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Exciplexes possessing thermally activated delayed fluorescence (TADF) characteristics
have received much attention in the fields of organic light-emitting materials and devices
over the past decade. In general, an exciplex is a physical mixture between a donor (D) with
hole transport properties and an acceptor (A) with electron transport characteristics, and
the energy difference between the lowest excited singlet state and the lowest excited triplet
state is usually fairly small in terms of the long-range charge-transfer process fromD to A. In
the processes of photoluminescence and electroluminescence, triplet excitons can be
converted to singlet excitons through reverse intersystem crossing and then radiate
photons to achieve TADF. As a consequence, triplet excitons can be effectively
harvested, and the exciton utilization can be significantly enhanced. Up to now, a large
number of exciplexes have been developed and applied to organic light-emitting devices.
Notably most of them showed green or red emission, while blue exciplexes are relatively
few owing to the spectrum characteristics of the large red-shift and broadened emission. In
this study, the latest progress of blue exciplex–based organic light-emitting materials and
devices is briefly reviewed, and future research is prospected.
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INTRODUCTION

Since the realization of the first organic light-emitting diode (OLED) possessing a high brightness
of >1,000 cd m−2 and a low-driving voltage (Von) of <10 V (Tang and VanSlyke, 1987), OLEDs based
on small molecules (Tang et al., 1989; Adachi et al., 1990), polymers (Burroughes et al., 1990; Peng
et al., 1998), and metal–organic complexes (Baldo et al., 1998; Chang et al., 2013) have attracted
tremendous attention in the fields of lighting and displays over the past few decades owing to their
fascinating merits such as thinness, fast response, and flexibility (Hong et al., 2021). Among these
OLEDs, several different kinds of luminescence mechanisms, including traditional fluorescence
(Friend et al., 1999; Huang et al., 2012), phosphorescence (Bernhard et al., 2002; Zhou et al., 2014),
triplet–triplet annihilation (TTA) (Fukagawa et al., 2012; Jankus et al., 2013), traditional thermally
activated delayed fluorescence (TADF) (Endo et al., 2011; Uoyama et al., 2012; Zhang et al., 2012; Li
et al., 2013; Li et al., 2021d), hyperfluorescence (Nakanotani et al., 2014; Chan et al., 2021),
singlet–triplet inversion (Ehrmaier et al., 2019; Pollice et al., 2021; Li et al., 2022), exciplex-based
TADF (Goushi et al., 2012; Li et al., 2014; Oh et al., 2015; Li et al., 2021c; Gu et al., 2022), aggregation-
induced emission (AIE)–based TADF (Peng and Shuai, 2021; Suman et al., 2021), and multiple
resonance (MR)–based TADF (Lee et al., 2020; Stavrou et al., 2021; Wu et al., 2021; Zou et al., 2022)
have been reported. Thus, the exciplex used to be considered an important reason for poor OLED

Edited by:
Haichang Zhang,

Qingdao University of Science and
Technology, China

Reviewed by:
Bijin Li,

Chongqing University, China
Xiangyang Tang,

Zhejiang University, China

*Correspondence:
Qiang Guo

qiangguo@cuit.edu.cn

Specialty section:
This article was submitted to

Organic Chemistry,
a section of the journal Frontiers in

Chemistry.

Received: 24 May 2022
Accepted: 03 June 2022
Published: 12 July 2022

Citation:
Li J, Li Z, Liu H, Gong H, Zhang J and

Guo Q (2022) Advances in Blue
Exciplex–Based Organic Light-
Emitting Materials and Devices.

Front. Chem. 10:952116.
doi: 10.3389/fchem.2022.952116

Frontiers in Chemistry | www.frontiersin.org July 2022 | Volume 10 | Article 9521161

MINI REVIEW
published: 12 July 2022

doi: 10.3389/fchem.2022.952116

http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2022.952116&domain=pdf&date_stamp=2022-07-12
https://www.frontiersin.org/articles/10.3389/fchem.2022.952116/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.952116/full
https://www.frontiersin.org/articles/10.3389/fchem.2022.952116/full
http://creativecommons.org/licenses/by/4.0/
mailto:qiangguo@cuit.edu.cn
https://doi.org/10.3389/fchem.2022.952116
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2022.952116


FIGURE 1 | Chemical structures of compounds forming blue exciplexes. The red, green, and blue colors represent donors, acceptors, and intramolecular
exciplexes, respectively.
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performance, and it thus should be avoided and eliminated
(Adachi et al., 1990; Jenekhe, 1995; Morteani et al., 2003).
Nevertheless, the studies on enhanced exciplex emission over
the past decade suggested the possibility of exciplexes as unique
light-emitting materials (Goushi and Adachi, 2012; Sarma and
Wong, 2018; Zhang et al., 2021) or highly efficient cohost
materials for OLEDs with high efficiencies, low Von, and low
roll-offs (Liu et al., 2015b; Wu et al., 2017; Xiao et al., 2018; Wang
et al., 2019; Zhao et al., 2019; Jung and Lee, 2020).

In general, an exciplex originates from the intermolecular
charge-transfer (CT)–excited state between the highest
occupied molecular orbital of an electron donor (D) and the
lowest unoccupied molecular orbital of an electron acceptor (A),
leading to a fairly small energy difference (ΔEST) between the
lowest excited singlet state (S1) and the lowest excited triplet state
(T1) by means of the long-range CT process from D to A (Sarma
and Wong, 2018; Shao et al., 2022). In the processes of
photoluminescence (PL) and electroluminescence (EL),
nonradiative triplet excitons can be converted to be radiative
singlet excitons through efficient reverse intersystem crossing
(RISC). Thus, triplet excitons can be effectively harvested and the
luminescence efficiencies can be significantly enhanced, thus
ensuring that exciplexes are an important class of emitters in
OLEDs (Hung et al., 2014; Kim and Kim, 2019; Guo et al., 2021).

Up to now, a large number of exciplex-based molecular systems
have been developed and applied to OLEDs. In particular, most of
them are green or red exciplexes, while blue exciplexes are
relatively few (Zhang et al., 2021). This is mainly because the
realization of blue exciplexes is a herculean task on account of a
large red-shifted and broadened exciplex emission spectrum as
compared to those of the corresponding D and A compounds
(Guo et al., 2021). In this study, the latest progress of blue
exciplex–based organic light-emitting materials and devices is
briefly reviewed, and future research is prospected. The chemical
structures of compounds forming blue exciplexes involved in the
following descriptions are depicted in Figure 1, and the EL
performance of blue exciplex–based OLEDs is summarized in
Table 1.

BLUE EXCIPLEX–BASED ORGANIC
LIGHT-EMITTING MATERIALS AND
DEVICES
Although exciplex emission has been studied for decades,
exciplex-based organic light-emitting materials have not
received extensive attention for a long time, mainly because of
their relatively low luminous efficiency and poor color purity

TABLE 1 | Electroluminescence performance of blue exciplex–based organic light-emitting diodes.

Exciplex λEL [nm] Von
a) [V] EQEmax

b) [%] CEmax
c) [cd A−1] PEmax

d) [lm W−1] CIE (x,y) References

mCP:PO-T2T 471 2.0 8.0 15.5 18.4 (0.17, 0.23) Hung et al. (2014)
TCTA:Bphen 464 2.6 2.65 3.66 3.82 - Zhao et al. (2015)
TPAPB:TPBi 468 3.2 7.0 ± 0.4 9.1 ± 0.7 7.2 ± 0.5 (0.14, 0.18) Chen et al. (2015)
CDBP:PO-T2T 480 2.5 13.0 26.6 27.8 (0.17,0.29) Liu et al. (2015a)
mCBP:PO-T2T ~470 - 7.66 15.08 17.78 (0.17, 0.23) Zhang et al. (2015)
26DCzPPy:PO-T2T 488 3.1 7.8 18.0 17.7 (0.23, 0.36) Liu et al. (2016)
mCP:oTPOTZ 480 3.6 0.4 1.4 1.0 (0.20, 0.30) Duan et al. (2018)
mCP:mTPOTZ 478 2.7 4.34 10.1 11.5 (0.16, 0.29) Duan et al. (2018)
mCP:pTPOTZ 481 2.5 11.1 26.2 32.4 (0.19, 0.36) Duan et al. (2018)
dCzPSi:PO-T2T ~480 2.4 8.6 14.7 11.5 (0.15, 0.21) Hung et al. (2018)
dCzPSO2:PO-T2T ~480 2.4 1.8 4.2 4.8 (0.15, 0.21) Hung et al. (2018)
CzSi:PO-T2T 465 3.0 6.1 8.9 7 (0.16, 0.21) Chapran et al. (2019)
mCP:PO-T2T 480 3.0 16.0 27 26.4 (0.16, 0.28) Chapran et al. (2019)
mCPPO1:PO-T2T 480 3.0 6.5 9.4 8 (0.18, 0.29) Chapran et al. (2019)
TPD:Bphen 480 3.0 0.46 1.0 0.95 (0.20, 0.31) Guo et al. (2020)
TCTA:P6 433 6.2 9.1 - - - Tan et al. (2020)
mCP:HAP-3FDPA 437 4.0 10.2 - - (0.16, 0.12) Li et al. (2021b)
DM-B ~500 2.8 27.4 - 68.1 (0.20, 0.44) Tang et al. (2020)
DM-Bm ~500 2.6 21.7 - 62.7 (0.22, 0.48) Tang et al. (2020)
DM-G 500 3.0 18.5 - 47.5 (0.24, 0.50) Tang et al. (2020)
2tDMG 504 - 30.8 88.5 71.8 (0.24, 0.53) Peng et al. (2020)
3tDMG 501 - 20.8 58.0 45.0 (0.24, 0.52) Peng et al. (2020)
N2-6 480 - 14.1 28.2 14.8 - Wang et al. (2021a)
N2-8 479 - 17.6 34.4 27.0 - Wang et al. (2021a)
N3-6 490 - 14.7 33.4 17.5 - Wang et al. (2021a)
N3-8 488 - 18.9 43.1 27.1 - Wang et al. (2021a)
BD-Cy 477 2.9 18.2 36.8 36.1 (0.18, 0.28) Wang et al. (2021b)
TAcBO-H 460 3.1 15.8 23.1 - (0.16, 0.16) Du et al. (2021)
TAcBO-F 493 3.0 19.5 52.0 - (0.20, 0.43) Du et al. (2021)

aTurn-on voltage at 1 cd m−2.
bMaximum external quantum efficiency.
cMaximum current efficiency.
dMaximum power efficiency.
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(Gould et al., 1992; Osaheni and Jenekhe, 1994; Gebler et al., 1997;
Chao and Chen, 1998; Wang et al., 1998; Cocchi et al., 2002;
Kulkarni and Jenekhe, 2008; Zhao et al., 2008; Zhu et al., 2009;
Yang et al., 2010). Exciplex-based OLEDs have triggered much
attention since Goushi and coworkers demonstrated a
pronounced EL enhancement using the RISC process in the
4,4′,4″-tris [3-ethylphenyl (phenyl)amino]triphenylamine
(m-MTDATA):tris-[3-(3-pyridyl)mesityl]borane (3TPYMB)
exciplex system, which showed a relatively high maximum
external quantum efficiency (EQEmax) of 5.4% in view of a
rather low photoluminescence quantum efficiency (PLQE) of
26%, exceeding the corresponding limit of fluorescence-based
OLEDs (Goushi et al., 2012). Afterward, a much higher EQEmax

of 10.0% and a maximum power efficiency (PEmax) of 47.0 lm
W−1 were achieved by changing the exciplex system from
m-MTDATA:3TPYMB to m-MTDATA:2,8-
bis(diphenylphosphoryl)dibenzo [b,d]thiophene (PPT) (Goushi
and Adachi, 2012).

Since then, exciplex-based emitters have aroused widespread
attention by virtue of their fascinating optoelectronic properties,
and a number of efficient blue exciplex–based OLEDs have been
realized (Shao et al., 2022). In 2014, Hung and coworkers attained
a record-high blue exciplex OLED (λEL = 471 nm) with an
EQEmax of 8.0% based on 1,3-bis(N-carbazolyl)benzene (mCP):
2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (PO-T2T)
(Hung et al., 2014). In 2015, Zhao et al. (2015) achieved a
blue exciplex–based OLED based on 4,4′,4″-tri (N-carbazolyl)
triphenylamine (TCTA):4,7-di-phenyl-1,10-phenanthroline
(Bphen), which displayed a low EQEmax of 2.65%. Chen et al.
(2015) developed a highly efficient blue exciplex system using a
novel electron donor molecule (4-dimesitylboryl)
phenyltriphenylamine (TPAPB) and a conventional electron
acceptor 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene
(TPBi), while a blue-emitting device containing TPAPB:TPBi
exhibited a lowVon of 3.2 V, a high EQEmax of 7.0 ± 0.4%, and CIE
coordinates of (0.14, 0.18). Liu and coworkers reported an
efficient blue exciplex emitter consisting of 4,4′-bis(9-
carbazolyl)-2,2′-dimethylbiphenyl (CDBP):PO-T2T, which
showed obvious TADF emission and intrinsically high T1,
making itself an excellent candidate as a blue emitter or a host
for green and red phosphors (Liu et al., 2015a). Meanwhile, the
CDBP:PO-T2T exciplex–based blue device delivered a record-
high EQE of 13.0% with an EL emission peak at 480 nm and CIE
coordinates of (0.17, 0.29). Zhang et al. (2015) demonstrated that
the energy could transfer from blue exciplexes to both fluorescent
and phosphorescent orange dopants using an efficient blue
exciplex system of 9,9′-biphenyl-3,3′-diylbis-9H-carbazole
(mCBP) and PO-T2T as the electron donor and acceptor,
respectively, and a high EQEmax of 7.66% with CIE
coordinates of (0.17, 0.23) were realized. Liu et al. (2016)
investigated the EL property of a blue exciplex of 2,6-bis[3-
(9H-carbazol-9-yl)phenyl]pyridine (26DCzPPy):POT2T and an
OLED incorporating this exciplex as an emitting layer turned on
at 3.1 V, and realized a high EQEmax of 7.8% with blue emission
peaked at 488 nm. Based on the acceptors xTPOTZ (x = o, m, or
p), which are triphenyltrazine derivatives substituted with
diphenylphosphine oxide groups at ortho-, meta-, and para-

positions, respectively (Jia et al., 2015), Duan et al. (2018)
constructed a series of exciplexes mCP:xTPOTZ (x = o, m, or
p). Thus, in virtue of the strongest electron-withdrawing effect
and appropriate steric hindrance, an efficient sky-blue OLED
based on mCP:pTPOTZ realized an ultralow Von of 2.5 eV, a high
CEmax up to 26.2 cd A−1, a high PEmax of 32.4 lm W−1, and an
EQEmax of 11.1%. Hung et al. (2018) designed two new
nonconjugated linked dicarbazole materials, diphenylbis(9-
phenyl-9H-carbazol-3-yl)silane (dCzPSi) and 3,3′-
sulfonylbis(9-phenyl-9H-carbazole) (dCzPSO2). The electron-
transporting acceptor, PO-T2T, was introduced to give two
exciplex-forming systems, dCzPSi:PO-T2T and dCzPSO2:PO-
T2T. The dCzPSi:PO-T2T–based device revealed a Von as low
as 2.4 V and a high EQEmax of 8.6% with the CIE coordinates of
(0.15, 0.21), significantly higher than that of the device based on
dCzPSO2:PO-T2T (EQEmax = 1.8%), which is due to the fact that
dCzPSO2:PO-T2T possessing a large ΔEST is unfavorable in
forming a CT complex.

In 2019, Chapran and coworkers investigated the exciplex
properties by selecting PO-T2T as an electron acceptor with
different electron donors, and the emissions of these exciplexes
spanned from blue to orange-red regions (Chapran et al., 2019).
The blue-emitting exciplexes CzSi:PO-T2T–, mCP:PO-T2T–,
and mCPPO1:PO-T2T–based OLEDs exhibited high EQEmax

of 6.1%, 16.0%, and 6.5%, respectively. Guo et al. (2020)
reported a blue exciplex–based OLED based on N,N′-bis(3-
methylphenyl)-N,N′-diphenylbenzidine (TPD):Bphen, which
exhibited a relatively low EQEmax of 0.46%, possibly resulting
from the low PLQE of the exciplex. Tan et al. (2020) designed and
investigated a series of donor–acceptor–donor materials based on
sulfone substituents as acceptors and found that one of these
materials (P6) could form blue exciplexes with TCTA. The
TCTA:P6-exciplex–based OLED showed a high EQEmax of
9.1% and deep-blue emission with λEL = 433 nm. Li et al.
(2021b) designed and synthesized a heptazine-based electron
acceptor, 2,5,8-tris[di (4-fluorophenyl)amine]-1,3,4,6,7,9,9b-
heptaazaphenalene (HAP-3FDPA), and the exciplex system of
8 wt% mCP:HAP-3FDPA exhibited a high PLQE of 53.2%. More
importantly, an OLED containing this exciplex system as an
emitting layer showed deep-blue emission with CIE coordinates
of (0.16, 0.12), and a rather high EQEmax of 10.2% along with a
low roll-off.

Of late, intramolecular exciplexes based on through-space
charge transfer (TSCT) are an attractive class of emitters with
spatial D/A architecture and TADF characteristics (Shao and
Wang, 2020; Li B. et al., 2021; Xue and Xie, 2021). For
intramolecular exciplexes, the D and A segments are spatially
proximate to each other but are physically separated by a
nonconjugated structure (Shao and Wang, 2020; Yang et al.,
2020). Tang and coworkers presented an intramolecular design
strategy for exciplex-based emitters via a space-confined CT to
enhance the light emission (Tang et al., 2020). By connecting the
donor and acceptor units via a rigid linker, the electronic
coupling between the donor and acceptor units is sufficient to
allow for efficient direct absorption by the CT state. In contrast to
more flexible or less strongly coupled samples, the three rigid sky-
blue exciplex emitters, 1′-[4-(4,6-diphenyl-1,3,5-triazin-2-yl)
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phenyl]-10-phenyl-10H-spiro[acridine-9,9′-fluorene] (DM-B),
1′-[3-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl]-10-phenyl-
10H-spiro[acridine-9,9′-fluorene] (DM-Bm) and 1′-(4,6-
diphenyl-1,3,5-triazin-2-yl)-10-phenyl-10H-spiro[acridine-9,9′-
fluorene] (DM-G) possess very high PLQEs of >90% when
incorporated in a solid matrix. The sky-blue OLEDs based on
DM-B achieved a fairly high EQEmax of 27.4% along with a small
efficiency roll-off. Peng et al. (2020) developed two greenish-blue
TADF emitters with a tilted face-to-face alignment of D/A units
presenting intramolecular noncovalent interactions, 2-(tert-
butyl)-10-[4-(tert-butyl)phenyl]-1′-[4-(4,6-diphenyl-1,3,5-
triazin-2-yl)phenyl]-10H-spiro[acridine-9,9′-fluorene] (2tDMG)
and 2,7-di-tert-butyl-10-[4-(tert-butyl)phenyl]-1′-[4-(4,6-
diphenyl-1,3,5-triazin-2-yl)phenyl]-10H-spiro[acridine-9,9′-
fluorene] (3tDMG). 2tDMG and 3tDMG achieved extremely
high EQEmax of 30.8% (evaporation-process) and 20.2%
(solution-process), respectively. These excellent results opened
new avenues for the study of spatial electronic interactions in
organic light-emitting materials. Wang T. T. et al. (2021)
designed and synthesized four small blue-emitting molecules
containing a spiro-scaffold based on fluorene, namely, N2-6,
N2-8, N3-6, and N3-8, while the rather short D–A distance
led to large steric hindrance as well as a π-stacking manner,
favoring CT from D to A. The blue OLED based on N3-8
achieved a high EQEmax of 18.9%. Wang and coworkers
reported the design of π-stacked dendrimers consisting of
cofacially aligned D and A for highly efficient OLEDs, and the
dendritic structure and orthogonal configuration led to the TSCT
emission (Wang X. et al., 2021). Thus, the blue device based on
the dendrimer BD-Cy showed promising performance with
CEmax = 36.8 cd A−1, EQEmax of 18.2%, and PEmax = 36.1 lm
W−1. Du et al. (2021) reported two blue TSCT dendrimers
consisting of dendritic triacridan donors and oxygen-bridged
triarylboron acceptors, TAcBO-H and TAcBO-F. More
importantly, the solution-processed OLEDs based on these two
dendrimers exhibited blue EL emission and a high EQEmax

of >15%.

BLUE EXCIPLEXES AS COHOST
MATERIALS IN BLUE PHOSPHORESCENT
ORGANIC LIGHT-EMITTING DIODES
Balanced carrier transporting for electron and hole in the
emitting layer is significant for the OLED performance in the
EL process. To achieve good electron and hole balance, various
host materials possessing bipolar characteristics have been
developed. There are two approaches to realize bipolar hosts.
One is to design single molecules consisting of both hole and
electron-transporting units (Su et al., 2008; Lee et al., 2009; Chou
and Cheng, 2010). The other is to use exciplex-based cohosts
inherently containing hole and electron-transporting molecules
(Park et al., 2013a; Park et al., 2013b; Lee et al., 2013). In
particular, the latter approach commonly does not require a
new molecular synthesis, and the hole and electron mobilities
of the exciplex can be tuned by adjusting the ratio of hole and
electron-transporting molecules. Thus, exciplex-based cohost

materials are conductive to the achievement of OLEDs with
low Von and high efficiencies (Park et al., 2013b; Lee et al.,
2013). To realize high-performance blue phosphorescent
OLEDs (PhOLEDs) utilizing exciplex-based cohost materials,
the T1 level of the exciplex should be lower than those of the
consisting molecules in order to confine the excitation energy in
the exciplex state, not to transfer to the D and A molecules.
Meanwhile, the T1 level of the exciplex should also be higher than
that of a phosphorescent dopant to guarantee the energy transfer
from the exciplex to a blue dopant. Hence, it seems to be a
challenging issue to attain an ideal exciplex system meeting these
requirements (Jung and Lee, 2020; Tan et al., 2020).

In 2014, Shin et al. (2014) reported a high efficiency blue-
emitting PhOLED approaching the theoretical efficiency limit
(EQEmax = 29.5%) using a blue exciplex cohost of mCP:bis-4,6-
(3,5-di-3-pyridylphenyl)-2-methylpyrimi-dine (B3PYMPM) and
a phosphorescent emitter of iridium (III)bis[(4,6-
difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic), and
meanwhile, the OLED exhibited a low Von of 3 V and low-
efficiency roll-off. In 2015, Ban and coworkers designed and
synthesized a novel electron-transporting molecule (5-terphenyl-
1,3-phenylene)bis(diphenylphosphine oxide) (POPH), and the
solution-processed blue PhOLED incorporating a blue
exciplex–based cohost TCTA:POPH displayed an extremely
low Von of 2.7 V, a high PEmax of 22.5 lm W−1, and a very
low-efficiency roll-off even the luminance was up to 10,000 cd
m−1 (Ban et al., 2015). Lee et al. (2015) reported an efficient
exciplex–based cohost system of mCP:PO-T2T, and a high-
performance blue PhOLED using the exciplex cohost doped
with FIrpic possessing a remarkably high EQEmax of 30.3%,
PEmax of 66 lm W−1, and a low Von of 2.4 V was realized.
Based on the time resolved PL measurement, these results
should be ascribed to the suitable T1 level of the exciplex
(2.64 eV) ,which is lower than the T1 levels of the consisting
molecules of mCP (2.94 eV) and PO-T2T (2.99 eV), and higher
than that of FIrpic (2.63 eV), so that the exciplex system well
confines the excitons in the exciplex state, followed by energy
transfer to a blue dopant of FIrpic. In 2016, Ban et al. realized a
highly efficient blue PhOLED based on a blue exciplex cohost
system of TCTA:1,3,5-tris(diphenylphosphoryl)benzene (TPO)
with the CEmax of 23.8 cd A−1 and PEmax of 15.8 lm W−1 (Ban X.
X. et al., 2016). Afterward, they designed and synthesized a novel
electron acceptor 1,3,5-tris(1-[4-(diphenylphosphoryl)phenyl]-
1H-benzo [d]imidazol-2-yl)benzene (TPOB) to form an
exciplex-type cohost with TCTA, and the solution-processed
blue PhOLED achieved an extremely low Von of 2.8 V and a
high PEmax of 22 lmW−1 along with a low-efficiency roll-off (Ban
X. et al., 2016). Lim et al. (2017) developed an exciplex-forming
cohost composed of mCP as the donor and 2,4-bis[4-
(diphenylphosphoryl)phenyl]pyridine (BM-A10) as the
acceptor for deep-blue PhOLEDs achieving a Von of 2.9 eV, a
rather high EQEmax of 24% with CIE coordinates of (0.15, 0.21).
Yun and coworkers designed n-type molecules with isomeric
molecular structure, while the corresponding exciplex cohosts
formed by mCBP:3-(4,6-bis[3-(triphenylsilyl)phenyl]-1,3,5-
triazin-2-yl)benzonitrile (mSiTrz-mCN) showed blue emission
(Yun et al., 2021a). The deep-blue PhOLED employing this
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exciplex as a cohost showed a low Von of 2.8 V and a high EQEmax

of 21.0% with a color coordinate of (0.14, 0.18). Afterward, Yun
et al. developed a bipolar n-type host material, 9-(4,6-bis[3-
(triphenylsilyl)phenyl]-1,3,5-triazin-2-yl)-9H-carbazole-3-
carbonitrile (mSiTrzCzCN), and the blue-emitting mCBP:
mSiTrzCzCN exciplex system showed a high T1 energy close
to 3.0 eV (Yun et al., 2021b). The mCBP:mSiTrzCzCN
exciplex–based deep-blue PhOLED realized a high EQEmax of
21.8% and a lifetime elongation of more than double relative to
the conventional n-type host-based device. Kim et al. developed
three n-type hosts to form blue exciplex with mCBP (Kim et al.,
2022). Among them, the exciplex developed by mCBP:CNmSi-
2DBF-Trz showed a high T1 of 2.95 eV and the fabricated blue
PhOLED showed a rather high EQEmax over 23%.

CONCLUSION AND OUTLOOK

In summary, this study provided an overview of blue exciplex–based
organic light-emitting materials and devices. The research
background and luminescence mechanism were briefly
introduced. Benefiting from the intriguing merits of exciplex-
based OLEDs including low-driving voltages and low-efficiency
roll-offs, simultaneously, as well as simple device structures,
exciplexes have drawn significant attention on account of the
potentials for efficient electroluminescence or for the use as high-

performance cohost materials. Manipulating blue exciplex emissions
by adjusting molecular structures gives an ideal strategy to fully
utilize all exciton energies for high-performance OLEDs. We believe
that our work will be conductive to the future development of blue
exciplex–based OLEDs with high efficiencies and simplified device
structures. Meanwhile, we expect that further systematic
investigations of the excited-state dynamics and the structure-
property relationships will be of benefit for the development of
more efficient exciplex–based emitters and cohost materials oriented
for WOLEDs and solution-processed OLEDs.
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