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Rapidly identifying new 
coronavirus mutations of potential 
concern in the Omicron variant 
using an unsupervised learning 
strategy
Lue Ping Zhao1*, Terry P. Lybrand2,3*, Peter B. Gilbert4, Thomas H. Payne5, Chul‑Woo Pyo6, 
Daniel E. Geraghty6 & Keith R. Jerome4

Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-
CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an 
investigative framework, we have applied an unsupervised machine learning approach to 4296 
Omicron viral genomes collected and deposited to GISAID as of December 14, 2021, and have 
identified a core haplotype of 28 polymutants (A67V, T95I, G339D, R346K, S371L, S373P, S375F, 
K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, 
D614G, H655Y, N679K, P681H, N764K, K796Y, N856K, Q954H, N69K, L981F) in the spike protein 
and a separate core haplotype of 17 polymutants in non-spike genes: (K38, A1892) in nsp3, T492 
in nsp4, (P132, V247, T280, S284) in 3C-like proteinase, I189 in nsp6, P323 in RNA-dependent RNA 
polymerase, I42 in Exonuclease, T9 in envelope protein, (D3, Q19, A63) in membrane glycoprotein, 
and (P13, R203, G204) in nucleocapsid phosphoprotein. Using these core haplotypes as reference, we 
have identified four newly emerging polymutants (R346, A701, I1081, N1192) in the spike protein (p 
value = 9.37*10−4, 1.0*10−15, 4.76*10−7 and 1.56*10−4, respectively), and five additional polymutants 
in non-spike genes (D343G in nucleocapsid phosphoprotein, V1069I in nsp3, V94A in nsp4, F694Y 
in the RNA-dependent RNA polymerase and L106L/F of ORF3a) that exhibit significant increasing 
trajectories (all p values < 1.0*10−15). In the absence of relevant clinical data for these newly emerging 
mutations, it is important to monitor them closely. Two emerging mutations may be of particular 
concern: the N1192S mutation in spike protein locates in an extremely highly conserved region of all 
human coronaviruses that is integral to the viral fusion process, and the F694Y mutation in the RNA 
polymerase may induce conformational changes that could impact remdesivir binding.

Since the first report of SARS-COV-2 in January 20201, the virus has been continuously evolving with more 
mutations, periodically leading to major new variants that dominate local or global populations (https://​www.​
cdc.​gov/​coron​avirus/​2019-​ncov/​varia​nts). While many (Alpha, Beta, Gamma, Epsilon, Lota, Kappa, Mu, Zeta) 
are designated by the US CDC as variants being monitored (VBM), two have been designated variants of concern 
(VOC): Delta (B.1.617.2) , rapidly becoming a dominant variant worldwide after its initial report in India (https://​
www.​who.​int/​en/​activ​ities/​track​ing-​SARS-​CoV-2-​varia​nts/), and more recently the Omicron variant (B.1.1.529), 
which was first reported by scientists in South Africa and declared as a variant of concern (VOC) on November 
26, 2021 by WHO (https://​www.​who.​int/​news/​item/​28-​11-​2021-​update-​on-​omicr​on) and on November 30, 2021 
by the US CDC (https://​www.​cdc.​gov/​media/​relea​ses/​2021/​s1201-​omicr​on-​varia​nt.​html). The primary impetus 
for this designation is that Omicron harbors many more mutations in spike protein than the Delta variant, and 
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many of these mutations may impact transmissibility, disease severity, vaccine effectiveness, test reliability, and/
or treatment effectiveness.

Compared with a handful of mutations in the Delta variant, Omicron is reported to have as many as 30 or 
more mutations in the surface glycoprotein, i.e., spike protein, although the actual number varies (https://​www.​
who.​int/​news/​item/​26-​11-​2021-​class​ifica​tion-​of-​omicr​on-​(b.1.​1.​529)-​sars-​cov-2-​varia​nt-​of-​conce​rn). Here we 
report preliminary results from profiling the mutational landscape of Omicron viruses to date (December 14, 
2021), contrasting Omicron with the Delta and Alpha variants, identifying a set of core Omicron mutations in 
the spike protein as well as other viral proteins, and evaluating their potential structural and functional signifi-
cance. We also identify a set of newly emerging mutants in the Omicron variant, several of which may be of 
particular concern.

Mutation landscape of Omicron
As of December 14, 2021, a total of 4296 Omicron sequences from 53 countries (see Supplementary Table S1) 
have been deposited to GISAID (https://​www.​gisaid.​org/). Aligning these sequences with the first SARS-CoV-2 
sequence (29,903 bp) allows identification of mutations/substitutions in every nucleotide of individual viruses 
(see Data and Methodology for data source, description, and processing). As an emerging variant, most nucleo-
tides in the Omicron genomes are monomorphic, but 308 nucleotide sites have at least three observed mutations 
across 4296 viruses. The mutated sites are referred to as single nucleotide variants (SNVs) in general, and further, 
if corresponding SNVs are non-synonymous in coding regions, are referred to as polymutants2. For the purpose 
of comparing Omicron with Delta and Alpha variants, we extend 308 SNVs to 837 SNVs, including SNVs of 
all three viral variants (see below). Effectively, aligned sequences, upon eliminating monomorphic nucleotides, 
can be transformed to a 4296 by 837 matrix of mutation indicator 0’s or 1’s, corresponding to, respectively, the 
absence or presence of mutations.

We apply unsupervised machine learning techniques to organize mutation indicators (see Data and Meth-
odology for details). The technique hierarchically places similar rows of mutation indicators close together, and 
distant ones far apart. Figure 1A shows a heatmap representation of the Omicron mutation landscape, in which 
0’s and 1’s are coded as gray and black, respectively. The white patches are due to missing data. Black vertical 
line(s) correspond to those mutations shared by most, if not all, Omicron viruses. Randomly distributed black 
dots represent sporadic mutations acquired by the Omicron variant. The hierarchical tree on the far-left side of 
the heatmap captures similarities/dissimilarities across these 4296 viruses. These viruses are organized into six 
clusters (O1, O2, …, O6) color-coded by the color-bar on the left side to assist visual interpretation. The first 
cluster O1 (red bar) includes 888 viruses, the second cluster O2 (blue bar) includes 350 viruses, the third cluster 
O3 (green) includes 2478, and similarly for remaining three clusters (O4-6). Cross-tabulating clusters with 

Figure 1.   Mutation landscapes of (A) Omicron, (B) Delta and (C) Alpha variants from profiling presence or 
absence of single nucleotide variants (SNVs) genome wide. Each mutation is colored in a black spot, wild type 
gray, and missing nucleotide white spot. The tree structure (on the left side of each heatmap) represents the 
similarities/dissimilarities among viruses. Colored bars correspond to clusters of viruses, which are labeled 
on the left side along with the number of viruses (in bracket). The surface glycoprotein (“Spike protein”) is 
highlighted by a red bar on top of the heatmap. D) Venn-diagram resulted from the overlapping analysis of 
identified single nucleotide variants (SNVs) from the Omicron, Delta and Alpha. Heatmaps and Venn-diagram 
are generated by heatmap and Venn-diagram packages in statistical R software3.

https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern
https://www.gisaid.org/
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continents suggests that most viruses in the O1 cluster are from Africa and Asia, and those in O3 from Europe 
and North America (Table S2).

To gain insights into Omicron in the context of other variants, we compared its landscape with those of Delta 
and Alpha variants, for which large numbers of sequences are available. We chose 945 Delta variant sequences 
and 4675 Alpha variant sequences collected in Washington state (January 1 to Dec 3, 2021), most of which were 
sequenced by us with uniform high sequence quality. Following the same data processing protocol, their muta-
tion landscapes were generated. The Delta variant originally emerged in India, and its enhanced transmissibility 
rapidly made it a dominant variant worldwide, including Washington state (https://​www.​doh.​wa.​gov/​Emerg​
encies/​COVID​19/​Varia​nts). Among all Delta viruses, there were as many as 1,480 SNVs with at least one muta-
tion. To retain comparability with the Omicron landscape, we selected 311 sites as Delta-specific SNVs where 
the nucleotide-specific mutation percentage exceeded 0.5% and included these SNVs into the set of 837 SNVs 
shared with Omicron, Delta and Alpha variants (Fig. 1B). The Delta landscape has SNVs randomly distributed 
throughout the viral genome, and its mutation landscape is visually distinct from that of Omicron. Although 
Omicron and Delta variants share thirty-six SNVs (= 26 + 10), the majority of SNVs do not overlap (Fig. 1D).

Prior to the Delta wave, the Alpha variant was dominant, and was initially identified in the United Kingdom, 
rapidly spreading around the world4. Here we chose 4674 sequences collected in the past year and found that 
3333 nucleotide sites had at least one mutation per site. Again, by imposing the same mutational threshold per-
centage of 0.5%, we identified 308 mutation sites and added them to the set of 837 SNVs. Figure 1C shows the 
Alpha mutation landscape, which includes many sporadic mutations but interestingly, three groups of clustered 
SNVs. Again, its landscape is distinct from the Omicron landscape, except for 33 overlapping SNVs (= 23 + 10 
in Fig. 1D). Its landscape is also distinct from that of the Delta variant. The three variants share only ten SNVs.

Profiles of spike protein in Omicron, delta, and alpha
Much emphasis is placed on spike protein in many studies, because of its role in infection and relevance for vac-
cine development (the spike protein is indicated by red horizontal bars above the heatmap in Fig. 1A). To facilitate 
comparison, we selected 75 SNVs in the Spike protein, by combining SNVs from the Omicron, Delta and Alpha 
variants, and generated their corresponding heatmap representations, again demonstrating that there are more 
spike SNVs in the Omicron variant than in the Delta and Alpha variants (Figure S1A, B and C).

We translated nucleotides in spike protein to codons in the Omicron, Delta, and Alpha variants to generate 
protein sequences for comparison. We combined all polymutants from the three variants, resulting in a total of 
371 polymutants, and profiled their landscapes. Despite a different visual representation, the message remains the 
same; Omicron has many more mutations in functional amino acids than Delta and Alpha variants (Figure S2A, 
B, C). To focus on more common polymutants (with mutation percentage exceeding 5%), we identified a total of 
41 polymutants, shared across the three variants. Their mutation profiles are shown in Fig. 2, in which individual 
polymutants are labeled below the heatmap in Fig. 2C. Again, Omicron has many more polymutants than either 
Delta or Alpha. A total of 23 polymutants are unique to Omicron, while there are 4 overlapping polymutants 
(G142, T478, D614, T716) with the Delta variant and 3 overlapping polymutants (N501, D614, P681) with the 

Figure 2.   Profiles of 41 polymutants in spike protein (> 5% mutation percentages) in (A) Omicron, (B) Delta 
and (C) Alpha. Each mutation is represented by a black line, wildtype by a gray line, and missing data by a white 
line. Heatmaps are generated by the heatmap package in statistical R software3.

https://www.doh.wa.gov/Emergencies/COVID19/Variants
https://www.doh.wa.gov/Emergencies/COVID19/Variants
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Alpha variant. Note that we use a polymutant nomenclature without the ending amino acid designated, e.g., 
D614 as opposed to D614G, because several polymutants exhibit multiple mutations.

Evolving spike polymutants over time
Omicron had a total of 65 polymutants, some of which had been consistently observed and others emerged over 
time. To gain insight into their temporal patterns, we fitted a non-parametric logistic regression model to each 
polymutant, which allowed us to estimate the locally averaged mutation percentage over time (see Data and 
Methodology section). These estimated daily mutation percentages were then collated into a matrix of 65 (poly-
mutants) by 58 (days). Applying an unsupervised machine learning protocol, we organized these 65 polymutants 
by their temporal profiles into six clusters Spk1, 2, …, 6 (Fig. 3A). The cluster Spk2 included 20 polymutants 
that had averaged mutation probability of nearly one, as did the cluster Spk3 with 8 polymutants. As a result, the 
cluster analysis indicates that 28 polymutants (A67, T95, G339, S371, S373, S375, K417, N440, G446, S477, T478, 
E484, Q493, G496, Q498, N501, Y505, T547, D614, H655, N679, P681, N764, D796, N856, Q954, N969, L981) 
have been consistently present in nearly all Omicron sequences throughout time. Although absolute identifica-
tion of an Omicron founder sequence may not be possible, it is nevertheless plausible that mutations at these 
28 sites represents a core haplotype for the Omicron variant. To further support this conclusion, we evaluated 
haplotype frequencies, and found that 92% (3958/4296) of viruses carried a single haplotype VIDLPFNKSN-
KARSRYHKGYKHKYKHKF (Table 1). The next three most common haplotypes VIDLPFKNGNKARSRYHK-
GYKHKYKHKF, VIDLPFKKSNKARSRYHKGYKHKYKHKF and VIDSSSKKSNKARSRYHKGYKHKYKHKF 
were observed in only ~ 1% of all viruses. Given the ancestral haplotype (the reference haplotype from the 
original COVID sequence), it should be possible to identify other haplotypes that preceded the core haplotype 
listed in Table 1.

While most polymutants in the cluster Spk1 have sporadically low average mutation percentages, the remain-
ing four polymutants (R346, A701, I1081, N1192) in Spk4-6 appear to have positive trajectories (Fig. 3A). From 
the non-parametric models, estimated locally averaged mutation percentages show that these four polymutants 
have significant non-linear upward trends (p value = 9.37*10−4, 1.0*10−15, 4.76*10−7 and 1.56*10−4, respectively), 
shown in Fig. 3B. The polymutant R346K is observed among 347 of 4296 viruses and started increasing around 
day 25, leveling around day 40. This mutation has been reported in multiple countries (Table S3). Similarly, 
A701V and I1081V are also observed in multiple countries. The fourth polymutant N1192S emerged only very 
recently and has been reported from Hong Kong (2 sequences), Israel (1) and United Kingdom (1). Since this 

Figure 3.   Temporal analysis of polymutants in spike protein: (A) a heatmap representation of dynamic 
expansions/subtractions of 65 polymutants, in which locally averaged mutation percentages of every polymutant 
over time are shown in a row and is correspondingly colored from gray to dark red (color legend on the left 
side). By similarities/dissimilarities of their temporal patterns, all polymutants are clustered to six clusters (Spk1, 
…, Spk6), and numbers of polymutants in each cluster are indicated in bracket. (B) Four polymutants with 
positive trajectories (in cluster Spk4, 5 and 6) are selected to illustrate their temporal patterns. Heatmaps and 
temporal plot are generated by heatmap package and plot function in statistical R software3.
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mutation is not reported from any African country thus far, one could postulate that this may be a new mutation 
originating outside of Africa.

Evolving polymutants in non‑spike proteins
SARS-CoV-2 has 10 genes, in addition to the spike protein (https://​www.​ncbi.​nlm.​nih.​gov/​sars-​cov-2), and 
harbors many SNVs in both coding and non-coding regions. Given their potential roles in clinical disease, we 
translated nucleotides in these genes to codons. The ORF6 contained no polymutants. Nine other genes (ORF1ab, 
ORF3a, E, M, ORF7a, ORF7b, ORF8, N, ORF10) included one or more polymorphic sites, in which ORF stands 
for open reading frame, E envelope protein, M membrane glycoprotein and N nucleocapsid phosphoprotein. 
In total, there are 173 non-spike polymutants. Following the same temporal analysis protocol, we computed the 
locally averaged percentage of mutations daily. Applying the hierarchical clustering algorithm, we organized 
173 temporal patterns into six clusters (NS1, NS2, …, NS6) (Fig. 4A). The cluster NS2 included 17 polymutants 
(yellow bar) with averaged mutation probability values of nearly one over time. Because these polymutants are 
present throughout time, they would naturally form a core haplotype of polymutants: (K38, A1892) of nsp3, T492 
of nsp4, (P132, V247, T280, S284) of 3C-like proteinase, I189 of nsp6, P323 of RNA-dependent RNA polymerase 
(RdRp), I42 of Exonuclease, T9 of envelope protein, (D3, Q19, A63) of membrane glycoprotein, and (P13, R203, 

Table 1.   Haplotype frequencies of 28 polymutants (A67V, T95I, G339D, S371L, S373P, S375F, K417N, N440K, 
G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G, H655Y, N679K, 
P681H, N764K, K796Y, N856K, Q954H, N69K, L981F), observed among all Omicron viruses. *Full list of all 
haplotypes are given in the supplementary materials.

Polymutant 
haploytypes

Freq A67 T95 G339 S371 S373 S375 K417 N440 G446 S477 T478 E484 Q493 G496 Q498 N501 Y505 T547 D614 H655 N679 P681 N764 D796 N856 Q954 N969 L981

Mutant V I D L P F N K S N K A R S R Y H K G Y K H K Y K H K F

VIDLPFNK-
SNKARSRY-
HKGYKH-
KYKHKF

3958

VIDLPFKNGN-
KARSRY-
HKGYKH-
KYKHKF

45 K N G

VIDLPFKKSN-
KARSRY-
HKGYKH-
KYKHKF

36 K

VIDSSSKKSN-
KARSRY-
HKGYKH-
KYKHKF

24 S S S K

VIDLPFKNGN-
KARSRY-
HKGYKH-
NYKHKF

8 K N G N

VIDLPFNK-
SNKARSRY-
HKGYKH-
NYKHKF

8 N

VIDLPSNKSN-
KARSRYYK-
GYKH-
KYKHKF

8 S Y

VIDFPFNK-
SNKAR-
GRYHTGYKH-
KYNHKL

6 F G T N L

VIDLPFNK-
SNKARSRY-
HKGYKHND-
NQNL

6 N D N Q N L

VIGLPFNK-
SNKARSRY-
HKGYKH-
KYKHKF

6 G

VIDLPFNK-
SNKVRSRY-
HKGYKH-
KYKHKF

5 V

VIDLPFNNSN-
KARSRY-
HKGYKH-
KYKHKF

5 N

VIDLPSNK-
SNKARSRY-
HKGYKH-
KYKHKF

5 S

VIDSSSNK-
SNKARSRY-
HKGYKH-
KYKHKF

5 S S S

VTDLPFNK-
SNKARSRY-
HKGYKH-
KYKHKF

5 T

All rare haplo-
types (< 5)* 166

https://www.ncbi.nlm.nih.gov/sars-cov-2
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G204) of nucleocapsid phosphoprotein. Haplotype frequency analysis revealed that 96% of all Omicron viruses 
had this core haplotype (Table 2).

The 162 viruses in the cluster NS1 appeared to have relatively low mutation percentages and were not consid-
ered further; the remaining five polymutants (V1069 in nsp3, V94 in nsp4, F694 in RdRp, L106 in ORF3a and 
D343 in N) have positive trajectories, and L106 and D343 have nearly identical temporal patterns. To investigate 

Figure 4.   Temporal analysis of polymutants in non-spike protein genes, in which locally averaged mutation 
percentages of every polymutant over time are shown in a row and is correspondingly colored from gray to dark 
red (color legend on the left side). By similarities/dissimilarities of their temporal patterns, all polymutants are 
clustered to six clusters (NS1, …, NS6), and numbers of polymutants in each cluster are indicated in bracket. 
(B) Six polymutants with positive trajectories (in cluster NS3, 4, 5 and 6) are selected to illustrate their temporal 
patterns.

Table 2.   Haplotype frequencies of 17 polymutants (K38A, 1892) of nsp3, T492 of nsp4, (P132, V247, T280, 
S284) of 3C-like proteinase, I189 of nsp6, P323 of RdRp, I42 of Exonuclease, T9 of envelope protein, (D3, 
Q19, A63) of membrane glycoprotein, (P13, R203, G204) of nucleocapsid phosphoprotein, all of which locate 
outside of the spike gene, observed among all Omicron viruses.

Polymutant 
haploytype

Frequency nsp3.L = K38 nsp3-A1892 nsp4-T492 nsp5-P132 nsp5-V247 nsp5-T280 nsp5-S284 nsp6-I189 RdRp-P323 nsp14-142 E-T9 M-D3 M-Q19 M-A63 N-P13 N-R203 N-G204

Mutant R T I H V T S V L V I G E T L K R

RTIHVTSVLVI-
GETLKR 4131

RTIHVTSVLVI-
DETLKR 52 D

RTIHVTSVLVI-
GETPKR 18 P

KAIHCTSILVI-
DETLKR 13 K A I D

RTISVTSVLV-
VIGEALKR 11 A

RTIPVTSVLVI-
DETLKR 6 P D

RTIHVTSVLV-
IFQALKR 5 D Q A

RTHIYVTSVLVI-
GETLKT 5 Y

rare haplotypes 
(< 5) 55
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these recently emerging polymutants closely, we extracted locally averaged mutation percentages and found 
that these polymutants are statistically significant, all with p-values less than 10−15 (Fig. 4B). Note that temporal 
curves for L106 and D343 are overlapping. Nearly synchronied concordance of both polymutants across dif-
ferent countries (Table S4) leads to the conclusion that these polymutants share the same haplotype. Given the 
positive trajectories of these five polymutants, it may be prudent to investigate their functional consequences 
and monitor their potential clinical correlations moving forward.

The core haplotypes of spike and non-spike genes enable us to construct a complete Omicron core haplotype, 
leveraging their high LD (shown in Table S5). Indeed, 91% of Omicron viruses exhibit the same complete core 
haplotype. Such a core haplotype should facilitate tracking transmission among individuals, movements of the 
virus, and possible mutations deviating from this Omicron core haplotype.

Polymutant haplotypes of emerging 9 new mutations
As noted above, nine polymutants had positive trajectories as of December 14, 2021, i.e., (R346, A701, I1081, 
N1192) in the spike protein, V1069 in nsp3, V94 in nsp4, F694 in the RNA-dependent RNA polymerase, L106 
in ORF3a, and D343 in nucleocapside phosphoprotein. To investigate how the Omicron core haplotype acquired 
these new mutations, we generated a haplotype profile for these polymutants and computed their frequencies 
(Table 3), where each haplotype was compared with the reference haplotype. Haplotypes were sorted accord-
ing to the sample collection date. Since none of these new polymutants were present in the reference Omicron 
haplotype, most individuals (n = 1676) correspond to the reference haplotype, which is represented by an array 
of dots (highlighted in red). The first report date of the reference haplotype in the GISAID was October 24, 
2021 in Easter Cap in South Africa. In total, 29 unique haplotypes have been observed, with varying numbers 
of mutations. To gain insights into their clade relationships, we computed distances between all haplotypes, and 
constructed a cladogram to depict relative relationship among haplotypes (Fig. S3). As can be seen, four distinct 
clades can be identified.

Interestingly, the first reported haplotype was “RAINVVFGF” on October 17, 2021 in Abuja of Nigeria, 
Africa, indicating that mutants L106F and D343G were long in existence. To investigate this hapotype’s temporal 
and geographic profiles, we tabulated sample collection locations and dates (Table S6). After the first report, a 
virus with this haplotype was collected in Ontario, Canada on November 23, 2021. Afterwards, this polymutant 
haplotype was detected in multiple countries throughout the world, with recent surges of this haplotype from 
November 30 to December 7, mostly in Stockholm, Houston TX, England, Scotland, and Alberta CA. This same 
protocol could be used to trace every polymutant haplotype as part of a general monitoring protocol.

Among all new mutation haplotypes, probably the most worrisome is haplotype “RAVNVAFGY”, with 5 new 
mutations in a single Omicron core haplotype, each discussed in detail below. This mutated Omicron variant was 
first reported in England on December 12 and 60 cases were identified within 3–4 days. Investigating its spatial 
and temporal distribution, we noted that this mutation was present primarily in England from December 1 to 
7, then appearing in Scotland and Wales on December 6 and 7, respectively (Table S7). It may be important to 
monitor this mutated Omicron haplotype closely, to assess its transmissibility and potential for severe disease.

Structural properties of spike polymutants
We generated homology models to quickly assess the potential impacts of each of the 28 mutations identified in 
the core (“founding”) Omicron haplotype and identify mutations that might justify more detailed experimental 
characterization. A number of these positions also carry mutations in the earlier Alpha and Delta variants. 
Some, like D614G, are observed in all three variant families and the impact of this mutation has been well 
documented4, 6, 7, 8, 9. Other positions, such as P681, are also well documented as crucial for enhanced viral 
transmission. The Omicron variants thus far display the P681H mutation observed in earlier Alpha variants, 
unlike the P681R mutation observed in Delta, which has been documented experimentally to contribute to 
increased infectivity10,11.

The Omicron spike protein mutations can be classified generally into four sub-categories. Unsurprisingly, 
most mutations appear in the receptor binding domain (RBD)12. Most of these mutations (G339D, N440K, 
G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H) present on the RBD surface (Fig. 5), and 
it is reasonable to assume that these mutations may impact angiotensin-converting enzyme 2 (ACE2) receptor 
binding and/or recognition and binding by neutralizing antibodies (nAbs). If the Omicron variant originated 
in an immune-compromised patient with a prolonged infection, as has been speculated2, this latter scenario 
seems quite plausible. A smaller set of RBD mutations (S371L, S373P, S375F, K417N) display little or no surface 
exposure (Fig. 6), but the location and non-conservative nature of these mutations suggest that they may affect 
local conformation, in particular monomer–monomer contacts in the receptor trimer, and thus impact ACE2 
and/or nAb binding indirectly via mutation-induced conformational changes.

A third set of mutations (T547K, N764K, N856K, Q954H, N969K, L981F) occur in the interior of the receptor 
trimer assembly at positions that likely will alter monomer–monomer packing interactions (Fig. 6), and these 
mutations may well affect overall receptor structure and/or dynamics and flexibility. Similarly, there are two 
mutations (A67V, T95I) in the interior of the N-terminal domain (Fig. 6). These mutations likely alter side chain 
packing interactions and may affect the domain conformation. This may be significant, as a number of neutral-
izing antibodies appear to bind sites in this domain. Two additional mutations (N655Y, D796Y) are present on 
the surface of the receptor trimer stalk region (Fig. 6) where they may be potential contact residues for nAbs. 
Finally, there are two mutations (N679K, P681H) in the S1/S2 cleavage segment. As noted above, mutations in 
this region have been shown previously to enhance spike protein cleavage, thus leading to increased infectivity.

In addition to these mutations in the “founding” Omicron variant, our unsupervised learning strategy 
revealed nine mutations in the viral genome that are emerging and possibly becoming established. In earlier 
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ID
Emerging 
haplotype

Freq S-R346 S-A701 S-I1081 S-N1192 nsp3-V1069 nsp4-V94 RdRp-F694 ORF3a-L106 N-D343 First reported

REF R A I N V V F L D # Date Locations

1 RAINVVFGF 148 F G 2 2021-10-17 Africa/Nigeria/
Abuja

2 RAINVVLDF 1676 0 2021-10-24
Africa/South 
Africa/Eastern 
Cape

3 RVINIVLDF 154 V 2 2021-11-10 Africa/South 
Africa/Gauteng

4 RAINIVLDF 344 1 2021-11-11

Africa/Bot-
swana/South 
East/Greater 
Gaborone/
Gaborone

5 KAINVVLDF 233 K 1 2021-11-17
Africa/South 
Africa/Gaut-
eng/Tshwane

6 RAINIVLDY 27 Y 2 2021-11-20
Europe/United 
Kingdom/
England

7 RAINVALDY 339 A Y 2 2021-11-23
Europe/United 
Kingdom/
Scotland

8 RAINVVLDY 390 Y 1 2021-11-23
Europe/United 
Kingdom/
Scotland

9 RVINIALDY 463 V A Y 4 2021-11-24
Europe/United 
Kingdom/
England

10 KAINVVLDY 57 K Y 2 2021-11-24
Europe/United 
Kingdom/
England

11 RAINVAFGY 53 A Y F G 4 2021-11-25
Europe/United 
Kingdom/
England

12 RAVNVVFGF 35 V F G 3 2021-11-25
Africa/Sen-
egal/Dakar/
IRESSEF 
DIAMNIADIO

13 RVINVVLDF 2 V 1 2021-11-25
Africa/South 
Africa/Western 
Cape

14 RAINVVLGF 1 G 1 2021-11-25
North Amer-
ica/Canada/
Ontario

15 RVINIVLDY 72 V Y 3 2021-11-26
Europe/United 
Kingdom/
England

16 KAINVALDY 55 K A Y 3 2021-11-27
Europe/United 
Kingdom/
England

17 RAINIALDY 19 A Y 3 2021-11-27
Europe/United 
Kingdom/
England

18 RAINVVFGY 75 Y F G 3 2021-11-28
Europe/United 
Kingdom/
England

19 KAINVVFGF 1 K F G 3 2021-11-29

North 
America/
USA/Alaska/
Anchorage-
Mat Su

20 RAVNVVFGY 68 V Y F G 4 2021-11-30
Europe/United 
Kingdom/
England

21 RAVNVAFGY 60 V A Y F G 5 2021-12-01
Europe/United 
Kingdom/
England

22 RAINVALDF 7 A 1 2021-12-01
Europe/United 
Kingdom/
England

23 RAINVVFDF 3 F 1 2021-12-04
North 
America/USA/
Texas/Houston 
County

24 RVINIALDF 1 V A 3 2021-12-05
Europe/United 
Kingdom/
England

25 RVISIVLDF 3 V S 3 2021-12-06 Asia/Israel

Continued
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studies, we have shown that our method can identify significant mutations long before they are characterized 
clinically. For example, we observed the emergence of the P681R mutation in the U.S. several months before the 
Delta variant became dominant13. We have therefore used homology modeling studies to assess the potential 
impact of these newly emerging mutations.

Four mutations occur in the spike protein. The R346K mutation is in the RBD (Fig. 5C); while an arginine 
to lysine mutation is often classified as a conservative mutation with little structural or functional consequence, 
there are situations where the two residues are not readily interchangeable, due to the distinct chemistry of the 
arginine guanidinium group (hydrogen bonding patterns, π-system interactions, etc.) compared to the primary 
amine group present in the lysine side chain. As a result, the R346K mutation might impact receptor and/or 
nAb recognition and binding. The A701V mutation is located on the exterior of the receptor trimer stalk region 
(Fig. 6), where it could impact nAb binding, much like N655Y and D796Y discussed above. The I1081V muta-
tion is in the interior of the receptor trimer assembly and might influence conformation via altered side chain 
packing interactions. However, both A701V and I1081V are conservative mutations and may have little impact.

The fourth emerging spike protein mutation, N1192S, is less prevalent thus far but is extremely interesting and 
of potential concern. This mutation is located in the heptapeptide repeat sequence 2 (HR2). This region is highly 
conserved across all human coronaviruses and is a key component in the formation of a six-helix bundle with 
HR1 segments to facilitate the fusion process with target host cells14. As a result, this region of the spike protein 
has been the focus of ongoing attempts to develop “universal” fusion inhibitors for therapeutic application in 
coronavirus infections. A crystal structure of the post-fusion six-helix bundle formed by HR1 and HR2 segments 
in the spike protein trimer is available15, enabling visualization of the N1192S mutation site (Fig. 7). It is not 
clear from these simple homology modeling exercises what the full impact of this mutation might be on packing 
interactions in the six-helix bundle. However, detailed views of the mutation site in Fig. 7B and C that display 
specific helix-helix contacts (K933 from one monomer with position 1192 in the neighboring monomer) imply 
that packing interactions between monomer units in the bundle will be altered, so further experimental study 
may be warranted to determine what effect this mutation might have on viral fusion efficiency with host cells.

Three emerging mutations are identified in the ORF1ab gene. One mutation, V1069I, maps to a region in 
the non-structural protein 3 (nsp3), just prior to the nsp3 nucleic acid binding domain, but there is no relevant 
structural information for this region of nsp3 to assess possible impacts. A second mutation, V94A, maps to 
a region located between putative transmembrane helices 1 and 2 in the nsp4 protein, and there is likewise no 
relevant experimental structural data for this region of nsp4.

A third mutation in ORF1ab, F694Y, occurs in the RNA-dependent RNA polymerase (RdRp) and is most 
intriguing. Figure 4B illustrates the dramatic increase in this mutation since 8 December 2021, suggesting that 
F694Y may provide a notable fitness advantage for the virus. The location of this mutation in the polymerase 
shown in Fig. 8A and B highlights the proximity of the mutation to key residues involved in RNA binding16. 
Of greater potential significance, the mutation site interacts directly with several residues involved in remde-
sivir binding16, as shown in Fig. 8C. At least two RdRp mutations have been identified previously that impact 
remdesivir binding in SARS-CoV RdRp enzyme (~ 96% sequence identity with SARS-CoV-2 RdRp)17, and the 
homologous residues in SARS-CoV-2 RdRp are displayed in Fig. 8C. One mutation, V557L, is located directly 
in the remdesivir binding site and likely produces an unfavorable steric interaction with the inhibitor. The sec-
ond mutation, F480L, does not make direct contact with the inhibitor but instead is in the first shell of residues 
that surround the remdesivir binding site, exactly as observed for F694Y. The F480L mutation in SARS-CoV is 
proposed to impair remdesivir binding via induced conformational changes and/or dynamics in the inhibitor 
binding site, and it seems quite plausible that the F694Y mutation may act similarly in SARS-CoV-2. Therefore, 
prompt experimental investigation seems justified.

Another antiviral in current use for COVID-19 treatment, molnupiravir, also targets the RdRp enzyme, 
although the precise mechanism of action differs from remdesivir18 (remdesivir stalls RNA oligonucleotide syn-
thesis while molnupiravir causes G to A and C to U mutations in newly synthesized viral RNA). The active form 

ID
Emerging 
haplotype

Freq S-R346 S-A701 S-I1081 S-N1192 nsp3-V1069 nsp4-V94 RdRp-F694 ORF3a-L106 N-D343 First reported

REF R A I N V V F L D # Date Locations

26 RAINIALDF 1 A 2 2021-12-06
Europe/United 
Kingdom/
England

27 RVISIALDY 1 V S A Y 5 2021-12-07
Europe/United 
Kingdom/
England

28 RAVNVAFGF 1 V A F G 4 2021-12-07
Europe/United 
Kingdom/
England

29 KAINVALDF 1 K A 2 2021-12-07
Europe/United 
Kingdom/
England

Table 3.   Haplotype analysis of 9 emerging mutations in Omicron viruses; haplotype frequencies, changes of 
individual amino acids from the reference, number of observed mutations in the haplotype, date and location 
of the first report. Note that all haplotypes are sorted by time and location of the first report. The reference 
haplotype is highlighted in red font. # Number of mutations observed on the polymutant haplotype.
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of remdesivir is an adenine nucleotide analog, while the active form of molnupiravir, β-D-N4-hydroxycytidine 
triphosphate, is a cytidine analog. There are no experimental structures for the non-covalent, pre-catalytic 
complexes of either inhibitor with RdRp, although molecular models for the complexes are available19. There are 
certainly at least some subtle differences in specific binding site interactions for the two inhibitors, so it is difficult 
to speculate whether given mutations will have the same impact on both remdesivir and molnupiravir activity.

The L106F mutation occurs in ORF3a, in a region that codes for a putative ion channel 3a20. This mutation 
occurs near the amino terminus of helix 3 on the exterior face. This residue is presumably exposed to the lipid 
environment, so it is unclear how it may affect function, if at all. However, it is well established that mutations 
in ion channel 3a can impact ion conductance and viral viability20.

The final emerging mutation, D343G, is present in the nucleocapsid phosphoprotein C-terminal dimeriza-
tion domain, located in a short loop connecting β-strand β2 to the α6 helix. This residue is not directly involved 
in any dimer contacts, and its relatively exposed position in a flexible loop region makes it difficult to anticipate 
the structural consequences. It is certainly true that the glycine substitution at this position should increase 
loop flexibility, and this might facilitate domain conformational rearrangement necessary for the dimerization 
process. This may impart a fitness advantage for the virus, as experimental studies suggest that the nucleocapsid 
homodimer is the stable form in solution, and that the homodimer can bind short ssRNA molecules without 
any ancillary proteins21.

Discussion
We present all major mutations currently reported in the spike protein of the Omicron variant, as well as those 
occurring in non-spike genes, as an Omicron “mutation landscape”. The Omicron landscape is clearly distinct 
from the mutation landscapes of the Delta and Alpha variants. We observe twenty-eight polymutants in the 
spike protein and seventeen polymutants in the non-spike genes that we define as core haplotypes. These two 
core haplotypes form a complete Omicron haplotype, observed in 91% of reported Omicron sequences. Our 
unsupervised learning strategy reveals that the Omicron variant is now acquiring four new mutations in the 
spike protein (R346K, A701V, I1081V, N1192S) and five new mutations in nsp3 (V1069I), nsp4 (V94A), the 
RNA-dependent RNA polymerase (F694Y), ORF3a (L106F) and nucleocapsid phosphoprotein (D343G). This 
observation suggests that Omicron may be mutating more rapidly, and that close monitoring, using a proto-
col such as that presented here, will be essential to make appropriate public health decisions and help guide 
future vaccine design efforts. Two of these newly emerging mutations are particularly worrisome. The N1192S 

Figure 5.   Receptor binding domain (RBD) contact surface observed in the angiotensin-converting enzyme 2 
(ACE2) complex with the RBD (based on the crystal structure for the ACE2-RBD complex—PDB ID: 6M0J). 
Key RBD mutations that may impact ACE2 and/or antibody binding are color-coded by atom type (carbon—
grey, nitrogen—blue, oxygen—red). (A) Alpha variant (B) Delta variant (C) Omicron variant.
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mutation is located in a spike protein region, the HR2 sequence, that exhibits extremely high conservation across 
all human coronavirus, presumably due to the importance of this region in the host cell fusion process. If this 
mutation persists and expands, it may indicate that the virus is evolving an even more efficient fusion capability 
that could lead to a further enhancement of infectivity. The F694Y mutation in the polymerase enzyme occurs 
at a position that may impact binding of remdesivir and related viral inhibitors. A previous study reports that 
remdesivir and molnupiravir retain antiviral activity against Omicron variants in in vitro cellular assays22. More 
recently, Takashita et al. report IC-50 values from RdRp enzymatic assays for the most recent Omicron sub-
variants that are only slightly higher than those observed for earlier variants, but caution that clinical data are 
still needed to verify good inhibitor efficacy in patients23. Therefore, it would be most interesting to attempt to 
correlate clinical records with the rapid and dramatic emergence of the F694Y mutation, to explore whether it is 
appearing primarily in patients who have been treated with remdesivir. Prompt and detailed study of this new 
mutation seems advisable.

Another major concern is whether the Omicron variant may lead to severe disease and thus may increase 
hospitalization risk. While early clinical reports are encouraging, the recent emergence of the Omicron variant 
and lack of robust clinical surveillance programs for newly emerging variants means that much critical informa-
tion is still not readily available. We have attempted to address this issue in our earlier work24. We discovered and 
replicated an association of SNV-haplotypes (t19839-g28881-g28882-g28883) with hospitalization risk among 
COVID positive patients, in which the mutated haplotype “caac” had a significant association with hospitaliza-
tion risk (OR = 5.46, p = 4.71*10−12 in the replication cohort). Fortunately, this haplotype is absent in current 
Omicron patients to date. However, it is nevertheless worrisome, since the most common haplotype in current 
Omicron patients is “taac” (99%). If this single mutation at t19839 emerges in Omicron variants, the resulting 
mutant might create a “perfect storm”, exhibiting extremely high transmissibility and elevated disease severity. 
This observation underscores the importance of active vaccination to stop the continuing spread, and resultant 
mutation, of the virus, as well as the need for active surveillance for clinical relevance of emerging variants.

Temporal analysis of mutations among Omicron viruses suggests that this variant, since November 2021, has 
acquired a set of Omicron mutations that are quite distinct from mutations observed among other variants, and 
that the core mutation haplotypes maintain their genetic structures while acquiring relatively few new mutations. 

Figure 6.   Stereo pair view of spike protein receptor trimer illustrating the locations of all Omicron spike 
protein mutations (excepting RBD contact surface mutations present in Fig. 5). Monomer A is blue, monomer 
B is salmon and monomer C is aquamarine. All mutated residues are rendered as CPK models. Yellow residues 
(S371L, S373P, S375F, K417N) are located in the RBD where they may alter domain packing and/or monomer–
monomer interactions. Green residues (T547K, N764K, N856K, Q954H, N969K, L981F, I1081V) are located at 
or near monomer–monomer interfaces in the receptor trimer assembly. Red residues (A67V, T95I) are located 
in the interior of the N-terminal domain. Purple residues (N655Y, A701V, D796Y) are located on the exterior 
surface of the trimer assembly in regions that are potential antibody binding sites. The homology model is based 
on reference spike protein trimer structure PDB ID: 7KRS.
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This phenomenon has been referred to as a saltational mutation25. Two competing hypotheses are that extended 
mutations rose from patients with immunosuppression25, versus such mutations are due to zoonosis and reverse 
zoonosis events26. This unusual evolutionary pattern has been observed by others27,28.

Identifying core Omicron haplotypes also permit us to apply next generation sequence-based genotyping 
(NGS) to focus on specific sets of SNVs at very low cost, with a protocol modified from sequencing the entire viral 
genome24. NGS sequencing can be performed at hospital sites as a routine, integrated with existing genotyping 
services supporting other activities, in much the same way as HLA typing and chimerism testing is done routinely 
in support of hematopoietic cell transplants, thus enabling more widespread and continuous monitoring for 
specific Omicron and future variants. Local monitoring could also better facilitate direct geographic reporting 
and connecting genetic data with clinical outcomes as discussed below.

Genomic surveillance has been enormously helpful for us to identify emerging new variants29,30, but has 
also resulted in great uncertainty when there is no relevant clinical data that can be correlated with the new 
variants. To close this knowledge gap, we propose expanding current genomic surveillance to include electroni-
cally captured health records, e.g., discharge summary records from hospitalized patients, abbreviated medical 
charts from clinical visits, vaccination status reports, vital statistics reports, and clinical/demographic informa-
tion recorded on COVID test requests. Given the rapid evolution of variants and their potential implications 
for public health, we should explore ways for data from hospitalized and ambulatory patients to be available for 
this analysis sooner than is currently possible. Balancing individuals’ privacy rights, the expense of gathering 
relevant data and the time-sensitive nature of the relevant clinical data, we propose to gather a minimum set 
of clinical and demographic variables from patients whose viral genomes have been sequenced and who have 
consented to the expanded surveillance program. We understand that knowledge of clinical manifestations of 
COVID is evolving rapidly, so the specific clinical data necessary to discover correlations between viral mutations 
and clinical impact may also need to evolve rapidly. Analytic methods make larger amounts of data practical to 
use than has been true historically, for example, entire sets of notes, imaging and pathology reports, and labora-
tory results. This surveillance program could help continuously monitor all CDC-designated variants and their 
evolving mutations, as well as aid correlation of evolving variants with clinical outcomes among vaccinated and 
non-vaccinated individuals. This surveillance program should help us to assess associations of known variants 
with vaccine evasion and short-term clinical disease in real time, and to discover novel variants that may evade 
vaccination, or may impact on clinical disease (short and long-term).

The COVID pandemic is unprecedented in recent history and continues to present considerable challenges 
for clinical treatment delivery and public health policy. The recently implemented genomic surveillance effort 
has been instrumental to enable discovery of new variants and to inform society at large in a timely fashion. 

Figure 7.   (A) Post-fusion six-helix bundle (PDB ID: 6LXT) illustrating the location of the N1192S mutation. 
S1192 is rendered as a CPK residue (one per receptor monomer) and color-coded by atom type as described 
in Fig. 5. (B) Detailed view of side chain packing interactions formed by N1192. K933 is from the neighboring 
monomer; this image illustrates the tight packing contacts formed by proximate side chains that stabilize the six-
helix bundle fusion structure. C) Detailed view of side chain packing interactions formed by the S1192 mutant. 
The helix bundle orientation is identical to that in Fig. 7B.
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However, current experience with the Omicron variant suggests the need to expand and better coordinate clini-
cal data collection with genomic surveillance and biological studies. It is time for us to “get ahead” of a next 
COVID variant wave.

Data and methodology
Selected viral sequences.  We searched GISAID to retrieve viral sequences of Omicron, Delta and Alpha 
variants used in this study on December 3, 2021 via the web portal https://​www.​gisaid.​org31. All sequences had 
complete and high coverage. Using the same search criteria, we retrieved metadata associated with all individual 
viruses. With respect to Omicron (B.1.1.529), we included all Omicron sequences deposited to GISAID by the 
search date. Viruses were collected between November 8 and December 1, 2021 worldwide.

For comparison purpose, we selected sequence data of the Delta variant (B.1.617.2), which was first reported 
in India and remained as the most observed viruses throughout the world. Because of abundant sequences avail-
able, we chose to focus on 945 viral sequences contributed from Washington state, most of which were sequenced 
by us at University of Washington under contract to Washington state and CDC. Viruses were collected from 
April 3 to November 23, 2021.

To place the comparison in the context of evolving variants, we further included sequence data of the Alpha 
variant (B.1.1.7), which was the first major variant and initially reported in United Kingdom, gradually spreading 
to Europe and the rest of the world. Again, a large number of viruses were sequenced and deposited to GISAID. 
To focus our analytics, we downloaded 4674 viral sequences deposited from Washington State. Viruses were 
collected from January 19 to September 8, 2021. Note that these sequences of Delta and Alpha variants are col-
lected for dual purposes: used as technical quality control since Omicron sequences are submitted to GISAID 
by many institutions around the world, as well as included for comparison with Omicron variants. Consistent 
differences of mutations between variants are robust and informative, while minor differences should be inter-
preted cautiously in light of the sampling scheme.

Following the data access guideline at GISAID, we were able to download viral sequences and associated 
metadata without any issues.

Figure 8.   (A) RNA-dependent RNA polymerase (blue) complex formed with non-structural protein 7 (green) 
and non-structural protein 8 (salmon). Primer and template RNA strands (lime green) are depicted as ribbons 
extending from the active site. The mutated residue (F694Y) is rendered as a red CPK model. (B) Stereo pair 
view of the active site with bound remdesivir molecule. Both remdesivir and F694 are rendered as CPK models, 
and their atoms are color-coded by atom type as described in Fig. 5. (C) Stereo pair view of active site with 
bound remdesivir in the F694Y mutant. Residues F480 and V557, which impart inhibitor resistance in SARS-
CoV-1 polymerase, are rendered as green CPK models to illustrate their locations relative to remdesivir. F480 is 
on the right side of the image and V557 is in the lower left region. The orientation and color-coding are identical 
to that in Fig. 8B. The mutant homology model has not been subjected to further structural refinement and this 
image clearly displays steric clashes generated by substitution of the tyrosine side chain. Models in panels A, B 
and C are all based on the cryo-electron microscopy structure PDB ID: 7BV2.

https://www.gisaid.org
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Sequence processing and transformation.  All deposited sequences to GISAID have been subject to 
systematic quality control, especially those with complete and high coverage. Treating the first SARS-CoV-2 
genomic sequence as the reference sequence32, we performed whole genome sequence alignment, using 
MAFFT33, which yielded a complete “rectangular nucleotide sequence matrix” of nucleotides by viruses. While 
majority nucleotides were monomorphic, a small fraction of nucleotides had at least one mutation or substitu-
tion, in comparison with the reference sequence. A nucleotide with at least one observed mutation is referred to 
as single nucleotide variant (SNV). When such a SNV located in a gene and was also non-synonymous, it could 
be equivalently referred to as a polymutant. To facilitate unsupervised learning, we transformed the matrix of 
nucleotides to a matrix of binary indicators for the presence/absence of mutations. Monomorphic nucleotides 
were transformed to columns of zeros and were eliminated from further analysis. Note that genomewide align-
ment inevitably may miss structural mutations (insertions, deletions, or local rearrangements). Commonly, such 
structural mutations could impact on the performance of amplicons used in the sequencing reagents and hence 
on sequence assembly. Indeed, blocks of missing nucleotides (white spaces in heatmap, Fig. 1) potentially sug-
gest such structural mutations. While separate effort is required for investigating structural mutations, their 
presence does not affect the validity of the current statistical analysis, relying on multiple sequences.

Unsupervised learning.  Following the sequence processing and transformation, each viral sequence can 
now be represented by a vector of 0’s and 1’s, corresponding to absence and presence of a mutation respec-
tively. In absence of meaningful clinical parameters, we proposed to use unsupervised learning approaches to 
organize and explore this matrix of SNVs, using a statistical learning strategy we described previously13. In this 
project, the hierarchical clustering method was applied to organize this matrix: the first step was to compute 
distances between pairs of viral mutation indicators based on the Yule similarity measure34, and the second step 
was to hierarchically organize all viruses so that similar row vectors were clustered closer based on the Ward 
algorithm35. The matrix of organized mutation indicators was then displayed in the heatmap. To facilitate the 
data interpretation, we chose to cluster all samples to six groups (K1, K2, …, K6), which were color-labeled as a 
vertical sidebar.

Haplotype analysis and missing nucleotide imputation.  Multiple SNVs obtained from same indi-
viduals were generally from a single clone of viruses, and their nucleotides thus formed a single haplotype, 
referred to as a SNV-haplotype. Due to recent evolutionary history, most SNVs were in high linkage-disequi-
librium (LD), and such haplotypes were broken down usually by emerging variants. Hence, haplotypes were 
informative for evolving viral variants. Due to high LD, the number of haplotypes was typically smaller than the 
theoretic expectations with multiple SNVs. Hence, focusing on haplotypes facilitated parsimonious investiga-
tion of otherwise complex RNA sequences or many individual SNVs.

The high LD among SNVs was also helpful for imputing missing nucleotides. Due to nature of sequencing 
technologies, a small fraction of nucleotides was untyped, and were coded as “n”. Given high linkage disequilib-
rium across all SNVs, we assembled a panel of polymorphic nucleotides that had no missing values and had not 
been selected into SNVs of interest and treated them as an “imputation base”. Fusing on one SNV with nucleo-
tides in the imputation base, we computed their haplotype frequencies, and used their haplotype frequencies to 
compute posterior probabilities to impute missing nucleotides, in the same way as imputing single nucleotide 
polymorphisms36.

Non‑parametric regression.  A polymutant may star with a mutated amino acid or acquire a new muta-
tion across multiple viruses over time. To characterize its temporal pattern, we apply a generalized additive 
model (GAM) to fit a non-linear logistic model, regressing mutation indicators over viral collection times37,38. 
After fitting the model, we computed the fitted values as locally averaged mutation percentage daily to character-
ize the temporal patterns of mutation occurrences. The same technique is applicable to compute average number 
of unique polymutants daily.

Structural modeling.  All model building and analysis was performed using the ChimeraX interactive 
molecular graphics package39. Protein Data Bank (PDB) structures 6ZWV, 7KRR, and 7KRS were used as tem-
plates for homology modeling of spike protein, structure 6M0J was used as template for spike protein receptor 
binding domain contact surface models, structure 6LXT was used to model the post-fusion six-helix bundle, and 
structure 7BV2 was used for modeling of the RNA-dependent RNA polymerase complex . Mutated side chain 
conformations were generated using the backbone-dependent rotamer library of Shapovalov and Dunbrack40 
and selected to minimize steric clash with neighboring residues. No additional structural refinement was per-
formed.

Data availability
All sequence data analyzed here are publicly available at GSIAD (https://​www.​gisaid.​org/).
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