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It is well established that some individuals with normal cognitive capacity have abundant

senile plaques in their brains. It has been proposed that those individuals are resilient or

have compensation factors to prevent cognitive decline. In this comment, we explore an

alternative mechanism through which cognitive capacity is maintained. This mechanism

could involve the impairment of alternative neural circuitry. Also, the proportion of

molecules such as Aβ or tau protein present in different areas of the brain could be

important.
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Introduction

Loss of episodic memory is the most well known feature of Alzheimer disease (AD). Braak and
Braak (1996), suggested that damage of the connections between the entorhinal cortex (EC) and
hippocampal area could play an important role in the memory impairment of AD (Gomez-Isla
et al., 1996). Within the hippocampus, other studies have suggested that the CA1 hippocampal
subregion could be the minimal region that is required for acquisition of episodic memory (Zola-
Morgan et al., 1986; Volpe et al., 1992; Tsien et al., 1996; Shimizu et al., 2000; Bendel et al., 2005;
Buenz et al., 2006; Bueters et al., 2008). There are several works indicating the possible (and differ-
ent) pathways that connect the ECwith CA1 (for a review seeMoser et al., 2014 and Figure 1). Some
of these pathways go through the dentate gyrus, in which adult neurogenesis could be involved in
the formation of new memories (Zola-Morgan et al., 1986; Deng et al., 2010).

Damage to the EC and hippocampal region in AD is associated with the appearance of senile
plaques and neurofibrillary tangles, aberrant structures first described by Alzheimer (1907). Indeed,
it is typically considered that a proper diagnosis of AD is only really complete when, at autopsy, the
appearance of plaques and tangles are observed in the brain of the patient (Khachaturian, 1985).

However, the causal nature of the correlation between appearance of plaques and loss of memory
(or cognitive impairment) is not clear. Thus, it has been proposed that the disease should be treated,
not the lesions (Zhu et al., 2007), because the pathology may be a protective, possibly antioxidant
response to the primary pathogenesis. Furthermore, studies on familial AD (FAD) cases reveal an
asymptomatic phase in which there are plaques without cognitive impairment (Bateman et al.,
2012), although it may also suggest that the presence of plaques is a first step that could favor
the subsequent onset of the disease and that their presence is not immediately related to cognitive
impairment (Bateman et al., 2012).
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FIGURE 1 | Different pathways connecting entorhinal cortex with

CA1. Information from the senses is transmitted to the cortex and,

afterwards, to the enthorhinal cortex (EC) (upper layers). From EC, the

information could go directly to CA1 or, indirectly, through dentate gyrus

(DG), CA3 (or CA2), and CA1. This trisynaptic pathway involves adult

neurogenesis.

Plaques and Cognitive Impairment

There is controversy surrounding a total correlation between the
presence of plaques and the presence of cognitive impairment.
Some time ago, Katzman et al described cases of cognitively nor-
mal people bearing plaques (Katzman et al., 1989). In a more
recent study, analyzing those people without cognitive impair-
ment, it was found that some people met the criteria for high
likelihood AD, based on the presence of plaques (Bennett et al.,
2006), indicating that AD pathology can be found in the brain
of those without cognitive impairment (Aizenstein et al., 2008).
Some functional magnetic resonance analysis have also reported
the presence of Aβ aggregates in people without cognitive impair-
ment (Dickerson et al., 2004; Sperling et al., 2009; Mormino et al.,
2012).

More recently, Elman et al reported that some older peo-
ple may maintain normal cognition despite the presence of
plaques observed by positron emission tomography (PET) analy-
ses (Elman et al., 2014). There are at least two additional explana-
tions from those discussed above, a possible resilience, based on
personal characteristics such as having a higher cognitive reserve
(Xu et al., 2014), or compensation of a degenerated pathway
by using an alternative functional pathway (Elman et al., 2014).
In addition, it can be suggested that failure of more than one
neuronal circuit can be needed for cognitive impairment.

This led us to consider another alternative to that involv-
ing the connections from EC to CA1, indicated in Figure 1, an
alternative that might prevent cognitive decline.

In the work of Elman et al. (2014), there are explanations that
involve different types of connections, based on fMRI studies,
suggesting that CA1 can connect with the cortex without going
through the EC. In those studies, Elman et al. (2014) took advan-
tage of the system by analyzing two networks that were previously
identified. One of them links those areas that respond to a specific
cognitive activity, like visualization of a photograph (Fox et al.,
2005; Xu et al., 2014). This is the task-positive network (TPN)
(Fox et al., 2005). The other one indicates the regions that are

activated in the resting state (Buckner et al., 2008). This is the
default mode network (DMN). The DMN can be disrupted in
some neurodegenerative disorders (Buckner et al., 2008).

In human subjects, with normal cognition and no plaques,
engaging in a task activates the TPN while the DMN shuts down.
However, Elman et al. (2014) found that in the same conditions,
people with plaques and without cognitive impairment also dis-
played higher TPN activity but—critically—DMN was less deac-
tivated. The authors focused on this decrease of DMN shut down
to try to explain the maintenance of cognition. Indeed, there
are several works, using fMRI analysis, or other image tech-
niques, indicating the connection between dysfunction of DMN
and cognitive decline. We include some examples of those works
(Petrella et al., 2011;Wang et al., 2013; Garces et al., 2014; Gardini
et al., 2015).

Alternative Pathways to CA1

The activated areas in DMN include prefrontal cortex and pos-
terior cingulate cortex (Buckner et al., 2008). Cingulate cortex is
connected to other structures involved in memory, including the
mammillary bodies (MB) (Vann and Aggleton, 2004; Shah et al.,
2012). A connection between MB and CA2, which in turn is con-
nected to CA1, has also been found (Haglund et al., 1984; Kohara
et al., 2014). Thus, we propose this MB-CA2-CA1 circuit as an
alternative pathway throughwhich information from the cerebral
cortex can reach CA1 and avoid the EC (Figure 2).

We suggest that, for severe cognitive impairment to occur,
disruption of both circuits, that involving EC-CA1 and that
involving cingulate cortex-CA1, is needed. Indeed, abnormal
connectivity between the posterior cingulate and hippocampus
has been described in patients with cognitive impairment (Zhou
et al., 2008). In addition, it has been also indicated that a decrease
in the functional connectivity at the posterior cingulate cortex
can be critical for the conversion frommild cognitive impairment
to AD (Bozzali et al., 2014). Also, in the pioneering works of Stern
(2002, 2006) on resilience (cognitive reserve) or compensation,
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FIGURE 2 | From neocortex to hippocampus, by-passing entorhinal

cortex: the MB-CA2-CA1 pathway. A possible pathway to connect the

cortex with CA1, without transmission through EC, could be based on a

proposed connection between mammillary bodies (MB) to CA2, and from CA2

to CA1 (Haglund et al., 1984; Kohara et al., 2014). In this way, the previously

known connection shown in the Figure could be complemented by the

following pathway: Cortex cingulum mammillary bodies CA2 CA1.

the loss of connectivity at the posterior cingulate cortex was
already proposed. In this comment, our main focus is not on
resilience (see on that subject the recent work of Pereira et al.,
2014), but on compensation.

If, indeed, there is first a loss of connectivity at the hippocam-
pal area (location of the dentate gyrus), followed by a loss of
connectivity at the posterior cingulate cortex (Zhou et al., 2008),
risk factors, such as aging, could also play a role in this process.
It has been recently reported that there is a brain network that
links development, aging, and vulnerability to AD (Douaud et al.,
2014). This link is based on the so-called Ribot’s law indicating
that the destruction of memories progresses in reverse order to
that of their formation (Douaud et al., 2014). Brain structures,
like dentate gyrus, that play a role in recent memory, are assem-
bled very late in development but can lose their functionality very
early in the neurodegeneration process.

We suggest that, it is possible that both mechanisms, that
involving EC-CA1 and that involving posterior cingulate cortex-
CA1, could be damaged and are needed to develop a severe cog-
nitive impairment and AD. Thus, both mechanisms should be
needed for disease progression.

Distribution of Aβ and Tau in Cingulate
Gyrus and Enthorinal Cortex

As previously indicated, the brain of AD patients contain senile
plaques, composed of amyloid-beta peptide (Aβ) and neurofib-
rillary tangles, containing tau protein polymers. By looking at the
causes of FAD, genetic analyses have indicated that mutations
in APP (amyloid precursor protein), PSEN-1 (presenilin 1) or
PSEN-2 (presenilin 2) genes are the cause of the different types
of familial disease. The main consequence of these mutations
is an increased production of Aβ. This observation resulted in

the proposed amyloid cascade hypothesis of AD. This hypothesis
indicates that Aβ accumulation in brain is the primary factor
driving AD pathology (Selkoe, 1991; Hardy and Higgins, 1992).

Afterwards, it was shown that the presence of tau protein is
essential to the amyloid-beta induced neurotoxicity, occurring
in AD (Rapoport et al., 2002; Roberson et al., 2007; Ittner et al.,
2010). Based on these and other reports, it was suggested that Aβ

could initiate the pathological process but the presence of tau is
needed for the progression of the process. In this way, the cell
co-localization of Aβ and tau could increase the possibility of
neuronal damage.

At the molecular level, a double dissociation in regional dis-
tribution of tau and amyloid-beta has been reported when com-
paring cingulate gyrus and enthorhinal cortex in post-mortem
Alzheimer’s brains (Shukla and Bridges, 1999). It was described
that tau load was almost twice as great in the enthorinal cortex
than elsewhere in the brain, whereas Aβ levels were much higher
in the cingulate gyrus compared to enthorinal cortex (Shukla
and Bridges, 1999). It should be known if those differences may
play a role in the development of the disease, mainly within the
cingulate cortex, although we know that EC and posterior cingu-
late cortex could be interconnected and that modified tau could
spread from EC to the cingulate cortex (Yassa, 2014). That trans-
port time of modified tau from EC to posterior cingulate cortex
may determine the progression time of the disease during the
transition fromMCI to AD.

In many transgenic animal models, there are no differences in
the expression of tau or Aβ at specific locations of the brain. This
is because, sometimes, the expression of tau or APP mRNAs is
under strong promoters and it may facilitate the expression of a
protein throughout the whole brain in a non-physiological way.
Thus, in these animal models the progression of degeneration
may take place in a different fashion than that occurring in the
human disease.

If both, Aβ and tau aggregates, play a common, important
role in the pathogenesis of AD, it will be of interest to deter-
mine the localization and overlap of those aggregates in different
brain regions, given that the presence of plaques in the absence
of tau, in some regions, might not be sufficient for cognitive
decline. In this way, decreasing the amount of tau at specific
brain regions could have a therapeutic function if, as indicated,
the common presence of Aβ and tau aggregates is needed for
the progression of the disease. Determining Aβ and tau over-
lap may, however, be complex as clear differences in the amount
of tau can be found even between subregions of memory-related
brain areas, e.g., hippocampus CA1 (high tau amount), vs. CA3
and CA2 (low tau amount) (our preliminary results). In addi-
tion, the presence (or absence) of other molecules related to Aβ

or tau pathology could play a role in the development of neurode-
generation. A recent example of this is the telomerase protein
TERT that apart from being protective against oxidative dam-
age has a protective role against tau pathology (Spilsbury et al.,
2015). Previously it was reported that a coordinated expression
of tau and heme oxygenase 1 may play a pivotal role in the cyto-
protection of neuronal cells (Takeda et al., 2004). The oxidative
imbalance in AD has been extensively reviewed (Zhu et al., 2005;
Mondragon-Rodriguez et al., 2013).
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