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Glioblastoma is a common malignant tumor in the central nervous system with an extremely poor outcome; understanding the
mechanisms of glioblastoma at the molecular level is essential for clinical treatment. In the present study, we used bioinformatics
analysis to identify potential biomarkers associated with prognosis in glioblastoma and elucidate the underlying mechanisms. The
result revealed that 552 common genes were differentially expressed between glioblastoma and normal tissues based on TCGA,
GSE4290, and GSE 50161 datasets. Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment andprotein-protein interaction (PPI) networkwere carried out to gain insight into the actions of differentially expressed
genes (DEGs). As a result, 20 genes (CALB1, CDC20, CDCA8, CDK1, CEP55, DLGAP5, KIF20A, KIF4A, NDC80, PBK, RRM2,
SYN1, SYP, SYT1, TPX2, TTK, VEGFA, BDNF, GNG3, and TOP2A) were found as hub genes via CytoHubba in Cytoscape and
functioned mainly by participating in cell cycle and p53 signaling pathway; among them, RRM2 and CEP55 were considered to
have relationship with the prognosis of glioblastoma, especially RRM2. High expression of RRM2 was consistent with shorter
overall survival time. In conclusion, our study displayed the bioinformatic analysis methods in screening potential oncogenes in
glioblastoma and underlying mechanisms. What is more is that we successfully identified RRM2 as a novel biomarker linked with
prognosis, which might be expected to be a promising target for the therapy of glioblastoma.

1. Introduction

Glioblastoma (GBM) remains one of the most common
aggressive tumors in the central nervous system [1]. Though
the incidence of GBM is about 3.19/100,000 population [2],
the prognosis is extremely poor because of the complex
biological characteristic and limited treatment options. After
standard therapy, maximal safe surgical resection is followed
by combined radiochemotherapy; still approximately 70% of
patients die within two years, while over 90% die within five
years [3–6].Thus, it is critical to comprehend themechanisms
of GBM and develop some more effective therapeutic strate-
gies to improve the outcome of patients.

Over the past years, tremendous studies have been
conducted to explore the potential molecular mechanisms,
genetics, and pathways responsible for the development
and progression of GBM. However, the precise mechanism

of GBM remains unclear. Recently, biological information
analysis has caused extensive attention and made consistent
breakthrough in searching the oncogenes; various biomark-
ers for diagnosis and prognosis of cancer have been identified
[7–9], so it could also be expanded in GBM for better
understanding of the underlying molecular mechanism in
GBM and finding a clue for new therapeutic targets.

In this study, we performed biological information analy-
sis among 3 profiles (TCGA, GSE4290, and GSE50161), which
were downloaded from the TCGA database and the GEO
database and identified the differentially expressed genes
(DEGs) between the tumor and normal samples. Besides,
functional enrichments and the protein-protein interaction
(PPI) networks were applied to annotate gene function and
screen hub genes. Prognostic value was evaluated by survival
analysis. Findings of our study may hint at a potential
prognostic biomarker and therapeutic target.
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2. Materials and Methods

2.1. Microarray Data. The mRNA expression profiles and
clinical data were downloaded from The Cancer Genome
Atlas (TCGA) database (https://cancergenome.nih.gov/),
which contains 169 GBM samples and 5 normal samples;
the other two profiles, GSE4290 and GSE50161, were
downloaded from the Gene Expression Omnibus (GEO)
database (http://www.earthobservations.org/index2.php);
we extracted 81 GBM samples and 23 normal samples from
GSE4290, and 34 GBM samples and 13 normal samples from
GSE50161. Both of the GEO data were generated using the
GPL570 (HG-U133 PLUS 2) Affymetrix Human Genome
U133 Plus 2.0 microarray platform data.

2.2. Data Preprocessing and DEGs Screening. We utilized the
R statistical software (version 3.4.4; https://www.r-project
.org/) and Bioconductor analysis tools (http://www.biocon-
ductor.org/) to process the raw data. The edgeR package in
R was used to screen DEGs between tumor and normal
tissues with the threshold of false discovery rate (FDR)<0.01,
|log

2
-fold change| (|log

2
FC|) >2 in TCGA datasets; the cor-

responding survival information of 159 glioblastoma samples
was obtained after deleting the incomplete statistics. For the
GEO datasets, we converted the probe-level data into gene
expression profiles based on their platform annotation files;
the gene expression values were averaged when analogous
to multiple probe; DEGs only with the |log

2
FC| >2 and

FDR<0.05 were extracted with the limma package after back-
ground correction and data normalization. The differences
between the two groupswere calculated by Student’s t test; the
P-value was adjusted by Benjamini-Hochberg (BH) method.

Venn analysis was utilized to choose the overlap of the
DEGs among the three datasets above. As a result, 552
overlapped DEGs in GBM samples were set as a cohort for
further exploring.

2.3. Function and Pathway Enrichment Analysis. The GO
analysis was undertaken from the following three cate-
gories: molecular function (MF), biological process (BP),
and cellular component (CC). KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway enrichment analysis was
also performed to search the key biological pathways the
candidate genes were involved in. The functional analysis
was conducted through The Database for Annotation, Visu-
alization and Integrated Discovery (DAVID: https://david-
d.ncifcrf.gov/) online tools [10] and separately organized by
upregulated and downregulated groups. The p-value was set
at <0.05, which means an enrichment score and represented
the significance of the GO or pathways terms.

2.4. PPI Network Construction and Hub Genes Identification.
The Search Tool for the Retrieval of Interacting Genes [11]
(STRING: https://string-db.org/) is an online tool to show
the known and predicted interaction relationship between
the candidate genes; we used it to develop the overlapped
DEGs’ s interaction network. Cytoscape software (version
3.6.1, http://www.cytoscape.org/) was applied to visualize the

network of these gene interaction pairs with coefficients of
|r| > 0.4 and P<0.05, and the hub genes in the network were
identified by utilizing the cytoHubba application in it.

2.5. Survival Analysis. We performed survival analysis
through R language survival package; Kaplan-Meier survival
curves were plotted after adjusting relative hazards from the
Cox proportion hazards model; P<0.05 was considered to
have statistical significance.

2.6. Correlation Analysis. The correlation between the
expression of RRM2 and other hub genes was evaluated
through GEPIA based on TCGA database. Pearson’s corre-
lation coefficient analysis was used to define correlations.

3. Results

3.1. Identification of DEGs. We filtered a total of 2932 DEGs
including 1341 upregulated and 1591 downregulated genes
between the tumors and adjacent normal samples from
TCGA database, and a total of 2039 DEGs (816 upregulated
and 1223 downregulated) and 823 DEGs (212 upregulated
and 611 downregulated) from the expression profile datasets
GSE50161 and GSE4290 (Figure 1). Finally, 552 common
DEGs from three datasets were determined via Venn analysis
(Figure 2), including 128 upregulated genes and 424 down-
regulated genes, which were subsequently used for further
investigation.

3.2. GO and KEGG Pathway Analysis for Overlapped DEGs.
Those common DEGs were well enriched in abundant of
functional groups and pathways; the top 5 terms of BP, CC,
MF, and KEGG pathway were shown in Tables 1 and 2. In
upregulated group, the most enriched terms in each category
were GO:0030198 extracellular matrix organization (BP, P-
value 3.88E-12), GO:0031012∼extracellular matrix (CC, P-
value 6.61E-13), GO:0005201∼extracellular matrix structural
constituent (MF, P-value 2.58E-07), and hsa04512:ECM-
receptor interaction (KEGG, P-value 2.22E-09), in downreg-
ulated group were GO:0007268∼synaptic transmission (BP
P-value 1.62E-31), GO:0045202∼synapse (CC P-value 1.62E-
35), GO:0022836∼gated channel activity (MF P-value 6.73E-
16), and hsa04080:neuroactive ligand-receptor interaction
(KEGG P-value 3.52E-10).

3.3. PPI Network andHubGenes. Wemapped the overlapped
DEGs to the STRING website, setting P<0.05, coefficients of
|r| > 0.4 as a strict threshold, constructed a co-expression
network consisting of 401 nodes and 1890 edges (those
disconnected genes in the network were deleted); Figure 3
displayed the network visualized by Cytoscape. The distribu-
tion of node degrees complied with exponential distribution;
R square and correlation coefficient are 0.796 and 0.963
(Figure 4). Then we applied the cytoHubba application to
screen out the hub genes in the network; the partial result
calculated by multiform algorithm was shown in Table 3.
Since the degree is the number of the edges of a gene in the
network and represents the interaction pairs with others, it
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Table 1: The GO and KEGG terms enriched by upregulated DEGs.

Category Term Count P-Value
GOTERM BP FAT GO:0030198∼extracellular matrix organization 14 3.88E-12
GOTERM BP FAT GO:0043062∼extracellular structure organization 16 7.24E-12
GOTERM BP FAT GO:0007049∼cell cycle 28 2.27E-10
GOTERM BP FAT GO:0000279∼Mphase 19 3.12E-10
GOTERM BP FAT GO:0007067∼mitosis 16 5.21E-10
GOTERM CC FAT GO:0031012∼extracellular matrix 21 6.61E-13
GOTERM CC FAT GO:0005578∼proteinaceous extracellular matrix 19 1.80E-11
GOTERM CC FAT GO:0005576∼extracellular region 42 1.61E-10
GOTERM CC FAT GO:0044421∼extracellular region part 28 8.32E-10
GOTERM CC FAT GO:0044420∼extracellular matrix part 12 9.61E-10
GOTERM MF FAT GO:0005201∼extracellular matrix structural constituent 9 2.58E-07
GOTERM MF FAT GO:0048407∼platelet-derived growth factor binding 4 6.59E-05
GOTERM MF FAT GO:0004857∼enzyme inhibitor activity 9 9.87E-04
GOTERM MF FAT GO:0050840∼extracellular matrix binding 4 0.001069556
GOTERM MF FAT GO:0001871∼pattern binding 7 0.001084076
KEGG PATHWAY hsa04512: ECM-receptor interaction 10 2.22E-09
KEGG PATHWAY hsa04510: Focal adhesion 10 4.37E-06
KEGG PATHWAY hsa04610: Complement and coagulation cascades 6 8.15E-05
KEGG PATHWAY hsa04110: Cell cycle 5 0.009122958
KEGG PATHWAY hsa04115: p53 signaling pathway 4 0.010179414
BP: biological process; CC: cellular component; MF: molecular function.
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Figure 1: Volcano plot of microarray. Horizontal axis represents log2-fold change, and vertical axis represents adjusted p value. (a) GSE4290.
(b) GSE50161. (c) TCGA.

is more likely that the genes locate in a core position and
act as a significant function; we adopted the top 20 genes
ranked by degree as hub genes; they are CALB1, CDC20,
CDCA8, CDK1, CEP55, DLGAP5, KIF20A, KIF4A, NDC80,
PBK, RRM2, SYN1, SYP, SYT1, TPX2, TTK, VEGFA, BDNF,
GNG3, and TOP2A. Figure 5 shows the interactions among
the 20 hub genes.

3.4. Function and Survival Analysis of the Hub Genes. By
searching the DAVID website, we found the hub genes
mainly enriched in the following GO terms: M phase; nuclear
division; mitosis; M phase of mitotic cell cycle; organelle

fission; microtubule cytoskeleton; mitotic cell cycle; spindle;
cell cycle phase; and cell cycle process. CDK1, TTK, CDC20,
and RRM2 were found to participate in the cell cycle and p53
signaling pathway (Table 4). Then we utilized the univariate
Cox regression analysis and log rank test to draw the
survival curves to explore the prognostic related value of the
hub genes based on TCGA datasets. Samples with survival
information were divided into high expression group and
low expression according to the median expression of the
candidate genes. CEP55 and RRM2 were discovered to have
survival differences (P<0.05) (Figures 6(a) and 6(b)); highly
expressing CEP55 and RRM2 tends to have poor survival
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Table 2: The GO and KEGG terms enriched by downregulated DEGs.

Category Term Count P-Value
GOTERM BP FAT GO:0007268∼synaptic transmission 52 1.62E-31
GOTERM BP FAT GO:0019226∼transmission of nerve impulse 54 5.18E-30
GOTERM BP FAT GO:0007267∼cell-cell signaling 57 4.96E-21
GOTERM BP FAT GO:0006836∼neurotransmitter transport 23 2.20E-18
GOTERM BP FAT GO:0050877∼neurological system process 72 3.01E-15
GOTERM CC FAT GO:0045202∼synapse 63 1.62E-35
GOTERM CC FAT GO:0044456∼synapse part 51 7.00E-32
GOTERM CC FAT GO:0043005∼neuron projection 50 4.79E-24
GOTERM CC FAT GO:0008021∼synaptic vesicle 25 1.28E-20
GOTERM CC FAT GO:0030054∼cell junction 49 1.50E-15
GOTERM MF FAT GO:0022836∼gated channel activity 36 6.73E-16
GOTERM MF FAT GO:0005216∼ion channel activity 39 3.23E-15
GOTERM MF FAT GO:0015267∼channel activity 40 4.98E-15
GOTERM MF FAT GO:0022803∼passive transmembrane transporter activity 40 5.43E-15
GOTERM MF FAT GO:0022838∼substrate specific channel activity 39 8.74E-15
KEGG PATHWAY hsa04080: Neuroactive ligand-receptor interaction 25 3.52E-10
KEGG PATHWAY hsa04020: Calcium signaling pathway 21 4.34E-10
KEGG PATHWAY hsa04720: Long-term potentiation 9 8.19E-05
KEGG PATHWAY hsa04012: ErbB signaling pathway 8 0.00232
KEGG PATHWAY hsa04010: MAPK signaling pathway 13 0.010508
BP: biological process; CC: cellular component; MF: molecular function.

Table 3: The statistical results of the connectivity of the network.

Gene MCC DMNC MNC Degree
TOP2A 9.22E+13 0.87325 40 56
CDK1 9.22E+13 0.68829 47 47
VEGFA 5763 0.18902 40 43
SYT1 4.37E+07 0.37425 40 42
CDC20 9.22E+13 1.01161 34 37
KIF4A 9.22E+13 0.98669 34 36
CALB1 4586 0.27262 33 35
BDNF 7597 0.33146 32 35
SYP 3760934 0.39583 33 35
DLGAP5 9.22E+13 1.1534 33 35
KIF20A 9.22E+13 1.05547 35 35
TTK 9.22E+13 1.10629 34 35
NDC80 9.22E+13 1.13243 33 35
GNG3 7267294 0.41708 32 34
CEP55 9.22E+13 1.07639 34 34
SYN1 3799485 0.41397 31 34
PBK 9.22E+13 1.09881 34 34
CDCA8 9.22E+13 1.1038 34 34
TPX2 9.22E+13 1.11408 33 34
RRM2 9.22E+13 1.03281 33 34

outcomes. To test and verify the result, we did survival
analysis on GSE74187, another GEO datasets which contain
60 GBM samples with overall survival (OS) and progress-
free survival (FPS) time, with the same calculation strategy; it
indicated that the expression level of RRM2 might be related
to both OS and PFS (P<0.05) (Figures 6(c) and 6(d)), which
is consistent with earlier investigation. However, the CEP55
effect cannot be seen in GSE74187, maybe because of the
fact that interference comes from limited samples or other

confounding factors, so we choose RRM2 for the next step
of exploration.

3.5. Correlation between RRM2 andOther HubGenes. Corre-
lation analysis implied that RRM2 expression was positively
correlated with DLGAP5 (R=0.79, P<0.05), KIF4A (R=0.78,
P<0.05), CDCA8 (R=0.75, P<0.05), TPX2 (R=0.75, P<0.05),
KIF20A (R=0.72,P<0.05), PBK (R=0.72,P<0.05), CDC20
(R=0.68, P<0.05), CDK1 (R=0.68, P<0.05), NDC80 (R=0.68,
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Table 4: The GO and KEGG terms enriched by 20 hub genes.

Category Term count P-Value Genes

GOTERM BP FAT GO:0000279∼M
phase 9 6.73E-09 CDK1, CDCA8, DLGAP5, TPX2, TTK,

CDC20, NDC80, CEP55, PBK

GOTERM BP FAT GO:0000280∼nuclear
division 8 1.17E-08 CDK1, CDCA8, DLGAP5, TPX2,

CDC20, NDC80, CEP55, PBK

GOTERM BP FAT GO:0007067∼mitosis 8 1.17E-08 CDK1, CDCA8, DLGAP5, TPX2,
CDC20, NDC80, CEP55, PBK

GOTERM BP FAT
GO:0000087∼M
phase of mitotic cell
cycle

8 1.32E-08 CDK1, CDCA8, DLGAP5, TPX2,
CDC20, NDC80, CEP55, PBK

GOTERM BP FAT GO:0048285∼
organelle fission 8 1.54E-08 CDK1, CDCA8, DLGAP5, TPX2,

CDC20, NDC80, CEP55, PBK

GOTERM CC FAT
GO:0015630∼
microtubule
cytoskeleton

10 1.60E-08 CDK1, CDCA8, KIF4A, DLGAP5, TPX2,
TTK, CDC20, CEP55, TOP2A, KIF20A

GOTERM BP FAT GO:0000278∼mitotic
cell cycle 9 1.69E-08 CDK1, CDCA8, DLGAP5, TPX2, TTK,

CDC20, NDC80, CEP55, PBK

GOTERM CC FAT GO:0005819∼spindle 7 3.46E-08 CDK1, CDCA8, KIF4A, DLGAP5, TPX2,
TTK, CDC20

GOTERM BP FAT GO:0022403∼cell
cycle phase 9 4.04E-08 CDK1, CDCA8, DLGAP5, TPX2, TTK,

CDC20, NDC80, CEP55, PBK

GOTERM BP FAT GO:0022402∼cell
cycle process 9 4.43E-07 CDK1, CDCA8, DLGAP5, TPX2, TTK,

CDC20, NDC80, CEP55, PBK
KEGG PATHWAY hsa04110: Cell cycle 3 0.008429 CDK1, TTK, CDC20

KEGG PATHWAY hsa04115: p53
signaling pathway 2 0.077638 CDK1, RRM2

BP: biological process; CC: cellular component; MF: molecular function.

GSE50161

GSE4290

TCGA709

726

55252

126

93

1561

Figure 2: Venn analysis of DEGs. A comparison of 2039, 2932, and
823 DEGs from three datasets revealed 552 common DEGs between
GBM and normal tissues.

P<0.05), TTK (R=0.68, P<0.05), CEP55 (R=0.62, P<0.05),
and TOP2A (R=0.58, P<0.05), while there was insignificant
correlation with SYP, VEGFA, BDNF,CALB1, SYT1, GNG3,
and SYN1 (supplementary material 1).

3.6. Exploration of RRM2. According to the GEPIA web-
site (http://gepia.cancer-pku.cn/), we observed that RRM2

was differently expressed in many types of tumor tissues
including GBM compared to normal tissues (Figure 7(a)),
which further indicated it may contribute to the occurrence
and development of cancer. Figure 7(b) shows the different
expression level of RRM2 between the GBM samples from
TCGA and normal brain samples matched from GTEx
datasets (https://gtexportal.org/home/), which contain more
abundant normal samples compared to TCGA database.
Apparently GBM patients expressed higher level of RRM2.
Besides, RRM2 were highly expressed in GBM cancer cell
lines (Figure 7(c)) as demonstrated from CCLE analysis
(https://portals.broadinstitute.org/ccle/), while the prognos-
tic was worse according to previous research. To explore
the probable regulated mechanisms of RRM2 in GBM, we
explored the cBioPortal (http://www.cbioportal.org/) and
found that RRM2 was altered in 4% of GBM cases from
TCGA cohort; the main type of genetic alteration is mRNA
upregulation. Correspondingly, those with RRM2 altered
seem to have poor outcome (Figure 8). We annotated the
biological processes of RRM2 by employing GeneMANIA
(http://genemania.org/), a freely available and effective web
interface for functional prediction of genes; as is shown in
Figure 9, RRM2 interacted with 20 proteins and was mainly
involved in the following functions: nucleobase-containing
small molecule interconversion; regulation of transcription
involved in G1/S transition of mitotic cell cycle; G1/S transi-
tion of mitotic cell cycle; and deoxyribonucleotide metabolic
process. Considering that, we infer that RRM2 may affect



6 BioMed Research International

Low degree High degree

Figure 3: Protein-protein interactionwork of overlappedDEGs. Nodes with higher degree are diplayed in larger size and bright orange colour
and nodes with lower degree are shown in smaller size and dark blue colour. The edge size is consistent with the coexpression intensity.
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Figure 4: Scatter plot of node degree distribution for overlapped DEGs, R square=0.796, and correlation=0.963.

the processes of GBM via regulating mitotic cell cycle and
nucleotide metabolism.

4. Discussion

Glioblastoma (GBM) is the most malignant glial tumor in
brain with devastating prognosis because of its complex
biological behaviors and limited strategies for therapy; people
with GBM suffer from tumor progression or recurrence.

Recently, advances in genomic analysis help us form a com-
prehensive insight into the mechanisms of GBM and identify
potential biomarkers for GBM prognosis and therapy. In the
present study, we performed gene expression profile analysis
among three datasets: TCGA, GSE4290, and GSE50161,
totally included 284 GBM and 41 normal samples. At last, the
overlapped 552DEGs among three datasets were identified, of
which 128were upregulated and 424were downregulated.GO
annotation indicated that the upregulated genes were mainly
manifested in cell cycle, mitosis, and extracellular structure
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Figure 5: Protein-protein interaction work for 20 hub genes. The shape of triangle represents upregulated genes, the shape of “V” represents
downregulated genes.

organization; the downregulated genes were primarily related
to neurological system process, cell-cell signaling, and synap-
tic transmission. KEGG pathway shows that the upregu-
lated genes were associated with ECM-receptor interaction,
focal adhesion, complement and coagulation cascades, cell
cycle, and p53 signaling pathway; the downregulated genes
were associated with neuroactive ligand-receptor interaction,
calcium signaling pathway, long-term potentiation, ErbB
signaling pathway, and MAPK signaling pathway. These
results indicated that the pathogenesis of tumor is a complex
biological process driven by specific genes and epigenetic
changes. Abnormal regulation of multiple genes will promote
the occurrence and development of GBM through different
mechanisms.

To further screen core genes, we constructed a protein-
protein interaction network consisting of 401 nodes and 1890
edges through STRING; thenwe focus our attention on the 20
core genes in the network picked out by cytoHubba according
to their degree. GO annotation indicated the 20 hubgenes
mainly took part in cell mitosis and effect the cell cycle;
among them, CDK1, TTK, and CDC20 were enriched in
cell cycle pathway; CDK1 and RRM2 were enriched in p53
signaling pathway. As is known to all, those pathways play a
vital role in carcinoma. p53 signaling pathway is composed
of a set of genes and their products that response to a variety
of intrinsic and extrinsic stress signals in apoptosis, cellular
senescence, or cell cycle arrest style [12]; dysregulation of
the genes in the p53 network might disrupt the fidelity of

DNA replication and cell division and present a greater
risk of carcinogenesis [13]. Evidently, rapid proliferation
is indispensable for tumor cells to maintain growth and
invasion; disorders in the regulation of cell cycle contribute
to the initiation and progression of tumor [14].The hallmarks
of rapid proliferation and high aggressiveness of GBM make
identifying cell cycle pathway and p53 signaling pathway as a
predominant signalling pathway in GBM reasonable. Further
unravelling of the precise molecular mechanism about those
pathways and relevant genes may be necessary for future
efforts.

Present survival analysis revealed that RRM2, one of the
hub genes in the coexpression network, was associated with
the prognosis of GBM patients; patients with high expression
of RRM2 showed shorter overall survival time than thosewith
low expression level. Besides, 4% of TCGA GBM samples
detected out RRM2 alteration according to cBioPortal; how-
ever, this alteration seems to relate to poor outcome. Hence,
we hypothesized that RRM2 could be a potential prognos-
tic factor of patients with GBM. Ribonucleotide reductase
(RR), a rate-limiting enzyme which catalyzes the formation
of deoxyribonucleotides from ribonucleotides, consists of
ribonucleotide reductase subunit M1 (RRM1) and ribonu-
cleotide reductase subunit M2 (RRM2). Over the years,
studies continually found that RRM2 was overexpressed in
various tumors, such as pancreatic cancer [15], neuroblas-
toma [16], thyroid malignant tumor [17], breast cancer [18],
melanoma [19], lung cancer [20], prostate carcinoma [21],
and hepatocellular carcinoma [22]; elevated RRM2 activity
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Figure 6: Kaplan-Meier survival curves of GBMpatients grouped bymedian expression level of relevant gene. (a) CEP55 in TCGA. (b) RRM2
in TCGA. (c. d) RRM2 in GSE74187.

played a vital role in tumorigenesis, progression, and invasion
and can serve as prognostic markers in some instances.
Inhibition of RR can break the balance of ribonucleotide
and deoxyribonucleotide level, effecting the DNA synthesis
and repair and inducting cell cycle arrest and apoptosis [23–
25], making RR an attracting cancer therapeutic target and
encouraged incessant exploring. Gemcitabine was one of the
famous RRM1 inhibitors and was approved clinically as first-
line drug for anticancer therapy in various cancers. There are
other efficient RRM2 inhibitors such as hydroxyurea (HU),
already used in the treatment of hematological malignances
[26, 27], and Triapine (3AP), evaluated in a number of clinical
trials and showed encouraging results in anticancer treatment
[28, 29]. However, RRM2 is underexplored and recognized
as a viable therapeutic option. With the recent advances in
genetic strategies for RRM2 inhibition, some new treatments
were reported and highlight the potential of gene therapy.
Knockdown of RRM2 through specific small interfering RNA

(siRNA) displayed effective antitumor activity in various
solid tumors, like head and neck cancer [30], including oral
squamous cell carcinoma [31], ovarian cancer [32], gastric
adenocarcinoma [33], hepatocellular carcinoma [34], and
colorectal cancers [35]. What is more is that therapies target-
ing or decreasing RRM2 expression through antisense cDNA
[36] and RRM2-specific siRNA [37] have displayed a reversal
of gemcitabine resistance. Even though the extensive explo-
ration of RRM2 in GBM was rare, Li C. et al. illustrated that
RRM2 was overexpressed in human GBM cells and can pro-
mote proliferation, migration, and invasion but inhibit apop-
tosis of GBMcells at experiment level [38]; however, the study
only focused on RRM2 simply and the signaling pathway
about how RRM2 was involved in was not mentioned. Only
Rasmussen et al. demonstrated theRRM2-BRCA1 interaction
mechanism and found that BRCA1 protects GBM cells from
endogenous replication stress and promotes tumorigenic-
ity [39]. Consistent with previous study, we found RRM2
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Figure 7:The expression level of RRM2 in different types of cancers and cell lines. (a) In pan-cancer tissues and normal tissues. (b) In GBM
tissues and normal tissues. (c) In multitumor cell lines.

was strongly high expressed in GBM samples compared
to normal brain tissues via comprehensive bioinformation
analysis; meanwhile RRM2 was a negative prognostic factor
informing worse clinical survival. Importantly, we noted
RRM2 may play a role in GBM mainly by effecting cell
cycle and nucleotide metabolism; knockdown RRM2 could
suppress the proliferation of GBM cells, induce cell arrest in
the G1 phase, and promote cell apoptosis [38], supporting
present hypothesis. Notably, we identified 20 core genes
which were considered to play a central role in GBMs, among
which, CDK1, CDC20, CDCA8, CEP55, DLGAP5, KIF20A,
KIF4A, NDC80, PBK, TPX2, TTK, VEGFA, and TOP2A
had a direct interaction with RRM2; subsequent correlation
analysis showed that RRM2 was highly positively correlated
with DLGAP5, KIF4A, CDCA8, and TPX2 (R≥0.75, P<0.05).
DLGAP5 (Discs Large Homolog Associated Protein 5), also
known as HURP or DLG7, is a mitotic spindle protein

that promotes the formation of tubulin polymers [40]; it
has been documented that DLGAP5 may lead to cancer
by allowing cells to progress through the regulation of M
phase progression by modulating the function of the spindle
apparatus and its organization [41]. KIF4A (Kinesin Family
Member 4A) is a microtubule-based motor protein involved
inmaintaining chromosome integrity during cell mitosis [42,
43]; it was implicated as an potential biomarker in types of
cancers [44, 45]. CDCA8 (Cell Division Cycle Associated 8)
is one of the components of chromosomal passenger complex
(CPC) in mitosis and cell division; in fact, CDCA8 was
considered as a putative oncogene for it was overexpressed
in tumor tissues but had low or undetectable expression
in normal tissues [46, 47]. TPX2 (Microtubule Nucleation
Factor) is well known for its critical role in mitotic spindle
assembly [48]; a number of studies displayed the efficiency of
the strategy of decreasing TPX2 level in anticancer treatment
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Figure 8: Kaplan-Meier survival curves ofGBMpatients grouped byRRM2 alteration according to cBioPortal. (a). OS curves. (b). PFS curves.

[49]. Moreover, recent works on TPX2 in DNA damage
response opened an extended therapeutic window for TPX2-
targeted therapies in cancer [50]. Apparently, these genes take
part in cell mitosis and cell cycle and are cancer related, even
though precise mechanisms of how this PPI network worked
are confused; this information adds value to the notion that
the RRM2-related network is relevant in carcinogenesis and
deserves further exploration in GBM; it may provide a novel
avenue worth pursuing when developing effective drugs by
combining RRM2 inhibitors (such as 3AP) with other agents.
Collecting all, we confirmed that RRM2 is a prognostic factor
and a promising therapeutic target for GBM treatment.

5. Conclusion

In conclusion, the present study presented a comprehensive
bioinformatics analysis of DEGs between glioblastoma and
normal tissues and successfully screened several crucial genes
and certain associated pathways such as cell cycle and p53
signaling pathway. Our data suggested that pathogenesis
and development of glioblastoma are regulated by com-
plex gene network through different biological pathways;
RRM2 is a core gene in this network and is associated
with the prognosis of glioblastoma; it could be a promis-
ing target for efficient suppression of glioblastoma; how-
ever, further experiments and more efforts are needed to

confirm it and illustrate the specific molecular biological
mechanism.
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