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Abstract: Due to the light scattered by atmospheric aerosols, the amplitude image contrast is degraded
and the depth measurement is greatly distorted for time-of-flight (ToF) imaging in fog. The problem
limits ToF imaging to be applied in outdoor settings, such as autonomous driving. To improve the
quality of the images captured by ToF cameras, we propose a polarization phasor imaging method
for image recovery in foggy scenes. In this paper, optical polarimetric defogging is introduced into
ToF phasor imaging, and the degree of polarization phasor is proposed to estimate the scattering
component. A polarization phasor imaging model is established, aiming at separating the target
component from the signal received by ToF cameras to recover the amplitude and depth information.
The effectiveness of this method is confirmed by several experiments with artificial fog, and the
experimental results demonstrate that the proposed method significantly improves the image quality,
with robustness in different thicknesses of fog.

Keywords: time-of-flight camera; polarization defogging; phasor imaging; multipath interference;
image recovery

1. Introduction

Time-of-flight (ToF) imaging is an active depth-sensing technology with the advantages
of a compact structure, low cost, and real-time image capture [1]. It is widely used in
many fields, such as autonomous driving [2], machine vision [3], and human–computer
interaction [4]. The continuous-wave ToF (CW-ToF) camera is a common depth-sensing
camera, which indirectly acquires depth images by calculating the phase difference between
sent and received signals [5], simultaneously capturing amplitude images of a scene. When
a CW-ToF camera is used in foggy scenes, the contrast of the amplitude image is degraded
and the depth image is greatly distorted, which limits the ToF camera to be applied in
outdoor settings, as shown in Figure 1. Therefore, it is necessary to improve the quality of
the images captured by a ToF camera in fog.

In a foggy scene, a CW-ToF camera receives the summation of reflected light from
the target and scattering light caused by atmospheric aerosols. The light scattered in fog
causes the multipath interference (MPI), which refers to the fact that a single pixel of the
ToF camera receives multipath lights from the scene [6], leading to the significant error of
depth measurements. Various studies have been implemented for MPI correction, such as
mixed pixel restoration [7,8], multiple frequency measurements [9–12], compressed sens-
ing [13,14], and deep learning [15–17]. In this work, we only consider the MPI caused by
scattering media. To correct MPI generated by scattering media, many methods have been
studied and developed, including convolutional sparse coding [18], data-driven prior [19],
temporal properties [20], iterative optimization algorithms [21,22], image filtering [23],
polarization properties of light [24,25], and phasor imaging [26,27]. Kijima D. et al. used
multiple time-gating to estimate the scattering property of fog with a short-pulse ToF
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camera, for reconstructing the depth and intensity of a scene [20], which is not applicable to
CW-ToF cameras. Wu R. et al. proposed the transient degree of polarization [24] and used
the polarization properties of light to recover transient images in scattering scenes [25].
Transient images record the propagation of light through a scene with rich information [28],
but they require hardware modifications or complex computation processes to accurately
recover the time domain response [28–31]. Phasor imaging only recovers the depth informa-
tion in the scattering scene by high-frequency [26] or multiple frequency measurements [27].
Our goal is to simultaneously recover the depth and amplitude information from a CW-ToF
camera in the scattering scene, without restoring the transient images.
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Figure 1. Amplitude and depth measurements in clear (upper) and foggy scenes (lower) using
CW-ToF cameras.

Optical polarimetric defogging is a powerful method to enhance visibility in fog, which
uses the difference of polarization properties between the reflected and scattered light [32].
It can be divided into passive polarization defogging [33–36] and active polarization
defogging [37–41], with good performance in visibility enhancement for RGB images. The
effect of fog on amplitude images captured by a CW-ToF camera is different from that on
RGB images, which follows the regularity of MPI. Therefore, optical polarimetric defogging
cannot directly be used for restoring the amplitude image. Considering the principle of
ToF imaging, we introduce polarization-based defogging to phasor imaging for improving
the quality of images from a CW-ToF camera.

In this paper, we propose a polarization phasor imaging method for simultaneously
recovering the depth and amplitude information of ToF imaging in fog, and establish the
corresponding imaging model based on the polarization properties of light. The model
estimates the scattering component using the degree of polarization phasor, and separates
the target component to recover the depth and amplitude images. The main contributions
of this work are:

• Firstly, we introduce optical polarimetric defogging to ToF phasor imaging, expanding
the application of polarization defogging.

• Secondly, we define the degree of polarization phasor for describing the scattering
effect for ToF imaging.

• Finally, we establish a polarization phasor imaging model for recovering amplitude
and depth images in the foggy scenes by estimating the scattering component.

The remainder of this paper is organized as follows: Section 2 describes the phasor
representation and models polarization phasor imaging; Section 3 verifies the effectiveness
of the method through experiments; Section 4 discusses the limitations and potential future
works; and Section 5 presents the conclusions.
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2. The Polarization Phasor Imaging Method

The polarization phasor imaging method processes and analyzes polarization data
in polar coordinates. First, a group of polarization images is captured at two orthogonal
orientations of the linear polarization analyzer. The amplitude and depth captured at the
same orientation are combined to form a phasor. Afterwards, the background is selected to
estimate the degree of polarization phasor of the scattering component. After obtaining the
scattering component, the amplitude and depth of the target component can be recovered.
For a better performance, the image enhancement is applied in the amplitude, and masking
background is used in the depth image. The pipeline of the proposed method is shown in
Figure 2, and the details are discussed below.
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2.1. Polarization Phasor Representation

A CW-ToF camera illuminates the scene with amplitude modulated light, and senses
the depth information by calculating the phase shift between the sent and received signals.
The amplitude image captured by a CW-ToF camera records the intensity information
returned from the scene within a certain integration time, as shown in Figure 3a. In this
work, the illumination beam of the ToF camera is polarized by a linear polarizer in front of
the light source, and the images are captured from the sensor through a linear polarization
analyzer, in Figure 3b.
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The phasor representation of measurements from a ToF camera is proposed in [26]
and further developed in [27], which comprehensively analyzes the information of the
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amplitude and depth. Based on the current studies, we applied the phasor representation
in ToF polarization measurements (Figure 4), and expressed as

p(θ, x) = a(θ, x)eiϕ(θ,d(x)) (1)

where x represents an exact pixel; θ is the angle between the orientation of linear polarizer
and the orientation of the linear polarization analyzer; a is the amplitude at pixel x; ϕ is the
phase difference between the sent and the reflected light; and ϕ(θ, d(x)) = 4π f d(x)/c; d(x)
is the distance between the target and the sensor at pixel x. The co-linear image is obtained
when the orientation of the analyzer is identical to that of the linear polarizer, which are
represented as p(θ||, x). The cross-linear image p(θ⊥, x) is captured with the orientation of
the analyzer orthogonal to that of the linear polarizer.
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We assume that the target radiance is unpolarized, the scattering medium is spatially
homogeneous, and the single scattering is dominated, as with many earlier works [33–36,38–41].
Based on the above assumption, the amplitude is invariant at different θ, and the phase is
related to the actual distance and the modulation frequency of the light source, in a clear scene.
Therefore, p(θ||, x) = p(θ⊥, x), and p(θ||, x) coincides with p(θ⊥, x) in the polar coordinate.

When the scattering medium exists in a scene, the signal received by ToF cameras is
not the single-path reflected light from the scene, but the summation of the directly reflected
light and multipath scattered light. This phenomenon is contrary to the principle of the ToF
measurement, so significant errors are induced. Figure 5 shows the process of ToF imaging
in fog, and the corresponding phasor representation. Assuming that the scattering medium
is spatially uniform, the observed phasor is the composition of the phasors from the target
and scattering components, as shown in Figure 5b, and expressed as

pm(θ, x) = pt(θ, x) + ps(θ, x)
= ãt(θ, x)eiϕ(θ,d(x)) +

∫
L(d(x))

s(θ)eiϕ(θ,d(l))dl (2)

where ãt is the attenuated amplitude of the target component, and ãt = µ · at; µ is the
transmittance of the scattering medium, and at is the amplitude of the target in clear scenes;
s(θ) is the amplitude of the scattering component; and L(d(x)) is the summation of all
possible optical paths in front of the target.
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2.2. Polarization Phasor Imaging Model

According to the theory of optical polarimetric defogging [33], the observed phasors
measured at different orientations of the analyzer can be expressed as

pm

(
θ||, x

)
= pt

(
θ||, x

)
+ ps

(
θ||, x

)
(3)

pm(θ⊥, x) = pt(θ⊥, x) + ps(θ⊥, x) (4)

where pt

(
θ||, x

)
and ps

(
θ||, x

)
are phasors of the target and scattering components mea-

sured at θ||; pt(θ⊥, x) and ps(θ⊥, x) are phasors of the target and scattering components
measured at θ⊥. In addition, the total measurement is the vector summation of data
measured at two orthogonal polarization states, which is

pm(x) = pm

(
θ||, x

)
+ pm(θ⊥, x)

pt(x) = pt

(
θ||, x

)
+ pt(θ⊥, x)

ps(x) = ps

(
θ||, x

)
+ ps(θ⊥, x)

(5)

where pt

(
θ||, x

)
= pt(θ⊥, x) = 1

2 pt, since the amplitude of the target component is invariant
when the orientation of the analyzer changes, and the phase of the target component is
independent on the orientation of the analyzer.

Here, we define the degree of polarization phasor (DOPP) of the observed and scatter-
ing phasors as PPm and PPs, respectively, and they are represented as

PPm =
pm(θ||,x) − pm(θ⊥ ,x)

pm(θ||,x) + pm(θ⊥ ,x)

PPs =
ps(θ|| ,x) − ps(θ⊥ ,x)

ps(θ|| ,x) + ps(θ⊥ ,x)

(6)

We assume that the proportion of scattering component is higher in the observed mea-
surements measured at θ|| than that measured at θ⊥. In this case, am

(
θ||, x

)
> am(θ⊥, x),

and as

(
θ||, x

)
> as(θ⊥, x), as shown in Figure 6. If ϕs

(
θ||, x

)
= ϕs(θ⊥, x), PPs is a constant
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and same as the degree of polarization. Combining the above equations, the scattering
phasor can be calculated from

ps =
ps

(
θ||, x

)
− ps(θ⊥, x)

PPs
=

pm

(
θ||, x

)
− pm(θ⊥, x)

PPs
(7)

Sensors 2022, 22, x FOR PEER REVIEW 6 of 13 
 

 

( ) ( ) ( ) ( )|| ||, , , ,s s m m
s

s s

x x x xθ θ θ θ⊥ ⊥− −
= =
p p p p

p
PP PP

 (7)

 
Figure 6. Polarization phasor representation in a scattering scene. 

It can be observed from Equation (7) that sPP  is a critical factor to estimate the scat-
tering component. In an outdoor scene, the images captured by a ToF camera usually con-
tain a background, where the measurements can be approximated as the scattering com-
ponent, since the reflected light is negligible. At this time, sPP  can be estimated from the 
background: 

( ) ( )
( ) ( )

||

||

, ,

, ,
s b s b

s
s b s b

x x

x x

θ θ
θ θ

⊥

⊥

−
=

+

p p
PP

p p
 (8)

where bx  is the pixel in the background region. After estimating sPP , sp  can be calcu-
lated from Equation (7), and the target component can be obtained from the observed 
phasor: 

t m s-=p p p  (9)

At this time, the depth is recovered from the phase of tp  and calculated as 

arg( )
4

t
recovery

cd
fπ

⋅
=

p
, (10)

where ( )arg ⋅  operator is used to calculated the angle of the phasor. In the background 
region, the recovered depth is messy due to the weak reflected light, which is usually 
suppressed using an image mask [21,22,27]. The image mask can be obtained by image 
segmentation, and we implemented the maximum between-class variance method [42] on 
the recovered amplitude image to mask the background of the depth image. 

The amplitude recovered from tp  is ta , which contains the attenuation effect of 
fog. In the traditional optical imaging, the transmittance μ  is usually obtained from the 
scattering component. However, it is not suitable for ToF imaging, since the amplitude of 
the scattering phasor is affected by the phase. Therefore, image enhancement can be used 
here to further improve the quality of the amplitude image, such as histogram-based 
[43,44], Retinex-based [45,46], and grayscale transformation [47,48]. In this work, we used 
a simple grayscale power transformation from [49] to enhance the amplitude image. 

3. Experiments and Results 
The effectiveness of the proposed method was evaluated by several experiments with 

artificial fog. The experiment was implemented in a closed chamber with a light-absorb-
ing cover to avoid additional MPI. The size of the closed chamber is around 120 × 40 × 50 
cm3, as shown in Figure 7a. Figure 7b shows our experimental setup, which includes a 

Figure 6. Polarization phasor representation in a scattering scene.

It can be observed from Equation (7) that PPs is a critical factor to estimate the
scattering component. In an outdoor scene, the images captured by a ToF camera usually
contain a background, where the measurements can be approximated as the scattering
component, since the reflected light is negligible. At this time, PPs can be estimated from
the background:

PPs =
ps

(
θ||, xb

)
− ps(θ⊥, xb)

ps

(
θ||, xb

)
+ ps(θ⊥, xb)

(8)

where xb is the pixel in the background region. After estimating PPs, ps can be calculated
from Equation (7), and the target component can be obtained from the observed phasor:

pt = pm − ps (9)

At this time, the depth is recovered from the phase of pt and calculated as

drecovery =
c · arg(pt)

4π f
, (10)

where arg(·) operator is used to calculated the angle of the phasor. In the background
region, the recovered depth is messy due to the weak reflected light, which is usually
suppressed using an image mask [21,22,27]. The image mask can be obtained by image
segmentation, and we implemented the maximum between-class variance method [42] on
the recovered amplitude image to mask the background of the depth image.

The amplitude recovered from pt is ãt, which contains the attenuation effect of fog. In
the traditional optical imaging, the transmittance µ is usually obtained from the scattering
component. However, it is not suitable for ToF imaging, since the amplitude of the scat-
tering phasor is affected by the phase. Therefore, image enhancement can be used here
to further improve the quality of the amplitude image, such as histogram-based [43,44],
Retinex-based [45,46], and grayscale transformation [47,48]. In this work, we used a simple
grayscale power transformation from [49] to enhance the amplitude image.
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3. Experiments and Results

The effectiveness of the proposed method was evaluated by several experiments with
artificial fog. The experiment was implemented in a closed chamber with a light-absorbing
cover to avoid additional MPI. The size of the closed chamber is around 120 × 40 × 50 cm3,
as shown in Figure 7a. Figure 7b shows our experimental setup, which includes a CW-ToF
camera manufactured by Texas Instruments (OPT8241-CDK-EVM), a linear polarizer in
front of the light source, a linear polarization analyzer in front of the sensor, and a fog
generator. The fog was generated from the fog generator by combining water, glycerol and
alcohol compounds, and the images were captured after a few minutes, when a stable and
uniform scattering environment was formed. The thickness of fog was measured with a
laser haze detector (HK-B5S), and described as the number of scattering particles per cubic
decimeter. The modulation frequency of the light source was 40 MHz, and the illumination
power was 8800 mW, in the parameter settings of the ToF camera. A group of polarization
images was captured at two orthogonal orientations of the linear polarization analyzer,
with the integration time of 6.2 ms. In addition, the image was averaged from 100 frames for
pre-processing to reduce time-dependent noise. The amplitude and depth images captured
without fog were considered as the ground truth. The background pixels xb were selected
from the area of the light-absorbing cover behind the targets, and the DOPP was estimated
by averaging the calculation of the background pixels. The background pixels refer to the
distant points and dark points of the scene, whose amplitudes are significantly lower than
other pixels, and phases are larger than other pixels.
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Figure 7. Experimental environment for polarization phasor imaging. (a) Fog chamber. Experiments
with fog are conducted in this fog chamber. (b) Experimental setups.

The experiment scene is shown in Figure 8a, which contains five targets: a cylinder
made of white paper, white diffuse plane, plush toy, kraft paper box, and blue box. The
distance between the targets and the sensor was roughly 1 m. We tested our method under
different thicknesses of fog (Figure 8b), and the numbers of scattering particles per cubic
decimeter are 753,640, 935,340 and 1,204,890, corresponding to thin, medium, and thick fog,
respectively. The experiment results are shown in Figure 9, and the quantitative evaluations
of the amplitude and depth images are listed in Tables 1 and 2, respectively.
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Table 1. Quantitative evaluation of the amplitudes using PSNR and SSIM.

Thickness of Fog Amplitude PSNR (dB) SSIM

Thin
Ordinary ToF measured at θ|| 59.48 0.338
Ordinary ToF measured at θ⊥ 57.92 0.262

Ours 63.75 0.684

Medium
Ordinary ToF measured at θ|| 59.47 0.328
Ordinary ToF measured at θ⊥ 57.87 0.249

Ours 61.40 0.583

Thick
Ordinary ToF measured at θ|| 59.21 0.294
Ordinary ToF measured at θ⊥ 57.84 0.239

Ours 60.28 0.504

Table 2. Quantitative evaluation of depths using the mean absolute error and mean squared error
(MSE). Each cell shows the mean absolute error (m)/MSE.

Thickness of Fog Depth Cylinder White Diffuse
Plane Plush Toy Kraft Paper

Box Blue Box

Thin
Ordinary ToF measured at θ|| 0.28/3.03 0.18/1.74 0.43/6.35 0.21/2.80 0.34/3.06
Ordinary ToF measured at θ⊥ 0.11/1.27 0.05/0.45 0.22/3.23 0.09/1.21 0.21/2.30

Ours 0.02/0.18 0.01/0.14 0.03/0.57 0.03/0.38 0.04/0.49

Medium
Ordinary ToF measured at θ|| 0.28/2.52 0.19/1.50 0.44/6.58 0.23/3.75 0.35/5.32
Ordinary ToF measured at θ⊥ 0.14/1.30 0.07/0.55 0.29/4.55 0.12/2.05 0.27/3.29

Ours 0.02/0.20 0.02/0.17 0.04/0.60 0.03/0.53 0.05/0.66

Thick
Ordinary ToF measured at θ|| 0.37/3.29 0.28/2.80 0.52/6.94 0.30/4.84 0.40/5.38
Ordinary ToF measured at θ⊥ 0.19/1.68 0.10/1.04 0.35/4.73 0.16/2.66 0.30/4.07

Ours 0.03/0.23 0.03/0.28 0.06/0.67 0.06/0.98 0.05/0.70



Sensors 2022, 22, 3159 9 of 12

Ordinary ToF cameras directly capture the amplitude and depth images through the
linear polarization analyzer, as shown in Figure 9a,b. The amplitude measured at θ|| is
brighter than that measured at θ⊥, since the sensor receives more fog components at θ||. The
depth measured at θ⊥ is closer to the ground truth than that measured at θ|| for the same
reason. As the density of fog increases, the contrast of the amplitude gradually decreases,
and the difference between the measured depth and the ground truth increases. Our
method performs well in different thicknesses of fog, as shown in Figure 9c. The contrast
of amplitude images is enhanced by our method, and the fog component is effectively
suppressed. Meanwhile, the amplitude images are evaluated by the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) in Table 1. In both indices, our method is
superior to the ordinary ToF camera with the linear polarization analyzer.

The depth is greatly distorted in a foggy scene, and it is significantly underestimated
using an ordinary ToF camera without other processes, whereas our method restores the
depth of different targets in different thicknesses of fog. Figure 10 shows the absolute error
of depth under different thickness of fog, and the quantitative results of depth at different
target regions are shown in Table 2. In the region of the white diffuse plane and cylinder, the
error of depth recovery is the smallest, since the target reflectance and the depolarization
effect are the highest. In the edge of the blue box region, some depth information is lost,
and the size of depth-loss area increases as the density of the fog increases. This is because
the returned light intensity is low, causing the edge to be incorrectly classified as the
background during masking background. In addition, flying pixels exist in the recovered
depth, especially in thick fog. The reason for this phenomenon is that the background in the
recovered amplitude image contains some background information and residual scattering
information, and it is easily misclassified when masking background.
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4. Discussion
4.1. The Depolarization Degree of Targets

We assume that the target radiance is unpolarized when ToF polarization imaging
in fog. In practice, some target radiance is partial polarization light. In this case, the
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polarization of the target component should be considered and the scattering phasor is
calculated as

ps =

[
pm

(
θ||, x

)
− pm(θ⊥, x)

]
−
[
pt

(
θ||, x

)
− pt(θ⊥, x)

]
PPs

(11)

Once the scattering phasor is calculated by Equation (7), the estimation error increases.
However, the target phasor is unknown and expected to be recovered from the observed
phasor, so this is an ill-posed problem. Some studies have been implemented to solve
this problem in RGB images [37]. In the future work, we will consider the polarization
contribution from the target and improve the estimation accuracy of the scattering phasor.

4.2. The Attenuation Factor of the Amplitude

In the computer vision, the transmittance of the scattering medium is usually cal-
culated based on an atmospheric degradation model. However, it is not applicable to
directly estimate the transmittance µ from the scattering component for ToF imaging, as
the amplitude of the scattering phasor is not a simple superposition of the amplitude in
total scattering paths. The transmittance estimation is important to improve the quality of
the recovered amplitude image, as well as the image mask. In addition, the transmittance
is related to the distance, so calculating the attenuation factor based on the recovered depth
information is worth studying in future works.

4.3. The Homogeneity of Scattering Media

In this work, the scattering medium is assumed to be spatially homogeneous. In a real
foggy environment, atmospheric aerosols are usually non-uniformly distributed in space,
which are usually non-uniformly distributed in the direction vertical to the ground and
homogeneously distributed in the direction parallel to the ground. The proposed method
can estimate the scattering component caused by fog per pixel, so the assumption is not the
limitation of our method in most foggy scenes.

5. Conclusions

We proposed a polarization phasor imaging method for recovering the depth and
amplitude information using the polarization ToF imaging system. We established a po-
larization imaging model and defined DOPP, which was used to estimate the scattering
component for image recovery. The effectiveness of the proposed method was verified by
several experiments with different thicknesses of fog. However, this method faced several
challenges, such as the low depolarization degree of targets, obtaining the attenuation
factor of amplitudes, and non-uniform scattering media. In the future research, the polar-
ization degree of targets and the attenuation factor should be considered to enhance the
applicability in practical scenes.
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