual’s decision
to vaccinate diminishes not only their own risk of infection, but also
the risk for those people with whom the individual interacts', the

reduction of vaccination can remarkably enhance the risk of infec-
tion. Qualitatively speaking, the counter-intuitive phenomenon is
insensitive to the network topology, while quantitatively speaking,
networks with delocalized structure (e.g., ER, BA and well-mixed
networks) have more self-protective individuals and less laissez-faire
individuals than networks with localized structure (e.g., square lat-
tices), and the epidemic size is larger in the latter case. Without the
diverse behavioral responses of individuals, epidemic in delocalized
structure usually spreads more quickly and widely than in localized
structure®>*. The opposite observation reported in the current
model again results from more and more speculative choices (i.e.,
to be laissez-faire) at a low-risky situation. Therefore, this can be
considered as another kind of “less payoff in better condition”
phenomenon.

The observed counter-intuitive phenomenon reminds us of the
well-known Braess’s Paradox in network traffic***'. Zhang et al.**
showed that to remove some specific edges in a network can largely
enhance its information throughput, and Youn et al.*® pointed out
that some roads in Boston, New York City and London could be
closed to reduce predicted travel times. Actually, Seoul has removed
a highway to build up a park, which, beyond all expectations, main-
tained the same traffic but reduced the travel time*. Very recently,
Pala et al.”” showed that Braess’s Paradox may occur in mesoscopic
electron systems, that is, adding a path for electrons in a nanoscopic
network may paradoxically reduce its conductance. This work pro-
vides another interesting example analogous to Braess’s Paradox,
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Parameters are the same as in Fig. 1. The meanings of different colors are the same to Fig. 2.

namely a higher successful rate of self-protection may eventually
enlarge the epidemic size and thus cause system loss. Let’s think of
the prisoner’s dilemma, if every prisoner stays silent, they will be fine,
while one more choice, to betray, makes the situation worse for them.
Analogously, if the successful rate ¢ is small, few people will choose to be
self-protective, while for larger J, people have more choices, which may
eventually reduce the number of vaccinated people and thus enlarge the
epidemic size. Basically, both the original Braess’s Paradox and the
current counter-intuitive phenomenon are partially due to the addi-
tional choices to selfish individuals. This is easy to be understood in a
simple model like the prisoner’s dilemma game, but it is impressive to
observe such phenomenon in a complex epidemic game.
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Human-activated systems are usually much more complex than
our expectation, since people’s choices and actions are influenced
by the environment and at the same time their choices and actions
have changed the environment. This kind of interplay leads to
many unexpected collective responses to both emergencies and
carefully designed policies, which, fortunately, can still be modeled
and analyzed to some extent. This work raises an unprecedent
challenge to the public health agencies about how to lead the
population towards an epidemic. The government should take
careful consideration on how to distribute their resources and
money on popularizing vaccine, hospitalization, self-protection,
self-treatment, and so on.
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Methods

Model. Considering a seasonal flu-like disease that spreads through a social contact
network®®*. At the beginning of a season, each individual could choose one of the
three strategies: vaccination, self-protection or laissez faire. If an individual gets
infected during this epidemic season, she will pay a cost . A vaccinated individual will
pay a cost ¢ that accounts for not only the monetary cost of the vaccine, but also the
perceived vaccine risks, side effects, long-term healthy impacts, and so forth. We
assume that the vaccine could perfectly protect vaccinated individuals from infection
in the following epidemic season. A self-protective individual will pay a less cost b,
while a laissez-faire individual pays nothing. Denote ¢ be the successful rate of self-
protection, that is, a self-protective individual will be equivalent to a vaccinated
individual with probability 6 or be equivalent to a laissez-faire individual with
probability 1 — ¢. This will be determined right after an individual’s decision for
simplicity. Obviously, r > ¢ > b > 0. Without loss of generality, we set the cost of
being infected as r = 1. Table 1 presents the payoffs for different strategies and
outcomes.

When the strategy of every individual is fixed, all individuals can be divided into
two classes: susceptible individuals including laissez-faire individuals and a fraction 1
— 0 of self-protective individuals (i.e., unsuccessful ones), and irrelevant individuals
(equivalent to be removed from the system) including vaccinated ones and a fraction
0 of self-protective individuals that are selected to be successful and will not be
infected in the following season of epidemic spreading. Among all susceptible indi-
viduals, I, individuals are randomly selected and set to be infected initially. The
spreading dynamics follows the standard susceptible-infected-removed (SIR)
model***!, where at each time step, each infected individual will infect all her sus-
ceptible neighbors with probability 4, and then she will turn to be a removed indi-
vidual with probability x. The spreading ends when no infected individual exists.

P, P p, ° R
1.0 R ]
I . .
l | : simulation
0.81 7% |
I ! ]
o] i 4] -
| O |
NI
0.4 L2 1oy N
0000000000 ! o)
0.2 : % OoooooooOooooooo
il ! % 900000000000,
I 1 ]
0.0 \: : :\ T T

Then, the number of recovered individuals, R(), is called the epidemic size or the
prevalence at one epidemic season.

After this epidemic season, every individual updates her strategy by imitating her
neighborhood. Firstly, she will randomly select one neighbor and then decide whether
to take this neighbor’s strategy. We apply the Fermi rule>*, namely an individual i
will adopt the selected neighbor j’s strategy with probability

1

W) = exp[ (P =P

(1)

where s; means the strategy of i, P; is i’s payoff in the last season, and the parameter x
> 0 characterizes the strength of selection: smaller x means that individuals are less
responsive to payoff difference. After the moment all individuals have decided their
strategies (and thus their roles in the epidemic spreading are also decided), a new
season starts. Without specific statement, we use the average epidemic size R” over
many epidemic seasons after the system becomes statistically stable to quantify the
severity of the epidemic.

Analysis on well-mixed network. It is beyond our ability to provide a thorough
theoretical analysis on the dynamics of the system for (i) the stochastic and
nonlinear effects in Eq. (1), (ii) the multiple choices of individuals enclosed in the
model, and (iii) the different time scales (in a sequential order) of the epidemic
dynamics and the decision makings of individuals. Instead, an approximation
analysis based on the mean-field theory and numerical integral method for well-
mixed networks is given to quantitatively cross-check the observations reported in
the simulation results. Given a well-mixed network with size N, the dynamical
equations are

iol P, Pg Py, © R
os M7z solution
061 y (b)
! o !
0.4+ 3 oooo :oo?oo S
0000000000 (77 ooOo
0.2 ‘ 7Y OOOOOOOOOOOO 0 N
\ % ©00000000000
0-0 ‘\ . : T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 7 | The analytical solution agrees well with the simulation. The analytical prediction based on the mean-field theory (see Method section)
(b) is in good accordance with the simulation results (a). All results are implemented on a well-mixed network with N = 1000, ¢= 0.7, b= 0.1, 2 = 0.0025,
u = 1.0, I, = 5and k = 10. The three dotted lines from left to right in two subgraphs correspond to the starting point of the Baress’s paradox, the ending

point of the Baress’s paradox, and the point with maximal fraction of ps.
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Table 1 | The payoffs for different strategies and outcomes
Healthy Infected
Laissezfaire 0 -1
Self-protected -b -1-b
Vaccinated —c N/A
ds
o = —NSL, )
dl
i ANSI —ul, (3)
dR
=M (4)

where S, I and R stand for the fraction of susceptible, infected and recovered
individuals, respectively. Dividing Eq. (2) by Eq. (4), one has

das
— =—R,S 5
dR o ©)
/N | . ) .
where Ry = — is the basic reproduction number for the standard SIR model in

well-mixed population of size N*. Integrating Eq. (5), we get

/Sm@ —/Rm—R dR ©)
s S Jro
which leads to the solution
§(0)
lnwf—Ro[mO@)—R(o)]‘ 7)

With the initial condition 1(0) = I,/N = 5/N, S(0) = 1 — 5/N = 1 and R(0) = 0
as well as the equation R(%) + S(«) = 1 in the thermodynamic limit, we have

R(0)=1—exp[— RyR(o0)]. (8)

Let py, ps and py, be the fraction of vaccinated, self-protective and laissez-faire
individuals, such that py + ps + p; = 1. Since only a fraction 1 — py + dps of
individuals are susceptible, using the similar techniques, one can easily obtain the
epidemic size as

R(0)=(1=py —dps){1—exp[—RoR'(0)]}, ©)
Then, the probability of a susceptible individual to be infected reads
R(w0)

w=——""—=1—exp[—RoR'(0)].

10
1—py—dps (0

The payoffs of different strategies and states are thus easily to be obtained, which
are summarized in Table 2.

The imitation dynamics governing the time evolution of the fractions of strategies
in the population is similar to the replicator dynamics of evolutionary game the-
01’}’39‘44, as

dpy

By (g e )+ (v = o)+ v = o)+ o= pl). (1)

Table 2 | The payoffs for different strategies and states. Py, Ps and
P, stand for average payoffs for individuals with strategy vaccina-
tion, self-protection and laissez faire, while the superscripts H
(healthy) and I (infected) represent the final states

Strategy & State Fraction Payoff
Vaccinated & Healthy pv Py=—c
Self-protective & Healthy  plf =pg[64(1—0)(1—w)] P=—b
Self-protective & Infected  pl = pg(1—d)w Pl=—b—1
Laissezfaire & Healthy p=(1—-py—ps)(1—w) Pl=0
Laissezfaire & Infected pl=(1—py—pgo Pl=—1

d,
R R Y B VA R L0 B

+ (o5 = o) + (05 = p1)s
where
pv 2 ps=(ps—py)— (pv—pf)

. 1 1
=pyPs {1+exp[7K(PV7P§’)} - 1+exp[7K(P§17Pv)}} 13)

K
= pvp? tanh b (PV —P?)}

= pypsld+(1—0)(1—)]tanh [g(—ﬁ-b)],

and the others are similar. Note that, to avoid confusion, we use t to denote the
dynamics of epidemic at each epidemic season, while 7 is used to denote the serial
number of epidemic seasons.

Let py(1), ps(t) and p;(7) be the initial fractions of vaccinated, self-protective and
laissez-faire individuals before the (7 + 1)th season of epidemic spreading. Given
pv(0) = ps(0) = p;(0) = 1/3, and the initial conditions as S(0) = (N" — 5)/N’, I(0) =
5/N’ and R(0) = 0 for the following epidemic season, where N’ = (1 — py — dpg)N,
depending on the distribution of strategies at this season. Then, R’ (%) can be obtained
by Eq. (9) and @ by Eq. (10). Using the evolutionary dynamics described in Eqs. (11)—
(13) and the fractions presented in Table 2, one can obtain the values of py(1), ps(1)
and p;(1), which are also the initial fractions of strategies at the beginning of the next
season. Repeat the above steps until the steady state, then we can calculate the desired
variables.

1. World Health Organization. The world health report 2004: Changing history.
World Health Organization (2004).

2. Enns, E., Mounzer, J. & Brandeau, M. Optimal link removal for epidemic
mitigation: A two-way partitioning approach. Math. Biosci. 235, 138-147 (2011).

3. Bauch, C,, Galvani, A. & Earn, D. Group interest versus self-interest in smallpox
vaccination policy. Proc. Natl Acad. Sci. USA 100, 10564-10567 (2003).

4. Bauch, C. & Earn, D. Vaccination and the theory of games. Proc. Natl Acad. Sci.
USA 101, 13391-13394 (2004).

5. Perisic, A. & Bauch, C. A simulation analysis to characterize the dynamics of
vaccinating behaviour on contact networks. BMC. Infect. Dis. 9, 77 (2009).

6. Schimit, P. & Monteiro, L. A vaccination game based on public health actions and
personal decisions. Ecol. Model. 222, 1651-1655 (2011).

7. Meloni, S. et al. Modeling human mobility responses to the large-scale spreading
of infectious diseases. Sci. Rep. 1, 62 (2011).

8. Perra, N,, Balcan, D., Gongalves, B. & Vespignani, A. Towards a characterization
of behavior-disease models. PLoS ONE 6, 23084 (2011).

9. Fenichel, E. et al. Adaptive human behavior in epidemiological models. Proc. Natl
Acad. Sci. USA 108, 6306-6311 (2011).
10. Sahneh, F., Chowdhury, F. & Scoglio, C. On the existence of a threshold for
preventive behavioral responses to suppress epidemic spreading. Sci. Rep. 2, 632
(2012).
. Chen, F. Modeling the effect of information quality on risk behavior change and
the transmission of infectious diseases. Math. Biosci. 217, 125-133 (2009).
12. Bauch, C. Imitation dynamics predict vaccinating behaviour. Proc. R. Soc. B 272,
1669-1675 (2005).

13. Reluga, T., Bauch, C. & Galvani, A. Evolving public perceptions and stability in
vaccine uptake. Math. Biosci. 204, 185-198 (2006).

14. Vardavas, R., Breban, R. & Blower, S. Can influenza epidemics be prevented by
voluntary vaccination? PLoS. Comput. Biol. 3, €85 (2007).

15. Basu, S., Chapman, G. & Galvani, A. Integrating epidemiology, psychology, and

economics to achieve HPV vaccination targets. Proc. Natl Acad. Sci. USA 105,
19018-19023 (2008).

Perisic, A. & Bauch, C. Social contact networks and disease eradicability under

voluntary vaccination. PLoS. Comput. Biol. 5, €1000280 (2009).

Cornforth, D., Reluga, T., Shim, E., Bauch, C. & Galvani, A. Erratic Flu

Vaccination Emerges from Short-Sighted Behavior in Contact Networks. PLoS.

Comput. Biol. 7, 1001026 (2011).

Funk, S., Salathé, M. & Jansen, V. Modelling the influence of human behaviour on

the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247-1256 (2010).

19. Manfredi, P. & d’Onofrio, A. Modeling the Interplay Between Human Behavior
and the Spread of Infectious Diseases (Springer, 2013).

. Braess, D. Uber ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung
12, 258-268 (1968).

.Roughgarden, T. Selfish Routing and the Price of Anarchy (MIT Press, Cambridge,
MA, 2005).

22. Nicolaides, C., Cueta-Felgueroso, L. & Juanes, R. The price of anarchy in mobility-

driven contagion dynamics. J. R. Soc. Inteface 10, 20130495 (2013).
23.Erdés, P. & Rényi, A. On random graphs i. Publ Math Debrecen 6,290-297 (1959).
24. Barabasi, A. & Albert, R. Emergence of scaling in random networks. Science 286,
509-512 (1999).

1

—

1

>

1

N

1

®

p

(=]

2

—

| 3:3292 | DOI: 10.1038/srep03292



25. Medlock, J., Luz, P., Struchiner, C. & Galvani, A. The Impact of Transgenic
Mosquitoes on Dengue Virulence to Humans and Mosquitoes. Am. Nat. 174,
565-577 (2009).

26. Zhang, H., Small, M., Fu, X, Sun, G. & Wang, B. Modeling the influence of
information on the coevolution of contact networks and the dynamics of
infectious diseases. Physica D 241, 1512-1517 (2012).

27. Zhang, H., Zhang, J., Zhou, C., Small, M. & Wang, B. Hub nodes inhibit the
outbreak of epidemic under voluntary vaccination. New J. Phys. 12, 023015
(2010).

28. Salathé, M. & Bonhoeffer, S. The effect of opinion clustering on disease outbreaks.
J. R. Soc. Interface 5, 1505-1508 (2008).

29. Poletti, P., Ajelli, M. & Merler, S. The effect of risk perception on the 2009 HIN1
pandemic influenza dynamics. PLoS ONE 6, e16460 (2011).

30. Funk, S., Gilad, E., Watkins, C. & Jansen, V. The spread of awareness and its
impact on epidemic outbreaks. Proc. Natl Acad. Sci. USA 106, 6872-6877 (2009).

31. Coelho, F. & Codego, C. Dynamic modeling of vaccinating behavior as a function
of individual beliefs. PLoS. Comput. Biol. 5, e1000425 (2009).

32. Eguiluz, V. M. & Klemm, K. Epidemic threshold in structured scale-free networks.
Phys. Rev. Lett. 89, 108701 (2002).

33. Zhou, T, Fu, Z. & Wang, B. Epidemic dynamics on complex networks. Prog. Nat.
Sci. 16, 452-457 (2006).

34. Zhang, G., Wang, D. & Li, G. Enhancing the transmission efficiency by edge
deletion in scale-free networks. Phys. Rev. E. 76, 017101 (2007).

35. Youn, H., Gastner, M. T. & Jeong, H. Price of Anarchy in Transportation
Networks: Efficiency and Optimality Control. Phys. Rev. Lett. 101, 128701 (2008).

36. Baker, L. Removing roads and traffic lights speeds urban travel. Scientific
American pages 20-21, February 2009.

37. Pala, M. G. et al. Transport Inefficiency in Branched-Out Mesoscopic Networks:
An Analog of the Braess Paradox. Phys. Rev. Lett. 108, 076802 (2012).

38. Fu, F., Rosenbloom, D., Wang, L. & Nowak, M. Imitation dynamics of vaccination
behaviour on social networks. Proc. R. Soc. B 278, 42-49 (2011).

39. Wu, B, Fu, F. & Wang, L. Imperfect vaccine aggravates the long-standing
dilemma of voluntary vaccination. PLoS ONE 6, €20577 (2011).

40. Anderson, R. & May, R. Infectious diseases of humans: dynamics and control

(Oxford University Press, Oxford, 1992).
. Hethcote, H. The Mathematics of Infectious Diseases. SIAM Rev. 42, 599-653
(2000).

4

—

42. Traulsen, A., Nowak, M. & Pacheco, J. Stochastic dynamics of invasion and
fixation. Phys. Rev. E. 74, 011909 (2006).

43. Perc, M. & Szolnoki, A. Coevolutionary games—a mini review. BioSystems 99,
109-125 (2010).

44. Poletti, P., Caprile, B., Ajelli, M., Pugliese, A. & Merler, S. Spontaneous
behavioural changes in response to epidemics. J. Theor. Biol. 260, 31-40 (2009).

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China
under Grant Nos. 11005001, 11005051, 11222543, 11135001, 11275186, 91024026 and
10975126. H.F.Z. acknowledges the Doctoral Research Foundation of Anhui University
under Grant No. 02303319. T.Z. acknowledges the Program for New Century Excellent
Talents in University under Grant No. NCET-11-0070.

Author contributions

HF.Z,ZMY., ZXW., BHW. and T.Z. designed research, H.F.Z.and Z.M.Y. performed
research, Z.-X.W. and T.Z. contributed the analytical results. T.Z. wrote the manuscript and
all authors reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Zhang, H.-F., Yang, Z., Wu, Z.-X., Wang, B.-H. & Zhou, T. Braess’s

Paradox in Epidemic Game: Better Condition Results in Less Payoff. Sci. Rep. 3, 3292;
DOI:10.1038/srep03292 (2013).

@@@@ This work is licensed under a Creative Commons Attribution-
ATl NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-nd/3.0

| 3:3292 | DOI: 10.1038/srep03292


http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Less payoff in better condition.
	Figure 2 Strategy distribution patterns.
	Figure 3 Insensitivity to the network structures.
	Figure 4 Delocalization promotes the self-protection strategy.
	Figure 5 The degree of the Braess’s paradox region DR in well-mixed network.
	Figure 6 The width of the Braess’s paradox region Dd in well-mixed network.
	Figure 7 The analytical solution agrees well with the simulation.
	References
	Table 1 The payoffs for different strategies and outcomes
	Table 2 The payoffs for different strategies and states. PV, PS and PL stand for average payoffs for individuals with strategy vaccination, self-protection and laissez faire, while the superscripts H (healthy) and I (infected) represent the final states

