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Mechanical microenvironments, such as extracellular matrix stiffness and strain, have crucial roles in cancer progression. Cells
sense their microenvironments withmechanosensing biomolecules, which is accompanied by themodulation of actin cytoskeleton
structures, and the signals are subsequently transduced downstream as biochemical signals. The tumor suppressors p53 and
retinoblastoma protein (Rb) are known to prevent cancer progression. The p53 and Rb signaling pathways are disrupted in many
types of cancers. Here, we review recent findings about the roles of these tumor suppressors in the regulation of mechanosensing
biomolecules and the actin cytoskeleton. We further discuss how dysfunction in the p53- and/or Rb-mediated mechanosignaling
pathways is potentially involved in cancer progression. These pathways might provide good targets for developing anticancer
therapies.

1. Introduction

During cancer progression, cells acquire several abilities,
including continual unregulated proliferation, resistance to
cell death, invasiveness, and epithelial-mesenchymal tran-
sition (EMT) [1–3]. Remodeling of the actin cytoskeleton
is also associated with cancer progression [4, 5]. Actin
is one of the most abundant proteins in eukaryotic cells.
Globular actin (G-actin) monomers polymerize into actin
filaments (F-actin), which is then depolymerized, in a steady-
state equilibrium. Actin polymerization is regulated by actin
nucleators, including the formins, actin-related protein 2/3
(Arp2/3) complex, and spire [6–8]. The activation of these
actin nucleators is regulated by Rho GTPases, including Rho,
Rac, and Cdc42, which typically induce the formation of
stress fibers, lamellipodia, and filopodia, respectively [9].
Actin depolymerization is enhanced by gelsolin and actin-
depolymerizing factor (ADF)/cofilin, while spontaneous
depolymerization is slow [10].Gelsolin is activated by calcium

ions but inhibited by phosphatidylinositol 4,5-bisphosphate.
Activation of ADF/cofilin is regulated by its phosphorylation.
Kinases, including LIM kinase (LIMK), testicular protein
kinase (TESK), and integrin-linked kinase (ILK), induce
the activation of ADF/cofilin, while phosphatases, such as
slingshot and chronophin, induce its inactivation [11–13].

The invasion of cancer cells is associated with the
formation of several actin-mediated structures, including
lamellipodia, filopodia, podosomes, and invadopodia [14, 15].
Podosomes and invadopodia degrade the extracellularmatrix
(ECM), which facilitates invasion into other tissues. Pro-
trusions of lamellipodia and filopodia are likely to promote
cancer cell invasion through the generation of traction forces
that are required formesenchymal-modemigration. Blebs are
also formed during themigration of cancer cells and promote
their invasion [16, 17].The formation of blebs is initiated upon
disruption of the actin cortex and driven by intracellular
pressure generated in the cytoplasm. In association with
reassembly of the actin cortex, the blebs are then retracted by
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actomyosin contraction, generating traction forces that move
the cells forward.Whilemembrane blebbing is typically asso-
ciated with apoptotic cell death [18], aggressive cancer cells
appear to form and use blebs for invasion independently of
cell death [16, 17]. In addition to invasion, the insensitivity of
aggressive cancer cells to antitumor drug-induced apoptosis
might also be affected by actin cytoskeletal structures. Stress
fibers, lamellipodia, and filopodia are considered to promote
the survival of cancer cells.

Actomyosin contraction is essential for sensing themech-
anical environments surrounding cells [19]. At the sites of
cell-ECM adhesion, the formation of focal adhesion com-
plexes, including integrins, focal adhesion kinase (FAK), p130
Crk-associated substrate (p130Cas; also known as Bcar1), and
paxillin, promotes actin polymerization and activates myosin
[20–24]. Activated actomyosin generates a contractile force
that induces conformational changes in several focal adhe-
sion proteins to enhance downstream signaling [25]. Fur-
thermore, 𝛼-catenin has been identified as a mechanosens-
ing protein in adherens junction (AJ) complexes at cell-
cell junctions [26]. The homophilic interaction of cadherin
ectodomains induces the assembly of AJ complexes and local
actin polymerization.While actin filaments link to cadherins
via 𝛽-catenin and 𝛼-catenin, an actomyosin-generated force
transmitted to this linkage causes conformational changes
in 𝛼-catenin, which promotes its binding to vinculin [27].
This results in the recruitment of various proteins, including
zyxin and Arp2/3, to AJs and a further increase in actin
polymerization [26, 28]. The expression and activity of
proteins in focal adhesions andAJ complexes are often altered
during cancer progression.

Actin dynamics influence cellular behavior not only by
regulating cytoskeletal organization but also by controlling
gene expression. For example, in skeletal muscle differen-
tiation, disassembly of actin filaments is required for the
muscle-specific gene expression induced by serum response
factor (SRF) [29–32]. G-actin binds to megakaryocytic acute
leukemia (MAL; also known as MKL1/MRTF-A), a cofactor
of SRF, and sequesters it from the nucleus, therefore, causing
alterations in the equilibrium between actin polymerization
and depolymerization perturb differentiation [33].

Cancer progression is associated with the accumulation
of gene mutations and cancer is generally considered to be a
genomic disease. TP53, which encodes the p53 transcription
factor, is mutated in more than 50% of human cancers [34].
This protein exerts its biological activities, such as cell cycle
arrest and induction of apoptosis or senescence, by upregu-
lating the expression of various target genes [35–37]. Stresses,
such as DNA damage, induce the stabilization and activation
of p53 by affecting its posttranscriptional modifications such
as phosphorylation and acetylation [38, 39]. The expression
level of p53 is lowunder low stress conditions.However, it still
contributes to cellular homeostasis involving differentiation
and cell cycle progression.

Germline mutations in the retinoblastoma (Rb) gene
occur frequently in retinoblastoma, which is the most com-
mon cancer of the developing retina in early childhood [40].
Somatic mutations in Rb are also observed in several cancers,
including small-cell lung cancer and bladder cancer [41].
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Figure 1: p53 suppresses the cell proliferation mediated by the
Rb-E2F pathway. Phosphorylation of Rb by CDK4/6-cyclin D and
CDK2-cyclin E causes the dissociation of Rb from E2F to promote
cell cycle progression. In response to DNA damage, ataxia telang-
iectasia mutated (ATM) or ataxia telangiectasia and Rad3-related
protein (ATR) are activated and phosphorylate p53 either directly or
through Chk1/2. Phosphorylated p53 dissociates fromMdm2 and is
thereby stabilized. Active p53 then induces the transcription of its
target genes involving p21WAF1, resulting in the inhibition of CDK2-
cyclin E activity.

Furthermore, inactivation of Rb by hyperphosphorylation via
the constitutive activation of its kinases has been implicated
in tumor initiation and progression [40, 42, 43]. Phosphory-
lation of Rb by cell cycle kinase complexes, that is, cyclin-
dependent kinase (CDK) 4/6-cyclin D and Cdk-2-cyclin E,
releases the transcriptional repression of E2F, resulting in cell
cycle progression. The activity of Cdk-2-cyclin E is inhibited
by the CDK-inhibitor p21WAF1, a transcriptional target of p53
(Figure 1) [44]. Rb also plays a critical role in the development
of several tissues, including muscle and bone, by regulating
other transcriptional factors such as MyoD and RUNX2 [43].

While various molecules that constitute the actin cyto-
skeleton, focal adhesions, and AJs are involved in sensing
themechanicalmicroenvironments surrounding cells, little is
known about the contribution of p53 andRb tomechanosens-
ing. In this review, we summarize the roles of p53 and Rb in
the regulation of the actin cytoskeleton and mechanosensing
proteins, which provides insights into the mechanisms of
cancer progression.

2. p53 Regulates Integrin
Expression and Activation

Integrins, which are heterodimers composed of 𝛼 and 𝛽
subunits, form a connection between the ECM and actin
cytoskeleton, and their downstream signaling molecules
drive actin polymerization [45–47]. In humans, 18 types of 𝛼
subunits and 8 types of 𝛽 subunits have been identified, and
they assemble into 24 types of integrins that bind specifically
to their ligands, including fibronectin, laminin, and collagen
[48]. The binding of a ligand to the extracellular domain of
integrin induces the recruitment of focal adhesion proteins,
including FAK, p130Cas, and paxillin, at the cytoplasmic side,
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Figure 2: Effects of p53 on molecules in mechanosensing pathways. Cells sense ECM stiffness and modulate actin cytoskeleton structures
through the integrin signaling pathways. p53wild-type suppresses cancer progression throughdownregulation of themolecules in the integrin
signaling pathways. Conversely, several p53 mutants exert gain-of-function effects on the upregulation of molecules in the integrin signaling
pathways. The molecules indicated by red letters are upregulated by p53 GOF mutants.

leading to the activation of Rho GTPases and stimulation
of actin polymerization [20–24]. The cytoplasmic domain
of integrin links to actin filaments through several adaptor
proteins. Actomyosin contraction potentially modulates the
affinity of integrin to its ligands by changing the conforma-
tion of integrin.

Integrin signaling plays a fundamental role in tumor
cell invasion and metastasis. The expression levels of several
integrins, including𝛼5𝛽1,𝛼6𝛽4,𝛼4𝛽1,𝛼v𝛽3,𝛼v𝛽5,𝛼v𝛽6, and
𝛼2𝛽1, in cancer cells correlate with their aggressiveness [46,
49, 50]. It has been revealed that p53 regulates the expression
of integrins 𝛼5, 𝛽1, 𝛽3, and 𝛽4 (Figure 2) [51–56]. Janouskova
et al. showed that Nutlin-3a, an MDM2 antagonist that acts
as a p53 activator, decreases the expression of integrin 𝛼5 in
glioma and colorectal cancer cells [51, 52]. Bon et al. reported
that the expression of integrin 𝛽4 was decreased by either the
ectopic expression of p53 or DNA damage in wild-type p53-
expressing cells [56]. Conversely, the ectopic expression of
transactivating p63 (TAp63) or transactivating p73 (TAp73),
two p53 family members, increased the promoter activity of
ITGB4, which encodes integrin 𝛽4. Importantly, depletion
of p53 enhanced the TAp63- or TAp73-dependent activation
of the ITGB4 promoter. Not only DNA damage triggered
by genotoxic drugs or activation of oncogenes but also
other forms of stress, such as chromosomal aberrations,
hypoxia, and telomere shortening, are associated with cancer
progression [36]. Repression of integrin𝛼5 and𝛽4 expression

by p53 activated in response to these stresses is likely to
prevent the progression of cancer stimulated by these stresses.

Vaillant et al. reported, using mammary tumors derived
from p53-deficient mice lacking one allele (p53+/−), that loss
of p53 function promotes cancer cell invasion by upregulating
integrin 𝛽3 expression at the cell surface [54]. We also
reported that the depletion of p53 increased the expression of
integrin 𝛽3, encoded by ITGB3, in a transcription factor NF-
𝜅B-dependent manner. This leads to an increase in integrin
𝛼v𝛽3 expression at the cell surface, which promotes the
formation of lamellipodia. Lamellipodia formation mediated
by integrin 𝛼v𝛽3 contributes to the constitutive activation of
another transcription factor, STAT3, which plays an integral
role in tumor cell invasion [55]. Conversely, Qui et al. showed
that pifithrin-𝛼, a p53 inhibitor, increases the expression
of integrin 𝛽1 in endothelial cells when the expression of
ID1 (encoding inhibitor of DNA binding [ID] 1, which
belongs to a family of basic helix-loop-helix transcription
factors lacking DNA-binding domains and plays a criti-
cal role in angiogenesis) is depleted [53]. Pifithrin-𝛼 also
enhances the formation of F-actin at the peripheral rim and
promotes tubular formation. ID1 expression is upregulated
in angiogenic tumor vessels. These results suggest that the
p53-dependent maintenance of the low expression levels of
integrins 𝛽1 and 𝛽3 helps to attenuate both cancer cell inva-
sion and angiogenesis, which would prevent cancer progres-
sion.
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3. Regulation of Focal Adhesion-Rho Signaling
Pathways by p53

FAK contains three distinct domains: a four-point-one, ezrin,
radixin, moesin (FERM) domain; a kinase domain; and a
focal adhesion targeting (FAT) domain [21]. The residues
in the FERM domain are responsible for the autoinhibition
of FAK by intramolecular interactions. External forces are
believed to induce a conformational change of the FAT
domain to disrupt these intramolecular interactions. How-
ever, since FAK does not bind directly to actin filaments, it
is unclear whether FAK activity in cells is truly regulated by
force such as actomyosin contraction.

Phosphorylation of p130Cas is also facilitated by external
forces [57]. Src phosphorylates the substrate domain of
p130Cas (CasSD), which is characterized by 15 YXXPmotifs.
Phosphorylated CasSD provides a binding site for the Crk-
DOCK180 complex, a guanine nucleotide exchange factor
(GEF) for Rac. External forces induce a conformational
change of CasSD, which facilitates the phosphorylation of
p130Cas. Like FAK, p130Cas does not bind directly to actin
filaments [25]. Recently, we found that tensin 1 mediates the
interaction of p130Cas with actin filaments [58]. However,
given that the expression level of tensin 1 is generally low in
metastatic cancers [59, 60], it may not be responsible for the
enhanced phosphorylation of p130Cas and FAK in aggressive
cancer cells.

Paxillin, an adaptor protein at focal adhesions, is known
to be involved in the mechanical-cue-dependent regulation
of Rho GTPases [22]. While the underlying mechanism
remains unclear, the C-terminal LIM domains of paxillin
are likely to be involved in the responses of paxillin against
mechanical inputs [61]. Paxillin potentially promotes the
invasion of cancer cells; however, its levels of expression
and phosphorylation differ largely among cancer cell types
[62].

It has been suggested that p53 regulates thesemechanore-
sponsive proteins at focal adhesions (Figure 2). The ectopic
expression of p53 suppresses the promoter activity of FAK
either directly [63] or by inducing the expression of X-linked
ectodermal dysplasia receptor (XEDAR), a member of the
tumor necrosis factor receptor (TNFR) superfamily [64].
Recently, we reported that oncogenic Ras-induced transfor-
mation leads to the cleavage of 𝛽-actin and concomitant
suppression of p130Cas phosphorylation in a p53-dependent
manner [65].We have further shown that both the oncogenic
Ras-induced disruption of mitochondrial integrity and p53-
mediated activation of the mitochondrial protease high
temperature requirement A2 (HtrA2; also known as Omi)
are involved in the cleavage of 𝛽-actin in Ras-transformed
cells. The p130Cas-Rac1 axis is known to promote cell inva-
sion by inducing lamellipodia formation [66]. Interestingly,
the cytoplasmic localization of p53 was increased by Ras
transformation, causing mitochondrial translocation of the
mitogen-activated protein kinase p38. p38 translocated into
mitochondria and then enhances activation of HtrA2/Omi
[67].While cytoplasmic p53 is known to have tumor suppres-
sive functions via the suppression of centrosome duplication,
induction of cell death, and inhibition of autophagy [68], our

results revealed a novel mechanism underlying the tumor
suppressive function of cytoplasmic p53.

The constitutively active form of Src and oncogenic Ras
induce cellular transformation and invasion. Mukhopadhyay
et al. reported that loss of p53 function enhances Src-driven
cell invasion by promoting the formation of actin-rich struc-
tures, such as podosomes and invadopodia [14, 69–71]. They
showed that the level of caldesmon, an actin binding protein
that can suppress both podosome and invadopodia formation
[72], was decreased by inhibition of p53 [70]. Further, there is
a possibility that p53 diminishes Src-driven cell invasion via
inhibition of p130Cas-mediated podosome and invadopodia
activity. As described above, a decrease in p130Cas phos-
phorylation by impairment of actin filaments following Ras-
induced transformation was suppressed by p53 knockdown,
while the activity of Src, a kinase of p130Cas, was not affected.
Indeed, knockdown of p53 decreases p130Cas phosphoryla-
tion in Src-transformed cells (personal communication).

p53 regulates the activity of Rho GTPases (Figure 2)
[73–75]. p53 mediates the oncogenic-Ras-induced activation
of p190 Rho GTPase-activating protein (RhoGAP) [76]. A
deficiency in p53 expression increases RhoA activity and
stimulates the formation of blebs via the activation of Rho-
associated protein kinase (ROCK) [77].While RhoA typically
promotes stress fiber formation [9], RhoA can increase cell-
exerted contractile forces even in Ras-transformed cells in
which stress fiber formation is largely diminished [76]. The
generation of cell-exerted contractile forces plays a crucial
role in the invasion and intravasation/extravasation of cancer
cell tissue and blood vessels.

p53 regulates the expression of several genes that encode
effector proteins of RhoA/RhoC and Cdc42. For example,
depletion of p53 increases the expression of ROCK1/2 and
MRCK𝛼, which encodes myotonic dystrophy kinase-related
Cdc42-binding kinase 𝛼 (MRCK𝛼). The ectopic expression
of p53 in turn increases the expression of these genes [78].
Not only RhoA signaling but also Rac and Cdc42 signaling is
affected by p53. Depletion of p53 increases phosphoinositide
3-kinase- (PI3-kinase-) mediated Rac activity [79]. Con-
versely, the ectopic expression of p53 decreases Cdc42 activity
and concomitant filopodia formation [80].

F-actin formation is both negatively and positively regu-
lated by p53 in response to DNA damage. Croft et al. reported
that treatment with the antitumor drug doxorubicin reduces
the activity of cofilin by increasing the expression of RhoC
and LIM kinase 2 (LIMK2) in a p53-dependent manner
[81].While doxorubicin treatment promotes the formation of
stress fibers, depletion of either RhoC or LIMK2 abrogates
doxorubicin-induced stress fiber formation. Conversely,
other antitumor drugs, including camptothecin and etopo-
side, attenuate the formation of stress fibers through the p53-
dependent expression of RhoE [82]. Depletion of RhoE pre-
vents the camptothecin-induced disassembly of stress fibers.

It has been suggested that, in response to DNA damage,
p53 influences actin cytoskeleton remodeling by regulating
the cytoskeleton adaptor protein ankyrin-1, which is encoded
byANK1. Hall et al. reported that the etoposide-induced acti-
vation of p53 increases the expression of ANK1 [83]. Etopo-
side treatment promotes the formation of actin-rich long
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protrusions, even though knockdown of ankyrin-1 attenuates
this response. By contrast, stress fiber formation in etoposide-
treated cells is enhanced by depleting ankyrin-1 expression.
The ankyrin-1-mediated activation of cofilin may be involved
in these actin remodeling processes. Furthermore, ankyrin-
1 contributes to the association of the cortical spectrin-actin
network with the plasma membrane by linking spectrin
with membrane proteins including the anion exchanger and
CD44 [84, 85]. Spectrin plays a crucial role in maintaining
the structural integrity of the plasma membrane and has
been suggested to be a potential mechanosensing protein
[86]. Therefore, the p53-dependent regulation of ankyrin-
1 may contribute not only to actin remodeling but also to
mechanosensing/mechanoprotection of cells.

4. Regulation of Cadherin Expression by p53

It is well established that EMT promotes cell invasion and
metastasis. It is important to note that EMT is associated with
a decrease in E-cadherin expression and an increase in N-
cadherin expression, which are major components of cell-
cell adhesion complexes. They form homophilic adhesion
bonds. Since the interactions of N-cadherin are much weaker
than those of E-cadherin, the shift from E-cadherin to N-
cadherin during EMT weakens cell-cell adhesions, which
promotes the scattering and migration of cancer cells. Like
focal adhesions, AJs are reportedly involved in sensing the
mechanical microenvironments of cells [26, 87–90].

In cells undergoing EMT, the expression of E-cadherin,
encoded by CDH1, is suppressed by Snail, zinc finger E-box
binding homeobox 1/2 (ZEB1/2), and Slug. These proteins
in turn increase the expression of N-cadherin, which is
encoded by CDH2 [91]. It has been revealed that p53 prevents
EMT by regulating the expression of E- and N-cadherins.
Siemens et al. showed that activated p53 suppresses Snail
expression by inducing the expression of microRNA- (miR-)
34a/b/c [92]. The expression of miR-200 and miR-192 is also
p53-dependent, and their expression is negatively correlated
with ZEB1/2 expression [93, 94]. Both p53 itself and its
transcriptional targets (MDM2 and p21WAF1) regulate Slug
expression [95]. The ectopic expression of p53 induces the
proteasomal degradation of Slug, which is mediated by the
E3 ligase MDM2. A further study by Kim et al. showed that
complex formation of Slug with p21WAF1 and p53 is involved
in MDM2-mediated Slug degradation [96].

5. p53 Gain-of-Function Mutants
Regulate Cell Adhesion Molecules and
Downstream Pathways

Mutations inTP53 often result in a gain-of-function (GOF) of
the protein [97]. Muller et al. showed that p53 GOF mutants
increase the Rab-coupling protein- (RCP-) driven recycling
of integrin 𝛼5𝛽1 by inhibiting TAp63-mediated transcription
[98]. This would induce the formation of filopodia-like pro-
trusions and thereby promotes the invasion of cancer cells.
Furthermore, p53 GOF mutants promote the translocation
of integrin 𝛽1 to the tips of filopodia by increasing the early
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Figure 3: Rb-dependent regulation of the molecules involved in
actin cytoskeleton remodeling. In cancer cells, Rb is inactivated
either by Cdk4/6- and Cdk2-dependent hyperphosphorylation or
by its mutation. Rb prevents cancer progression by suppressing both
invasion and cell division via the alteration of actin cytoskeleton
remodeling. Conversely, under inflammatory conditions, Rb is likely
to have a promoting effect on cancer cachexia, which is associated
withmuscle atrophy characterized by disorganization of sarcomeres.
TNF𝛼 upregulates the Cdk4/6-dependent phosphorylation of Rb,
which causes disorganization of sarcomeres by inhibiting mDia1-
mediated actin polymerization.

growth response protein 1- (EGR1-) mediated expression
of myosin-X (Myo10), an unconventional myosin [99]. The
expression of integrin 𝛼5𝛽1 and its ligand fibronectin is also
increased by p53GOFmutants [100], which contributes to the
survival of suspended cells.

Recently, Lee et al. showed that p53GOFmutants increase
the transcription of ITGB4, which encodes integrin 𝛽4 [101].
TAp63 andTAp73 also upregulate the expression of ITGB4, as
described above [56]. Conversely, the transcriptional activity
of TAp63 and TAp73 is reduced by their binding with a subset
of p53 mutants [102]. Thus, additional studies are needed to
reveal the actual relationship between p53GOFmutants, p63,
andp73 in terms of the regulation of ITGB4 expression,which
would provide a better understanding of the mechanisms
underlying cancer progression.

p53 GOF mutants appear to contribute to cancer pro-
gression via the expression of the EMT-promoting factors
Snail, Slug, and Twist [103, 104]. In addition, p53 GOF
mutants upregulate the expression of paxillin and ARHGDI,
which encodes Rho GDP-dissociation inhibitor alpha (Rho-
GDI𝛼) that typically downregulates Rho GTPases [105].
However, the role of paxillin and Rho-GDIs in metastasis is
controversial, which may reflect the diversity of cancers.

6. Rb Regulates Cell Adhesion Molecules and
Downstream Pathways

Several studies have suggested a role for Rb in the regulation
of the actin cytoskeleton and related pathways (Figure 3).
Engel et al. showed, using Rb knockout cells and the ectopic
expression of Rbmutants, that Rb promotes the expression of
ITGA10 (encoding integrin 𝛼10) in osteoblasts independently
of the canonical Rb-E2F pathway [106]. They used bioinfor-
matic analysis to show that the expression of integrin 𝛼10
is downregulated in several tumors compared with normal
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tissues. Integrin𝛼10 heterodimerizeswith the integrin𝛽1 sub-
unit [107]. While both loss-of-function and gain-of-function
of p53 drive integrin 𝛽1-mediated cancer cell progression
as discussed above [53, 98–100], Rb might prevent cancer
progression by increasing the heterodimerization of integrins
𝛼10 and 𝛽1 and by suppressing the heterodimerization of
integrins 𝛼4 or 𝛼5 with 𝛽1.

It has been suggested that loss of Rb function causes
the upregulation of ILK expression, which is required for
cell division [108]. In retinoblastoma cells carryingmutations
in the Rb gene, inhibition of ILK by the small molecule
QLT-0267 induces the accumulation of multinucleated cells,
which is associated with a decrease in cortical F-actin,
alteration ofmitotic spindle organization, and declustering of
centrosomes. ILK upregulates actin polymerization by inac-
tivating cofilin and by activating both Rac and Cdc42 [109].
Furthermore, ILK controls the complex formation of Aurora
A kinase/chTOG/TACC3, which is essential for the assembly
of mitotic spindles [110, 111]. Both microtubule-dependent
forces and actin-dependent forces at the cell cortex contribute
to centrosome clustering [112]. These findings suggest that
loss of Rb function prevents mitotic defects, such as the
arrest of and exit from mitosis, through upregulation of the
ILK-mediated assembly of actin filaments and microtubules,
which would ensure cell division.

We reported recently that Rb causes disruption of the
sarcomeric structure of skeletal muscle myotubes via its
interactionwith the formin proteinmDia1 [113], an effector of
RhoA [114]. This pathway is stimulated by the inflammatory
cytokine TNF𝛼. TNF𝛼 increases the CDK4-dependent but
CDK2-independent phosphorylation of Rb. Phosphorylated
Rb subsequently translocates from the nucleus to the cytosol,
where it binds to mDia1. The sarcomere, which consists of
a highly ordered array of actin thin filaments and myosin
thick filaments, provides a contractile unit in muscle cells
and confers muscle strength. Our findings suggest that
inflammation hampers the homeostasis of skeletal muscle via
inhibition of mDia1-mediated actin polymerization by Rb. In
advanced cancer patients, cachexia—the loss of body mass
that is associated withmuscle atrophy characterized by disor-
ganization of sarcomeres—is often observed. Cytoplasmic Rb
might contribute to cancer progression by promoting muscle
atrophy. Indeed, cytoplasmic Rb was detected in atrophied
tibialis anterior muscles, but not the normal muscles, of
cancer patients [113].

Rb has also been implicated in the regulation of cadherin
expression. Sosa-Garćıa et al. reported that, in Rb-deficient
osteoblasts, the expression of E-cadherin and osteoblast-
cadherin (OB-cadherin) is downregulated [115]. Associated
with this, AJs are disrupted in these cells, which is medi-
ated by the inactivation of merlin, a member of the ezrin,
radixin, and moesin (ERM) family of proteins that links
actin filaments to AJ complexes [116]. OB-cadherin (also
known as cadherin-11), a cadherin isoform that is expressed
in mesoderm-derived tissues, is known to be involved in
cancer progression both positively and negatively. In prostate
and brain cancers, OB-cadherin enhances the engagement
between cancer cells and bone tissues by its hemophilic
interactions, which promotes cancer metastasis [117–122].

By contrast, osteosarcoma formation is promoted by the
disruption of OB-cadherin-mediated cell-cell interactions.
These results imply that loss of Rb function might induce
cancer progression preferentially in growing tissues.

7. Concluding Remarks

In this paper, we focused on the findings regarding the roles
of the central tumor suppressors p53 and Rb in the regulation
of the actin cytoskeleton and mechanoresponsive molecules.
Intense studies have revealed that both these tumor sup-
pressors and mechanical environments surrounding cells
have significant effects on cancer progression. However, little
is known about how these tumor suppressors influence
the mechanical environment-dependent regulation of cancer
progression.

Cancer cells sense various different mechanical environ-
ments during metastasis, leading to an alteration of cell
behavior [123, 124]. The tumor stroma is composed of non-
cancerous cells, including cancer-associated fibroblasts
(CAFs), as well as noncellular components, such as the ECM.
The excess production of the ECM mainly by CAFs stiffens
solid tumors [125, 126], which promotes the growth of cancer
cells [127, 128]. In addition, along with the growth of tumor
mass, cancer cells suffer high pressure caused by tissue com-
pression and/or an increase in interstitial pressure [129].
Similar to ECM stiffening, this high pressure also promotes
the metastasis of cancer cells. Following intravasation, can-
cer cells in blood vessels are exposed to shear forces exerted
by blood flow, which facilitates the interaction of cancer
cells with endothelial cells to permit extravasation [130].
Cell growth and sensitivity against chemotherapy and radio-
therapy treatments are also affected by mechanical environ-
ments [131]. Furthermore, mechanical environments appear
to be crucial for maintaining the properties of cancer stem
cells, such as self-renewal and tumor formation abilities.
Thus, mechanical environments affect cancer progression at
multiple stages.

We have proposed the possibility that cancer cachexia
with muscle atrophy is caused by Rb-mediated disruption of
sarcomeric organization [113]. Currently there is no effective
treatment for muscle atrophy, which makes it difficult to
improve the quality of life (QOL) of patients with advanced
cancers. Since CDK4 is responsible for the TNF𝛼-induced
phosphorylation of Rb and resultant disorganization of
sarcomeres, disrupting the function of CDK4 may prevent
cachexia in advanced cancers, which would improve QOL.
p53 is known to be required for the promotion of muscle
atrophy induced by inflammatory cytokines, including TNF𝛼
[132]. p53 may be involved in Rb-promoted muscle atrophy.
It is well known that the p53 and Rb pathways coopera-
tively regulate cell proliferation and senescence; however,
the relationship between p53 and Rb in actin cytoskeleton
remodeling is totally unknown. As described above, we have
shown that Rb appears to inhibit mDia1-mediated actin poly-
merization to disrupt sarcomeres. However, activation of
RhoA, which promotes mDia1-induced actin polymerization
[114], is prevented by p53 [77]. These observations support
the notion that p53 synergistically enhances Rb-promoted
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muscle atrophy. In addition toCDK4 inhibition, development
of a drug that targets the pathway for p53-mediated inactiva-
tion of RhoAmay enable the suppression of cancer-associated
cachexia.

While accumulating evidence reveals that mechanical
environments significantly affect the aggressiveness of can-
cer cells, it remains unclear how mechanical environments
regulate the activities of p53 and Rb. Further studies into the
mechanotransduction mechanisms responsible for mechan-
ical cue-dependent regulation of these tumor suppressors
would aid the development a definitive treatment for cancers
and a treatment that improves the QOL of advanced cancer
patients.
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