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mediated Endoplasmic Reticulum Stress
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TLR9-cGAS-STING-IFN Signal Axis
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Abstract
This study aimed to investigate the protective effects of erythrocyte-mediated endoplasmic reticulum (ER) stress in
macrophages in hemorrhagic shock. An hemorrhagic shock model was established in male BALB/c mice. Animals were
randomly divided into three groups (n ¼ 8): control group (A), erythrocyte reinfusion group (B), and TLR9 inhibition group
(C). Eight healthy BALB/c mice were also included as group N (n¼ 8). Mice in group A were not treated, while mice in groups
B and C were transfused with red blood cells separated from the blood of mice in group N. Flow cytometry was used to detect
the expression of erythrocyte surface protein TLR9 in each group. Immunofluorescence assay was used to analyze the dis-
tribution and relative expression of protein STING in macrophages. Flow cytometry was used to analyze the expression of
STING, ATF6, and IRE1 in macrophages. Enzyme-linked immunosorbent assay was used to analyze the levels of inflammatory
signal molecules, including IFN-a, IFN-b, IL-6, CCL4, CCL5, and IL-6. FITC-Annexin V was used to analyze the apoptosis of
immune cells (macrophages) in mouse blood samples and to detect the concentration of calcium ions in erythrocyte
cytoplasm. The results showed that the expression of erythrocyte surface protein TLR9; the distribution of STING-positive
cells in macrophages; the expressions of STING, ATF6, and IRE1 in macrophages; the levels of inflammatory signal molecules;
the apoptosis rate of macrophages; and the intracellular calcium concentration in erythrocytes in group B were higher than
those in group A, followed by group C. These results suggest that TLR9 regulates ER stress in macrophages of mice with
hemorrhagic shock through the TLR9-cGAS-STING-IFN signaling pathway. Increased expression of TLR9 enhanced
macrophage activity, reduced apoptosis, enhanced inflammatory response and immune response, and restored electrolyte
level, which might be a therapeutic option for the treatment of hemorrhagic shock.
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Introduction

Hemorrhagic shock (HS) is a common critical clinical

condition that can increase the susceptibility to infection,

leading to sepsis and multiple organ failure due to the inhibi-

tion of cellular immunity1. TLR9 is a surface protein recep-

tor for mitochondrial DNA (mtDNA). cGAS is a sentry

response protein in cells. It detects foreign and altered DNA

and then initiates a cascade of signals triggering the internal

defense function2,3. When erythrocytes carrying mtDNA

reach macrophages via blood circulation, the endoplasmic

reticulum (ER) of macrophages can be activated4. Protein

interferon gene stimulator protein (STING), located in ER, is

a downstream signal molecule of cGAS. Combining with

TBK1, STING induces the production of I-IFNs (IFN-a and

IFN-b). I-IFNs regulate inflammatory factors through

the PI3K-AKT signaling pathway to protect immune

cells and organs from apoptosis and damage5,6. The aim of

this study was to investigate the protective effects of

erythrocyte-mediated ER stress in macrophages in HS.

Materials and Methods

Laboratory Animals and Grouping

Forty healthy and clean BALB/c male mice (weighing

20–28 g) were purchased from the Laboratory Animal

Research Institute of Chinese Academy of Medical Sciences

(Beijing, China). Mice were acclimated to the environment

and fasted for 12 h before experiments, during which they had

free access to drinking water. All experimental procedures

were performed according to the ethical standards of experi-

mental animals. Eight healthy BALB/c mice were randomly

selected as group N (n¼ 8). The rest animals were subjected

to the establishment of HS model by cardiac puncture as

previously described7. Twenty-seven mice were successfully

modeled. Twenty-four of them were randomly selected and

divided into three groups (n¼ 8): control group (A), erythro-

cyte reinfusion group (B), and TLR9 inhibition group (C).

Treatment

Fresh blood samples were obtained from the healthy mice in

group N. The red blood cells were separated and transfused

to mice in groups B and C. Mice in group C mice were

concomitantly given TLR9 antibody via intravenous injec-

tion and their venous blood samples were collected after

3 days of treatment. Animals in group A were not treated.

Measurements

A volume of 5 ml fresh blood was obtained from mice in

groups A, B, and C and isolated into single cell suspension.

After centrifugation for 15 min at 1,500 r/min, the super-

natant was discarded. Cells were resuspended with 0.35 ml

BDTM stationary solution to obtain single cell suspension

and stored at 4�C for further analysis.

(1) Flow cytometry was used to detect the expression of

erythrocyte surface protein TLR9 in each group of

mice. Cells were washed with phosphate buffered

saline (PBS) and centrifuged at 1,500 r/min for 5

min. After two repetitions, samples were blocked

with 2% rat serum and reacted with rabbit

anti-TLR9 (primary antibody) 50 ml (1:50) for 1.5

h at 4�C. After two washes with PBS, the second

antibody was added 50 ml (1:50) and incubated at

4�C for 45 min. After two washes with PBS, 30 ml

PBS was added for detection. The fluorescence was

detected by the Listmodl software system. The Mul-

ticycle software was used for data processing and

the positive cell rate was recorded.

(2) Immunofluorescence analysis was performed to deter-

mine STING distribution and relative expression in

macrophages. Macrophages in blood samples were

obtained and cultured in RPMI-1640 containing 10%
fetal bovine serum (FBS, Gibco, Invitrogen, Paisley,

UK) in a 5% CO2 incubator at 37�C. After two days,

adherent cells were collected. Cells were fixed at

�20�C for 5 min with 4% formaldehyde, blocked with

10% rat serum at room temperature for 1 h, and then

incubated with rabbit anti-STING-1 (1:100) overnight

at 4�C. After being washed with PBS, samples were

incubated with the second antibody (1:100) at room

temperature for 45 min, and fluorescence microscopy

was used to observe 60% buffered glycerol seals.

(3) Single cell suspension was analyzed by flow sorting.

Cells (1 � 107) were suspended with 300 ml buffer

(5% FBSþ RPMI-1640) and incubated with 3 ml FC

blocking antibody at room temperature for 5 min.

Then cell suspension was divided into two tubes.

Tube 1 was the negative control. Tube 2 was labeled

with 3 ml CD11b-APC antibody and 3 ml CD11c-PE

antibody for 20 min at 4�C. Then samples were

washed twice with flow buffer and then resuspended

with 2.5 ml flow buffer for flow cytometry.

(4) The protein expressions of STING, ATF6, and IRE1

in macrophages were analyzed by flow cytometry.

A volume of 1.0 ml single cell suspension was taken

and the rabbit anti-STING, ATF6, and IRE1 antibo-

dies were used as the first antibody.

(5) The levels of inflammatory signaling molecules,

including IFN-a, IFN-b, IL-6, CCL4, CCL5, and

CXCL10, were analyzed by enzyme-linked immu-

nosorbent assay (ELISA). The venous blood was

extracted from mice and collected in an anticoagu-

lant tube of ethylenediaminetetraacetic acid. The

blood samples were centrifuged at room tempera-

ture for 0.5–1 h and stored at �20�C for ELISA

analysis. The detection was performed according

to the manufacturer’s instructions.

(6) The apoptosis of immune cells in mouse blood was

analyzed by Flow FITC-Annexin V analysis. After

stimulating for apoptosis, cells were collected in
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flow tube, centrifuged at 4�C for 10 min at 1,000 r/

min, washed with PBS twice, and then resuspended.

Suspended cells (5.0 � 104) were centrifuged for

5 min at 1,000 r/min to remove the supernatant.

After the addition of 195 ml FITC-Annexin V con-

jugate, cells were suspended and added with 5 ml

FITC-Annexin V. Then 10 ml propylene iodide

staining solution was added. Flow cytometry was

performed in triplicate.

(7) The intracytoplasmic calcium concentration in ery-

throcytes was detected using fluo-3 fluorescence

labeling and flow cytometry. Venous blood samples

(2 ml) were collected and centrifuged for 10 min at

room temperature of 1,000 r/min. Then membrane and

plasma were carefully separated. Samples were

washed with normal saline for three times. The super-

natant was discarded after centrifugation for 10 min at

1,000 r/min. Fluo-3 fluorescent indicator (10 ml) was

added to the prepared erythrocyte suspension. The

supernatant was incubated at 37�C for 30 min and

centrifuged at 800 r/min for 10 min. After adding 2

ml pyrolysis solution, the concentration of Ca2þ on the

side of fluorescence spectrophotometer was measured.

Statistical Method

SPSS19.0 software was used to analyze the data. Numerical

data are expressed as mean + standard deviation. T-test was

used for the comparison between groups. Categorical data

are expressed in percentage (%). Chi-square test was used

for the comparison between groups. P < 0.05 was considered

statistical significance.

Results

The Expression of Erythrocyte Surface Protein TLR9
in Each Group of Mice

The percentage of positive cells in groups A, B, and C was

10.5%, 14.4%, and 5.3%, respectively. Group B showed

higher percentage of positive cells compared to group A.

Group C has the lowest percentage of positive cells among

the three groups and the difference was statistically signifi-

cant (P < 0.05, Fig. 1).

The Distribution and Relative Expression of Protein
STING in Macrophages

Immunofluorescence analysis showed that the protein

expression of STING in group B was higher than that in

group A. The STING expression in group C was lower than

that in both group A and group B. The difference was sta-

tistically significant (P < 0.05, Fig. 2).

Flow Sorting of Macrophages in Each Group of Mice

The distribution of M1 and M2 in macrophages by flow

cytometry showed that the ratio of M1 to M2 was 33.8%
and 36.7%, respectively (Fig. 3).

The Protein Expressions of STING, ATF6, and IRE1
in Macrophages

The protein expressions of STING, ATF6, and IRE1 in

macrophages in group B were higher than those in group

A. The expressions of the above-mentioned proteins in group

C were lower than those in group A and group B. The dif-

ference was statistically significant (P < 0.05, Fig. 4).

The Secretion of Inflammatory Signaling Molecules

The levels of inflammatory signal molecules (IFN-a, IFN-b,

IL-6, CCL4, CCL5, and CXCL10) shown in Fig. 5 were

higher in group B than in group A. Group C showed the

lowest levels of these molecules compared to groups A and

group B with statistical significance (P < 0.05, Table 1).

Figure 1. Expression of erythrocyte surface protein TLR9 in three groups of mice.
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The Apoptosis of Immune Cells in Mouse Blood

The early apoptotic rates of immune cells in groups A, B,

and C were 5.20%, 22.20%, and 2.10%, respectively. Group

B showed a higher rate than group A, and group C had the

lowest level of apoptotic cell death, which was statistically

significant (P < 0.05, Fig. 6).

The Concentration of Intracytoplasmic Calcium
in Erythrocytes

The intracytoplasmic calcium concentration in erythrocytes

in groups A, B, and C was 170.33, 337.16, and 105.29 nM,

respectively. The calcium concentration in group B was

higher than group A, and group C showed the lowest con-

centration of intracytoplasmic calcium, which was statisti-

cally significant (P < 0.05, Fig. 7).

Discussion

HS can lead to the increase of macrophage apoptosis, the

decrease of macrophage phagocytosis of apoptotic cells,

the production of inflammatory reaction, and ultimately

immune dysfunction8. TLR9 is a highly conserved trans-

membrane protein that belongs to the Toll-like receptor fam-

ily. It shows inhibitory activity against cell growth and

apoptosis. TLR9 is an important receptor for identifying

invasive microorganisms, mediating innate immune cells,

and recognizing mtDNA9. MtDNA is an extranuclear

genetic material. When hypoxia and ischemia occur,

mtDNA can cause cell energy metabolism disorder by reg-

ulating mitochondrial oxidative phosphatization10. STING

is primarily expressed in mammals. As an important con-

nective protein, STING can sense the invasion of

Figure 2. Distribution of protein STING in macrophages.

Figure 3. Distribution of M1 and M2 in macrophages of mice.
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microorganisms to host cells. It is mainly localized on the

ER in resting state and plays an important role in immune

response11. In this study, the expression of erythrocyte sur-

face protein TLR9 was higher in group B than that in group

A. The expression of TLR9 inhibitor in group C was lower

than that in groups A and B. These findings suggested that

the reinfusion of red blood cells increased the expression of

TLR9. The results of the distribution and relative expression

of STING in macrophages were consistent with those of

TLR9, indicating that TLR9 might affect the expression of

STING. In this study, transfused red blood cells carried

mtDNA to macrophages, which were recognized by macro-

phage TLR9 and activated the STING signaling pathway.

Macrophages play an important role in cellular immunity.

Antigen presenting and the release of immune active factors

are the main function of macrophages in immune regulation.

They can activate T cells and secrete various lymphokines,

such as IL-1 and IL-612. ATF6 and IRE1 are type II trans-

membrane proteins on the ER, which play an important role

in ER stress response. ATF6 is normally situated on the ER

surface and is inactive. ATF6 transports to the Golgi appa-

ratus and finally to the nucleus during ER stress. It regulates

the activation of transcription factors and various enzymes,

and promotes cells to resume normal function13. This study

showed that erythrocyte transfusion induced the expression

of STING, ATF6, and IRE1 in macrophages, indicating that

Figure 4. Expression of STING, ATF6, and IRE1 in macrophages.
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the activity of ER was increased. However, when TLR9 was

inhibited, the expression of these proteins was downregu-

lated compared to the control group and the erythrocyte

transfusion group. The expression of STING, ATF6, and

IRE1 in phagocytes was consistent with that in erythrocytes,

suggesting that TLR9 may play a role in regulating the activ-

ity of ER in macrophages.

Apoptosis is a form of cell death. One of the important

features of apoptosis is that the cell membrane remains intact

during this process and is engulfed by macrophages before

lysis14. Neutrophils are important inflammatory cells. The

apoptosis of neutrophils during shock is a compensatory

response of the body. If macrophages fail to clear neutrophils

in time, they will release a large amount of toxic substances

in cells and enhance inflammatory response15. In this study,

we showed that the secretion of inflammatory signaling

molecules IFN-a, IFN-b, IL-6, CCL4, CCL5, CXCL10, and

erythrocyte reinfusion group were induced in group B, and

the TLR9 inhibition group exhibited the lowest levels of

these molecules. The apoptotic rate in all groups suggested

that the transfusion of red blood cells reduced the apoptosis

of macrophages. Macrophages are one of the main sources of

IFN-a, IFN-gamma, and IL-6 in early immune response. The

secretion of IFN-gamma will promote the secretion of

Figure 5. Expression of inflammatory signaling molecules IFN-a, IFN-b, IL-6, CCL4, CCL5, and CXCL10.

Table 1. Expression of Inflammatory Signaling Molecules IFN-a, IFN-b, IL-6, CCL4, CCL5, and CXCL10.

Group n IFN-a (ng/ml) IFN-β (ng/ml) IL-6 (pg/ml) CCL4 (pg/ml) CCL5 (ng/ml) CXCL10 (pg/ml)

A 10 0.909 + 0.163 0.151 + 0.036 70.77 + 12.27 47.891 + 8.060 0.132 + 0.019 39.82 + 7.71
B 10 1.121 + 0.097 0.190 + 0.026 83.20 + 11.79 54.100 + 10.378 0.168 + 0.008 50.91 + 10.16
C 10 0.738 + 0.100 0.127 + 0.011 51.57 + 11.14 35.071 + 3.760 0.097 + 0.013 32.04 + 5.86
F 23.902 14.882 18.403 15.121 60.261 13.682
P 0.000 0.000 0.000 0.000 0.000 0.000

Figure 6. Apoptosis of immune cells in the blood of mice.
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INF-gamma by NK cells and Th cells and enhance the

immune response of the body. IFN-gamma acts as feedback

on macrophages and activates some macrophages into

immune cells capable of phagocytizing pathogenic microor-

ganisms16,17. CCL4, CCL5, and CXCL10 are chemokines

that play an important chemotactic role in infectious immune

diseases. They can induce the chemotaxis of a variety of

inflammatory cells, such as monocytes, macrophages, and

lymphocytes, until they reach the inflammation site18.

Calcium ion is an important substance to maintain the

integrity of cell function and structure. It plays a coupling

and second messenger role in cell activity, secretion, and

metabolism19. Usually, intracellular and extracellular cal-

cium ions keep a dynamic balance. In HS patients, the

dynamic balance between intracellular and extracellular cal-

cium ions was disrupted. Calcium ion is also closely related

to cell apoptosis. Elevated concentration of calcium ion can

inhibit cell apoptosis20. In this study, the concentration of

calcium ion in erythrocyte cytoplasm increased after ery-

throcyte transfusion, indicating improved electrolyte balance

in mice. The calcium ion concentration was decreased in

TLR9 inhibition group, indicating aggravated electrolyte

imbalance. These data implied that the imbalanced electro-

lyte level may be caused by the decrease of immune response

and the aggravation of HS.

There are some limitations in this study. First, the sample

size was relatively small. Further studies with a larger sam-

ple size are needed to validate the results obtained from the

current study. Second, other factors related to ER stress (e.g.,

reactive oxygen species) and inflammatory responses

(e.g., IL-4 and IL-10) may also be included in future studies.

Third, a TLR9 overexpression model may be used to further

demonstrate the effect of TLR9 upregulation in ER stress

in HS.

In conclusion, TLR9 regulates ER stress in macrophages

of HS mice through the TLR9-cGAS-STING-IFN signaling

pathway. The upregulation of TLR9 increased macrophage

activity, reduced apoptosis, enhance inflammatory response

and immune response, restored electrolyte levels, suggesting

that TLR9 upregulation might be a therapeutic option for the

treatment of HS.
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