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Abstract: The endothelium is characterized by a wide range of important homeostatic functions. 

It participates in the control of hemostasis, blood coagulation and fi brinolysis, platelet and leuko-

cyte interactions with the vessel wall, regulation of vascular tone, and of blood pressure. Many 

crucial vasoactive endogenous compounds are produced by the endothelial cells to control the 

functions of vascular smooth muscle cells and of circulating blood cells. These complex systems 

determine a fi ne equilibrium which regulates the vascular tone. Impairments in endothelium-

dependent vasodilation lead to the so called endothelial dysfunction. Endothelial dysfunction is 

then characterized by unbalanced concentrations of vasodilating and vasoconstricting factors, 

the most important being represented by nitric oxide (NO) and angiotensin II (AT II). High 

angiotensin-converting enzyme (ACE) activity leads to increased AT II generation, reduced NO 

levels with subsequent vasoconstriction. The net acute effect results in contraction of vascular 

smooth muscle cells and reduced lumen diameter. Furthermore, when increased ACE activity 

is chronically sustained, increase in growth, proliferation and differentiation of the vascular 

smooth muscle cells takes place; at the same time, a decrease in the anti-proliferative action by 

NO, a decrease in fi binolysis and an increase in platelets aggregation may be observed. AT II 

is then involved not only in the regulation of blood pressure, but also in vascular infl ammation, 

permeability, smooth muscle cells remodelling, and oxidative stress which in turn lead to 

atherosclerosis and increased cardiovascular risk. Given the pivotal role exerted by AT II in 

contributing to alteration of endothelial function, treatment with ACE inhibitors or angiotensin 

receptor blockers (ARBs) may be of particular interest to restore a physiological activity of endo-

thelial cells. In this view, the blockade of the renin-angiotensin system (RAS), has been shown 

to positively affect the endothelial function, beyond the antihypertensive action displayed by 

these compounds. In this review, attention has been specifi cally focused on an ARB, irbesartan, 

to examine its effects on endothelial function.
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Introduction
The endothelium is a monolayer that covers the inner surface of the entire vascular 

system; its total weight is more than a liver, and if extended, it covers various tennis 

courts area. Other than being a barrier between blood and tissues, endothelial cells 

have multiple functional activities, that are impaired in common diseases like hyper-

tension, diabetes, and the metabolic syndrome. The main feature of the endothelial 

dysfunction is an impaired endothelium-dependent vasodilation, that is mainly due 

to reduced nitric oxide (NO) availability and increased angiotensin II (AT II) levels. 

This altered balance induces an increase of oxidative stress, free radicals, infl amma-

tion, and coagulation. In this picture, the use of angiotensin-receptor blockers (ARBs) 

or angiotensin-converting enzyme inhibitors (ACEis), has demonstrated that these 

drugs display multiple benefi cial effects on endothelial function; then, while in the 

past, the blood pressure control was considered the most important therapeutic target, 
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nowadays these drugs have shown such favorable effects on 

the endothelial cells that these properties can not be consid-

ered just ancillary.

Endothelial function
Endothelial cells line the internal lumen of all the vasculature 

and serve as an interface between circulating blood and 

vascular smooth muscle cells. Other than being a physical 

barrier between blood and tissues, the endothelium displays 

multiple interactions with vascular smooth muscle cells 

and blood components. Then the endothelium cannot be 

considered just as a barrier, as it plays a pivotal role in 

vasculature function: it is involved in vasodilation and 

vasoconstriction, infl ammation, regulation of the thrombotic 

state, proliferation, and apoptosis of vascular smooth muscle 

cells (Haller 1997; De Meyer and Herman 1997).

Among the functions of endothelial cells, the NO 

production is certainly one of the most important. NO 

is a free radical produced from an essential amino acid, 

L-arginine, which in turn is converted in L-citrulline and 

subsequent production of NO (Palmer et al 1987) (Figure 1). 

This reaction is catalyzed by the endothelial NO synthase 

(eNOS). The physiologic event that leads to an increased 

activity of eNOS is represented by the shear stress, ie, the 

force produced by the blood fl ow per surface unit of the 

vascular wall (Vallance et al 1989). Once produced, NO 

diffusing in vascular smooth muscle cells, activates the 

guanylate cyclase (cGMP), which induces relaxation and 

then vasodilation. Other relevant effects of NO include inhi-

bition of platelets activation, limitation of vascular smooth 

muscle cells proliferation, monocytes adhesion, platelets 

aggregation, and apoptosis of endothelial cells (Radomski 

et al 1987a; Garg and Hassid 1989). Other factors with 

vasodilating action are represented by prostacyclins and 

hyperpolarizing factor (EDHF). The prostacyclin PGI
2
 is 

the main prostaglandin produced by the endothelium; its 

functions are represented by vasodilation, inhibition of 

platelets aggregation, and inhibition of vascular smooth 

Figure 1 Regulatory mechanisms of endothelial NO production.  Reproduced with permission from Yang Z, Ming XF. 2006. Recent advances in understanding endothelial 
dysfunction in atherosclerosis. Clin Med Res, 4:53–65. Copyright © 2006 Marshfi eld Clinic.
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muscle cells proliferation (Moncada and Higgs 1987). EDHF 

is an endothelium-derived factor which exerts a vasodilating 

action mainly on small vessels, and whose action is reduced 

in presence of diabetes (Chen et al 1988; Matsumoto et al 

2003). As endothelial cells contribute to regulate the vascular 

tone, they are able to produce not only vasodilating but also 

vasoconstricting factors. AT II exerts opposite actions in 

respect to NO in the regulation of the vascular tone (Dzau 

1989). AT II induces at vascular level proliferation and 

migration of smooth muscle cells; furthermore, it is involved 

in the production of reactive species of oxygen (ROS), such 

altering the NO mediated vasodilation (Luscher and Tanner 

1993). AT II, other than determining the proliferation and 

migration of vascular smooth muscle cells, induces the 

expression of adhesion molecules and chemokines which 

mediate the adhesion and the migration of the monocytes 

in the vascular wall (Tummala et al 1999; Kintscher et al 

2001). The key enzyme that regulates the local generation 

of AT II is the angiotensin-converting enzyme (ACE). This 

proteolytic enzyme is synthesized by the endothelial cells 

and exerts its activity upon the blood-borne angiotensin I. 

AT II binds to and regulates vascular smooth muscle cells 

tone via specifi c angiotensin receptors (Studdy et al 1983). 

Elevated ACE concentrations antagonize NO activity not 

only by increasing AT II generation but also by decreasing 

concentrations of bradykinin (Mombouli 1997). High ACE 

activity leads to vasoconstriction due to reduced NO levels 

and increased AT II generation. The net acute effect results 

in contraction of vascular smooth muscle cells and reduced 

lumen diameter. Furthermore, when increased ACE activity 

is chronically sustained, a stimulation of growth, prolif-

eration, and differentiation of the vascular smooth muscle 

cells takes place; at the same time, a decrease in the antip-

roliferative action by NO, a decrease in fi binolysis and an 

increase in platelets aggregation may be observed. Another 

factor involved in vascular tone regulation is represented by 

endothelin-1 (ET-1) (Yanagisawa et al 1988). ET-1 induces 

vasodilation at low concentrations while vasoconstriction 

at high concentrations (Seo et al 1994). The interactions of 

ET-1 with its receptors, ETA and ETB, are responsible either 

for vasoconstriction, or induction of vascular smooth muscle 

cells proliferation (Arai et al 1990; Sakurai et al 1990). Other 

factors which display vasoconstricting properties are trom-

boxane A
2
 and prostaglandin H

2
, which represent products 

of the cyclooxygenase pathway. Both these factors exert 

actions which antagonize NO and prostacyclin activities not 

just at endothelial level but also at vascular smooth muscle 

cells and platelets level. Furthermore, the cyclooxygenase 

pathway represents a source of anion superoxide which in 

turn is a potent NO inactivator (Juliet et al 2003). Under 

physiologic conditions PGI
2
 and NO prevent platelets aggre-

gation and adhesion to the endothelium, such underlining 

a key role exerted by the endothelial cells in the regulation 

of the coagulative state. Of note, NO inhibits monocytes 

adhesion to vascular wall, an event that triggers the devel-

opment of atherosclerotic plaque (Böger et al 2000). Then, 

one of the actions exerted by endothelial cells concerns 

coagulation. Physiologically, the most important activator 

of the conversion of plasminogen to plasmin is the tissue 

plasminogen activator (t-PA). This peptide has a critical role 

in the dissolution of clots and maintenance of vessel lumen. 

The most important regulator of t-PA is the plasminogen 

activator inhibitor-1 (PAI-1) (Dawson and Henney 1992). 

AT II is able to stimulate platelets aggregation and to induce 

a procoagulative state by the activation of PAI-1 expression 

(Vaughan et al 1995).

The endothelium is also involved in the production of 

specifi c molecules which may have a role in infl ammation 

(Biegelsen and Loscalzo 1999). The most important are the 

intracellular adhesion molecule (ICAM) and vascular cell 

adhesion molecule (VCAM). These molecules act attract-

ing and anchoring those cells involved in the infl ammatory 

reaction. Not by chance, the atherosclerotic process is asso-

ciated with increased levels of acute phase proteins (Tracy 

et al 1997).

Endothelial dysfunction
Endothelial dysfunction is characterized by a defect in 

endothelium-dependent vasodilation which precedes a series 

of structural changes of the vascular wall. It may occur at any 

level in the arterial system and contribute to the development 

and progression of atherosclerosis by favoring coagulation, 

cells adhesion, and infl ammation, by promoting inappropri-

ate vasoconstriction, and/or vasodilation, and by enhancing 

trans-endothelial transport of atherogenic lipoproteins. The 

main alteration ascribable to the endothelial dysfunction is 

a reduced (or absent) availability of NO, essentially as a 

consequence of increased oxidative stress. The endothelial 

dysfunction may contribute to the onset and progression 

of atherosclerosis and several studies have reported that 

endothelial dysfunction represents an independent predic-

tor of cardiovascular events not only at coronary district but 

also in peripheral vasculature (Perticone et al 2001; Gokce 

et al 2002).

Hypertension is a pathological condition which activates 

endothelial cells leading to the production of contracting 
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factors, including thromboxane A
2
, prostaglandin H

2,
 

cyclooxigenase-derived endothelium-dependent contracting 

factors (ECDF), and oxygen free radicals, which antagonize 

the relaxing activity of NO (Miller and Vanhoutte 1985; 

Aldere et al 1986; Katusic and Vanhoutte 1989). Furthermore, 

oxygen free radicals can impair endothelial function by 

causing NO breakdown (Gryglewski et al 1986).

Endothelial dysfunction has been extensively explored 

by evaluating the response to pharmacological or mechani-

cal endothelium-dependent stimuli (Lüscher and Noll 1996). 

Impaired response to acetylcholine, methacholine, bradyki-

nin, and substance P has been documented in the forearm 

vasculature of essential hypertensive patients compared with 

normotensive controls (Linder et al 1990; Panza et al 1990; 

Panza et al 1993a, b, c; Taddei et al 1994; Creager and Roddy 

1994; Panza et al 1995; Taddei et al 1995; Taddei et al 1997). 

Since in the same experimental conditions the vasodilating 

effect of an endothelium-independent vasodilator such as 

sodium nitroprussiate was found to be preserved, this line of 

evidence clearly indicates the presence of endothelial dys-

function in essential hypertension. Moreover, the evidence 

that reduced response to acetylcholine is detected in young 

normotensive offspring of essential hypertensive patients, 

and that this abnormality does not correlate with blood pres-

sure levels, suggests that impaired endothelium-dependent 

vasodilation, may be at least in part, genetically determined 

(Taddei et al 1996). Both the animal and human data strongly 

suggest that the production of COX-dependent EDCF is one 

of the principal mechanisms leading to an impaired avail-

ability of NO, at least in aging or essential (spontaneous) 

hypertension. Therefore, endothelial dysfunction accompa-

nied by the production of EDCF must play a key role in the 

progression of cardiovascular disease (Radomski et al 1987a, 

b; Dubey and Lucher 1993; Kubes et al 1991; De Caterina 

et al 1995). NO is an important autoregulatory inhibitor of 

infl ammation (Napoli and Ignarro 2001). It limits oxidative 

stress in the microvasculature through its ability to scavenge 

ROS (Miles et al 1996). Noteworthy, even if the relationship 

between angiotensin receptors and NO is not fully clear, it has 

to be outlined that ACEis and ARBs exerted protective effects 

on AT II-mediated infl ammatory response (Tamarat et al 

2002; Chen et al 2003). Interestingly, there is accumulating 

evidence to suggest a central role for infl ammatory response 

in the pathogenesis of endothelial dysfunction, hypertension, 

and coronary artery disease. Elevated C-reactive protein 

(CRP) and interleukin-6 (IL-6) levels have been shown to be 

related with a poor outcome in patients with unstable angina, 

probably refl ecting an important infl ammatory component in 

the pathogenesis of this condition (Liuzzo et al 1994; Liuzzo 

et al 2001). A large number of studies has demonstrated that 

AT II is involved in key events of the infl ammatory process. 

AT II increases vascular permeability (by the release of 

prostaglandins and vascular endothelial cell growth factor 

or rearrangement of cytoskeletal proteins) that initiates the 

infl ammatory process (Baylis and Brenner 1978; Ichikawa 

and Harris 1991; Schramek et al 1995). AT II contributes to 

the recruitment of infl ammatory cells into the tissue through 

the regulation of adhesion molecules and chemokines by 

resident cells (Pastore et al 1999; Piqueras et al 2000; Pueyo 

et al 2000). Moreover, AT II could directly activate infi ltrat-

ing immunocompetent cells, including chemotaxis, differ-

entiation and proliferation (Diet et al 1996; Hansson 2001; 

Costantinescu et al 1998). Additional data suggest that RAS 

activation could play a certain role even in immunologically-

induced infl ammation (Rodriguez-Iturbe et al 2001). Finally, 

AT II participates in tissue repair and remodeling, through 

the regulation of cell growth and matrix synthesis (Egido 

1996; Nakamura et al 2000; Tunon et al 2000; Border 

and Noble 2001; Wolf et al 2002). In summary, there are 

evidences enough to support the hypothesis that RAS is key 

mediator of infl ammation. AT II is then involved not only in 

the regulation of blood pressure, but also in vascular infl am-

mation, permeability, smooth muscle cells remodelling, and 

oxidative stress which lead to atherosclerosis and increase 

cardiovascular risk. While in the past, AT II was considered 

as a circulating factor, playing a central role in the regulation 

of blood pressure and electrolyte homeostasis, it has been 

later ascertained that non-ACE pathways exist and function 

to generate about 40% of the total AT II (Campbell 1987; 

Johnston 1992; Gibbons and Dzau 1994; Hollenberg et al 

1998; Padmanabhan et al 1999). In fact, vascular infl amma-

tory response has been shown to be more closely related to 

local AT II than circulating AT II, and recent studies tried 

to elucidate the consequences of increased AT II production 

within specifi c organs (heart, vasculature, pancreas, adipose 

tissue) (Bader et al 2001; Fleming et al 2006). These data 

indicate that there is a remarkable production of AT II by 

tissues and that a complete suppression of the RAS cannot 

be achieved by ACE inhibition alone (Petrie et al 2001). 

Inhibition of the RAS by blockade at the AT-1 receptor 

should, theoretically, result in more complete inhibition of the 

adverse cardiovascular effects of AT II. On the other hand, 

ACEis also inhibit the enzyme kininase II, which is respon-

sible for the degradation of bradykinin (Erdos 1975) (Figure 

2). Several studies have emphasized the possible role of ele-

vated bradykinin levels resulting from ACE inhibitor therapy. 
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Favorable hemodynamic effects mediated by bradykinin may 

include venodilation, vasodilation (coronary and systemic), 

improved left ventricular relaxation, and contractile func-

tion (Trippodo et al 1995; Hornig et al 1998; Cheng 1998). 

Other potential benefi ts of bradykinin include a reduction in 

ventricular dilatation and cardiac hypertrophy, an increase 

in levels of endogenous tissue plasminogen activator, and 

an improvement in abnormal endothelial function (Mancini 

et al 1996; Schlaifer et al 1997). An additional evidence of 

the importance of the bradykinin system in ACE inhibition 

comes from a study by Guazzi et al (1997). The authors 

showed that although losartan and enalapril had similar 

hemodynamic and clinical effects, the action of enalapril 

was antagonized by aspirin, whereas that of losartan was not. 

This may be related to the role of the bradykinin in mediating 

prostaglandin release. But bradykinin has been blamed for 

some of the undesirable complications of ACEis such as 

cough and angioedema. Cough may occur in up to 10% of 

patients treated with ACEis, while angioedema represents a 

potentially lethal complication (Israili and Hall 1992; Fox 

et al 1996). By directly blocking AT-1 receptors, ARBs can 

inhibit the action of AT II while having little or no effect on 

the bradykinin system (Brooks and Ruffolo 1999).

Hypertension is a common condition which is often 

associated with obesity, diabetes, and dyslipidemia. There is 

much evidence in support of an activation of the RAS in 

obesity. This has led to the notion that blockade of the RAS 

might be a benefi cial strategy for management of hyperten-

sion associated with obesity (Sharma 2004). Adipose RAS 

has recently received much attention because experimental 

Figure 2 Relationships between angiotensin and kinin cascades.
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evidence has shown its involvement in the pathophysiology 

of obesity-induced hypertension. In mice, adipocyte-derived 

angiotensinogen can act locally to affect adipocyte growth 

and differentiation and can also be secreted into the blood-

stream, contributing to the circulating pool of angiotensino-

gen (Massiera et al 2001). The demonstration that 

angiotensinogen produced by the adipose tissue may be 

released in the bloodstream suggests that the high circulating 

levels of angiotensinogen associated with obesity may be 

attributable in part to increased fat mass. Mice with obesity 

induced by a high-fat diet exhibit greater angiotensinogen 

gene expression in intra-abdominal fat but not in other fat 

depots or non-adipose tissues (Rahmouni et al 2004). Interest-

ingly, increased production of angiotensinogen by intra-

abdominal fat appears to explain the high circulating levels 

of this peptide observed in dietary obesity (Boustany et al 

2004). Activation of adipose RAS is also involved in 

development of high blood pressure in transgenic mice used 

as a model of visceral obesity. These transgenic mice show 

an increase in enzyme activity similar to that seen in obese 

humans and replicate visceral fat accumulation and high 

blood pressure (Masuzaki et al 2003). The hypertension 

observed in this model was abolished by selective AT receptor 

blockade. The above-mentioned data establish that adipose 

RAS plays an important role in the association between 

obesity and hypertension. This activation of adipose RAS 

may also explain the link between excessive visceral fat and 

cardiovascular diseases. Endothelial dysfunction is a typical 

feature of the states of insulin resistance and not by chance, 

and obesity is associated with elevated plasma levels of 

ET-1 (Steinberg et al 1996; Ferri et al 1996). Caballero et al 

(1999) demonstrated early abnormalities in vascular reactiv-

ity and biochemical markers of endothelial cells activation 

in individuals at risk of developing diabetes. The investigators 

measured the increase in blood fl ow in the microcirculation 

(laser Doppler fl owmetry) and in the macrocirculation (ultra-

sound) in four groups of subjects: 1) healthy normoglycemic 

individuals with no history of type 2 diabetes in a fi rst-degree 

relative (controls); 2) healthy normoglycemic subjects with 

a history of type 2 diabetes in one or both parents; 3) subjects 

with impaired fasting glucose; and 4) patients with type 2 

diabetes without vascular complications. Moreover the 

investigators measured plasma concentrations of ET-1, sol-

uble intercellular adhesion molecule (sICAM), and soluble 

vascular cell adhesion molecule (sVCAM), as indicators of 

endothelial cells activation. The vasodilatatory responses to 

acetylcholine were reduced in groups 2, 3, and 4 compared 

with controls and ET-1 was signifi cantly higher in these three 

groups. These results suggest that abnormalities in vascular 

reactivity and biochemical markers of endothelial cells 

activation are present early in individuals at risk of develop-

ing type 2 diabetes, even at stage when normal glucose toler-

ance exists. Hyperglycemia can cause endothelial dysfunction 

not only in already diagnosed diabetes but also in mild and 

transient increases of blood glucose, as demonstrated in stud-

ies carried on healthy volunteers undergoing hyperglycemic 

clamp (Williams et al 1998). The crucial point that determines 

endothelial dysfunction, without structural alterations of the 

vascular wall, is the reduced availability of NO. Insulin exerts 

its vascular effects primarily by increasing the availability 

of NO. In experimental conditions of insulin resistance, 

endothelial-mediated vasodilation is impaired, because of 

insulin’s inability to stimulate the activity of eNOS (Vincent 

et al 2003; Shaul 2002). In the presence of diabetes, several 

factors may alter NO availability: increased production of 

oxygen free radicals, increased levels of asymmetric dimeth-

ylarginine (ADMA), which is an irreversible inhibitor of 

NOS, activation of protein-kinase C (PKC), and accelerated 

production of advanced products of glycosilation (AGEs) 

(Brownlee 1992; Surdacki et al 2007). Since 1992, ADMA 

has been recognized as an endogenous inhibitor of eNOS, 

and in vitro experiments demonstrated that the NO production 

is inhibited by ADMA in a concentration-dependent manner 

(Vallance et al 1992). In fact, ADMA represents a cardio-

vascular risk factor: it is a strong predictor of cardiovascular 

events and total mortality in hemodialysis patients; high 

ADMA concentrations are related to increased risk of death 

in patients on intensive care unit, and it predicts the outcome 

after percuteneous coronary intervention in patients with 

stable angina pectoris (Zoccali et al 2001; Nijveldt et al 2003; 

Lu et al 2003). It has become more and more evident that the 

production of free oxygen radicals plays a pivotal role in the 

development of vascular complications of diabetic disease 

(Ceriello 2006). In vitro studies suggest that endothelial cells 

exposed to high glucose levels increase the production of 

superoxide and show alterations of the cell proliferation, 

which may be completely prevented by the increase in the 

expression of endogenous anti-oxidants (Nishikawa et al 

2000; Zanetti et al 2001). Diabetic patients are particularly 

exposed to the endothelial damage from free radicals also 

because they show a reduction of anti-oxidant defences, 

including a reduction of superoxide dismutase (Crouch et al 

1978). Another important mediator of endothelial dysfunction 

in diabetes is represented by the activation of PKC. In pres-

ence of hyperglycemia high levels of diacylglycerol activate 

PKC which in turn induces alterations of eNOS activity and 
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NADPH oxidase, and then contributes to an elevated produc-

tion of free oxygen radicals and to an increase in oxidative 

stress (Hink et al 2001). NADPH is required for proper NO 

generation; hyperglycemia may lead to intracellular changes 

in the redox state with activation of PKC resulting in deple-

tion of the cellular NADPH pool (Williamson et al 1993). If 

acute hyperglycemia induces endothelial dysfunction mostly 

by worsening oxidative stress, chronic hyperglycemia exerts 

further deleterious effects on vascular wall by production of 

AGEs. It has been demonstrated that in the presence of dia-

betes, AGEs accumulation is able to inhibit NO production 

producing defective endothelium-dependent vasodilation 

(Bucala et al 1991). Furthermore, the binding of AGEs with 

their cell receptors, receptors for advanced glycation end-

products (RAGE) and AGE-R3, may induce endothelial 

activation with consequent production of growth factors and 

pro-infl ammatory molecules, which lead to development and 

progression of atherosclerotic process (Kislinger et al 2001). 

The infl ammatory component in diabetic patients is particu-

larly harmful, given the progression towards atherosclerosis. 

Proinfl ammatory cytokines, like tumor necrosis factor-α 

(TNF-α), inhibit insulin-stimulated activation and expression 

of eNOS resulting in diminished levels of NO (Kim et al 

2001; Anderson et al 2004). In vitro studies have demon-

strated that CRP, which is particularly elevated in diabetic 

patients, induces direct damage at the endothelial level lead-

ing to a reduction in NO and vasodilating prostaglandins and 

an increase in ET-1. Furthermore, proinfl ammatory cytokines 

like TNF-α and IL-6 have demonstrated a detrimental effect 

at the endothelial level (Picchi et al 2006). In humans, the 

relationships between infl ammation, endothelial dysfunction, 

and hyperglycemia were outlined in the Hoorn Study, a 

population-based cohort study. Results showed that type 2 

diabetes was associated with both endothelial dysfunction 

and low-grade infl ammation, whereas impaired glucose 

tolerance was associated only with low-grade infl ammation. 

These fi ndings were independent of other risk factors that 

accompany diabetes. Furthermore, endothelial dysfunction 

and low-grade infl ammation were associated with a greater 

risk of cardiovascular mortality, especially in diabetic 

patients; and, fi nally, diabetes-associated endothelial dysfunc-

tion and low-grade infl ammation explained about 43% of the 

greater cardiovascular mortality risk conferred by type 2 

diabetes (de Jager et al 2006). Not by chance, diabetic patients 

with myocardial infarction, compared with non-diabetic 

patients, show impaired endothelium-dependent vasodilation, 

lower adiponectin levels, and higher concentrations of TNF-

α and IL-6 (Nystrom et al 2006). Therefore, not only obesity, 

but also diabetes, are associated with proinfl ammatory states 

characterized by increased circulating markers of infl amma-

tion as well as infi ltration of adipose tissue with activated 

macrophages (Weisberg et al 2003; Xu et al 2003). In par-

ticular, CRP has been identifi ed as a risk factor for develop-

ing type 2 diabetes, and its levels are correlated with 

cardiovascular risk (Pradhan et al 2001; Saito et al 2003) 

(Figure 3).

Effects of irbesartan on endothelial 
dysfunction
In vitro and in vivo studies have explored the effects of 

ARBs on endothelial dysfunction. One of the most studied 

ARB is irbesartan, whose action has been proven to be 

benefi cial in ameliorating endothelial function above all in 

hypertension and diabetes, two frequent diseases in which 

alterations of endothelium homeostasis are typically present. 

In essential hypertensive patients, treatment with irbesartan 

promoted a signifi cant increase in endothelium-dependent 

and endothelium-independent vasodilation. In a study per-

formed by Bragulat et al (2003), hypertensive patients were 

examined at baseline and at the end of a 6-month period of 

irbesartan treatment. Endothelium-dependent and endothe-

lium-independent responses were determined by measuring 

changes in forearm blood fl ow (FBF) in response to intrar-

terial infusions of acetylcholine (endothelium-dependent 

vasodilation [EDV]), sodium nitroprusside (endothelium-

independent vasodilation [EIV]), with and without the 

addition of the NO synthase inhibitor L-NMMA. Irbesartan 

promoted a signifi cant increase in EDV and EIV. L-NMMA-

induced vasoconstriction was signifi cantly enhanced after 

irbesartan treatment. Plasma concentrations of endothelin 

fell signifi cantly after irbesartan treatment. In addition to 

a signifi cant increase in endothelium-dependent and endo-

thelium-independent vasodilation, irbesartan restored the 

vasoconstriction capacity of NO synthase inhibitors, sug-

gesting a direct effect on tonic NO release, and decreased 

endothelin production. These actions may play an important 

role in the vascular protecting effects of irbesartan. One of the 

crucial points in the use of antihypertensive drugs concerns 

their benefi cial effects beyond the reduction of blood pres-

sure. Given the pivotal role that AT II exerts in determining 

endothelial dysfunction, it is reasonable that ACEis and 

ARBs may have some additive and favorable effects on endo-

thelium. For example, when irbesartan has been compared 

with the beta-blocker atenolol, results have shown that both 

were able to improve endothelium-dependent vasodilation, 

but only irbesartan was able to reduce fi brinogen, PAI-1, 
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and thrombomodulin. These results showed that, despite an 

equally controlled blood pressure, the ARB treatment was 

associated with a more favorable modifi cation of hemostatic/

fi binolytic status (Makris et al 2000; von zur Muhlen et al 

2001). The hypothesis that the blockade of AT-1 receptor 

may exert a protective effect on vasculature was also tested 

in a study that compared equihypotensive doses of irbesar-

tan and amlodipine in apolipoprotein E-null mice, rendered 

diabetic by streptozotocin. Diabetes was associated with 

an increase in plaque area and complexity in the aorta, in 

association with a signifi cant increase in aortic AT-1 recep-

tor expression, cellular proliferation, collagen content, and 

macrophage-positive and alpha-smooth muscle actin-posi-

tive cell infi ltration, as well as an increased expression of 

platelet-derived growth factor-B (PDGF-B), monocyte che-

moattractant protein-1 (MCP-1), and vascular cell adhesion 

molecule-1 (VCAM-1). Irbesartan but not amlodipine treat-

ment attenuated the development of atherosclerosis, collagen 

content, cellular proliferation, and macrophage infi ltration as 

well as diabetes-induced AT-1 receptor, PDGF-B, MCP-1, 

and VCAM-1 overexpression in the aorta, despite similar 

blood pressure reductions by both treatments (Candido et al 

2004). It has been also demonstrated that irbesartan exerts a 

favorable effect on vascular infl ammation, which is a feature 

of endothelial dysfunction and promotes the development of 

atherosclerosis. In diabetic patients, irbesartan 300 mg/day 

alone or in combination with atorvastatin 40 mg/day was 

able to signifi cantly increase fl ow-mediated dilatation while 

decreasing nitrotyrosine, CRP, ICAM-1, and IL-6; these 

benefi cial effects on endothelial function were more marked 

when irbesartan was associated with atorvastatin (Ceriello 

et al 2005). The effects on vascular infl ammation in type 

2 diabetic patients were further assessed in the IRMA 2 

substudy, a 2-year, multicenter, randomized, double-blind 

trial which compared irbesartan (150 or 300 mg/day) versus 

placebo. A subgroup (n = 269) was analyzed for biomarkers 

of infl ammatory activity at baseline and after 1 and 2 years. 

In this substudy, irbesartan was able to reduce markers of 

infl ammatory activity, ie, CRP and fi brinogen; IL-6 showed 

a 1.8% increase per year compared with a 6.5% increase for 

placebo, and changes in IL-6 were associated with changes 

in albumin excretion. There was no treatment effect on the 

other biomarkers (ICAM, VCAM, E-selectin, trasforming 

growth factor-β, and AGEs). Then, in this study, irbesartan 

Figure 3 Factors contributing to endothelial dysfunction in type 2 diabetes.

Dyslipidemia

Vasoconstriction

Inflammation Procoagulopathy

Arterial stiffness

Endothelial dysfunction

Oxidative stress

Hypertension

Hyperinsulinemia

Elevated free
fatty acids

Hyperglycemia



Vascular Health and Risk Management 2008:4(1) 97

Endothelial effects of antihypertensive treatment: focus on irbesartan

(300 mg/day) reduced low-grade infl ammation in diabetic 

patients, possibly reducing the risk of micro- and macrovas-

cular disease (Persson 2006). The ISLAND study (Irbesartan 

and Lipoic Acid in Endothelial Dysfunction) evaluated the 

ability of irbesartan and lipoic acid, an antioxidant, to affect 

endothelial function and infl ammation in patients with the 

metabolic syndrome. Treatment with irbesartan signifi cantly 

ameliorated the endothelium-dependent vasodilation by 67%, 

treatment with lipoic acid by 44%, and combined treatment 

by 75%. In this study the two drugs reduced markers of 

infl ammation such as IL-6 and PAI-1, while just irbesartan 

signifi cantly reduced plasma levels of isoprostane-8, a marker 

of oxidative stress. Of note, these results were independent 

of blood pressure values, underlining the direct effects of 

AT-1 receptor blockade (Sola et al 2005). The increased 

cardiovascular risk encountered by women during the 

menopause is associated with endothelial dysfunction. It 

has been demonstrated that in ovariectomized rats, estrogen 

replacement therapy prevents endothelial dysfunction, and 

that irbesartan exerts a similar protective action, reducing 

oxidative stress and increasing NO availability (Wassmann 

et al 2001; Riveiro et al 2002). Of particular interest are the 

studies concerning the effects of ARBs on myocardial vas-

culature. One study evaluated the effect of irbesartan on the 

coronary and peripheral endothelial function in patients with 

coronary artery disease (CAD). Blockade of AT-1 receptor 

signifi cantly improved fl ow-mediated dilation (FMD) of the 

brachial artery, while no changes in the coronary district were 

observed (Warnholtz et al 2006). It has to be noted that even 

if no signifi cant improvement in coronary endothelial func-

tion was detected, since reduced FMD of the brachial artery 

is associated with high cardiovascular event rate, improve-

ment of FMD may lead to better the prognosis in patients 

with CAD (Brevetti et al 2003). Two studies investigated 

endothelial function in congestive heart failure (CHF). In 

the fi rst, treatment either with trandolapril or irbesartan sig-

nifi cantly improved endothelium-dependent relaxation in rat 

aortic rings, but just the ARB was able to reduce superoxide 

aortic formation (Schäfer et al 2004). In the second, left 

and right ventricular (LV and RV) coronary vasodilatation 

reserve (CVR) were investigated in rats with hypertension or 

CHF. Results showed that treatment with irbesartan had no 

early effects on LV and RV CVR, and improved RV CVR 

over the long term, mainly by limiting RV hypertrophy and 

by preventing the development of pericoronary fi brosis and 

coronary endothelial function (Richer et al 2001). Taken 

together these results lead to the conclusion that irbesartan 

treatment can ameliorate endothelial function not only in 

peripheral vasculature, but also in the coronary district, ie, 

that these properties have a cardiovascular protective effect 

beyond blood pressure reduction.

Perspectives and conclusions
Recent studies have addressed the fundamental role exerted 

by the endothelial progenitor cells (EPCs) in endothelial func-

tion and cardiovascular risk. EPCs are bone-marrow derived 

cells which are responsible for vascular repair (Kocher et al 

2001). It was observed a strong correlation between the 

number of circulating EPCs and the subjects’ combined 

Framingham risk factor score. Measurement of fl ow-medi-

ated brachial-artery reactivity also revealed a signifi cant 

relation between endothelial function and the number of 

progenitor cells, and the levels of circulating EPCs were a 

better predictor of vascular reactivity than was the presence or 

absence of conventional risk factors. In addition, endothelial 

progenitor cells from subjects at high risk of cardiovascular 

events had higher rates of in vitro senescence than cells from 

subjects at low risk (Hill et al 2003). Therefore, reduced EPCs 

concentrations are associated with endothelial dysfunction, 

and, most important, their levels represent a strong predic-

tor for the occurrence of cardiovascular events and death 

from cardiovascular causes (Werner et al 2005). In patients 

with high cardiovascular risk such as diabetic patients, the 

number and/or function of EPCs is signifi cantly altered, 

and importantly, EPCs’ proliferation is inversely related to 

HbA1c levels and duration of diabetes (Tepper et al 2002). 

Therefor, the chance of improving the number and/or func-

tion of EPCs represents a new frontier in the treatment of 

endothelial dysfunction. Just one study evaluated the effects 

of ARBs on EPCs. Bahlmann et al (2005) studied the effect 

of two ARBs, olmesartan and irbesartan, on the number of 

EPCs in diabetic patients. The main fi ndings of this study 

were that EPCs were reduced in diabetic patients compared 

with healthy controls, and just 4 weeks’ treatment with ARBs 

signifi cantly increased the number of EPCs. This evidence 

suggest that the stimulatory action on EPCs number may be 

of therapeutic relevance and may help explain the benefi cial 

effects of ARBs in preventing cardiovascular disease.

In conclusion, the pathophysiological basis of endothelial 

dysfunction outlines the crucial role exerted in particular by 

AT II and NO and the related increased risk of cardiovascular 

diseases. Studies globally agree on the protective effects 

induced by the blockade of RAS, and many of them involved 

irbesartan, demonstrating its benefi cial actions beyond the 

blood pressure control. In vitro and in vivo studies, in fact, 

have confi rmed that other than the classical and well known 
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cardiovascular risk factors such as hypertension, cellular 

and molecular mechanism involving endothelial cells are 

pivotal for the development of atherosclerosis and coronary 

artery disease. The most recent discoveries help to explain 

and confi rm the cardiovascular protective effect derived 

from irbesartan treatment, and at the same time open new 

and fascinating perspectives of care.
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