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Background: Ischemia–reperfusion injury (IRI) remains an inevitable and major challenge in
renal transplantation. The current study aims to obtain deep insights into underlying
mechanisms and seek prognostic genes as potential therapeutic targets for renal IRI (RIRI).

Methods: After systematically screening the Gene Expression Omnibus (GEO) database,
we collected gene expression profiles of over 1,000 specimens from 11 independent
cohorts. Differentially expressed genes (DEGs) were identified by comparing allograft
kidney biopsies taken before and after reperfusion in the discovery cohort and further
validated in another two independent transplant cohorts. Then, graft survival analysis and
immune cell analysis of DEGs were performed in another independent renal transplant
cohort with long-term follow-ups to further screen out prognostic genes. Cell type and
time course analyses were performed for investigating the expression pattern of
prognostic genes in more dimensions utilizing a mouse RIRI model. Finally, two novel
genes firstly identified in RIRI were verified in the mouse model and comprehensively
analyzed to investigate potential mechanisms.

Results: Twenty DEGs upregulated in the process of RIRI throughout different donor
types (living donors, cardiac and brain death donors) were successfully identified and
validated. Among them, upregulation of 10 genes was associated with poor long-term
allograft outcomes and exhibited strong correlations with prognostic immune cells, like
macrophages. Furthermore, certain genes were found to be only differentially expressed in
specific cell types and remained with high expression levels even months after RIRI in the
mouse model, which processed the potential to serve as therapeutic targets. Importantly,
two newly identified genes in RIRI, Btg2 and Rhob, were successfully confirmed in the
mouse model and found to have strong connections with NF-kB signaling.
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Conclusions: We successfully identified and validated 10 IRI-associated prognostic
genes in renal transplantation across different donor types, and two novel genes with
crucial roles in RIRI were recognized for the first time. Our findings offered promising
potential therapeutic targets for RIRI in renal transplantation.
Keywords: ischemia–reperfusion injury, renal transplantation, graft survival, immune cell, NF-kB signaling
INTRODUCTION

Ischemia–reperfusion injury (IRI), a major and inevitable
complication that occurred during organ transplantation,
involves an initial restriction of blood supply followed by the
subsequent restoration of perfusion (1). In the field of renal
transplantation, IRI remains a leading cause of acute kidney
injury (AKI), contributing to an increased risk of in-hospital
mortality and poor long-term outcomes (2, 3). Moreover, renal
IRI (RIRI) after transplantation elicits cascades of pathological
conditions which enhance allograft immunogenicity and
primarily stimulate alloimmune responses, eventually leading
to acute rejection and progression to chronic allograft
nephropathy (4, 5).

During the process of IRI, hypoxic injury following production
of reactive oxygen species (ROS), due to reoxygenation, results in
profound inflammatory responses and different forms of cell
death-like apoptosis and ferroptosis (6–8). Current experimental
strategies to prevent or alleviate RIRI can be focused on scavenging
ROS, reducing inflammation, or promoting cell survival and
regeneration, including cellular therapy, pharmacological
treatment, and ischemic preconditioning (9–12). Despite those
methods, there is still a lack of effective treatment in clinical
settings (13). Besides, with the expansion of donor pools in recent
years, donation after brain death (DBD) and donation after
cardiac death (DCD) have been gradually increased. However,
these deceased allografts experienced more severe IRI and were at
higher risk of graft loss (14, 15). Therefore, it is of great potential
and importance to search for novel and valid therapies for RIRI
regardless of donor types to improve clinical outcomes.

With the rapid advancement of genome-wide gene expression
analysis, remarkable progress has been made in understanding
the molecular complexity of individual variability in clinical
org 2
settings (16). At present, numerous studies have been
performed on IRI gene expression profiles, and potential genes
were investigated in the pathogenesis and progression of IRI (17,
18). However, due to the heterogeneity among each cohort,
current results had a lot of differences and were hard to
translate. Therefore, integrated analysis of multiple datasets is
needed to break the limitations and reduce the false-positive
results of single-cohort studies and therefore enable the
identification of reliable therapeutic molecular targets (19). In
this study, gene expression profiles of IRI specimens from four
renal transplantation cohorts were collected to seek robust RIRI-
associated prognostic genes. Due to limitations of access to
human tissues, we utilized mouse RIRI datasets to perform
time-course and specific cell-type analyses, thus enriching our
understanding of these genes in the occurrence and progression
of RIRI. In brief , the current study identified and
comprehensively analyzed novel genes that would contribute to
precisely treating IRI and improving the prognosis of renal
transplant patients.
MATERIALS AND METHODS

Data Collection and Preprocessing
As summarized in Table 1, we systematically collected 11 datasets
containing gene expression profiles of specimens from the Gene
Expression Omnibus (GEO) database. Detailed information about
the operations and sample size of all available cohorts is shown in
Supplementary Tables 1 and 2. Human IRI-associated biopsies
were taken before and after organ implantation and used to
compare the transcriptomic differences pre- and post-reperfusion.
Microarray datasets were normalized through “limma” package
(20), while the normalization of RNA sequencing datasets was
TABLE 1 | Information of 11 datasets included in this study.

Datasets Platforms Species Tissues Sample size Applications References (PMID)

GSE43974 Illumina HumanHT-12 V4.0 Expression BeadChip Homo sapiens Kidney 260 Discovery of DEGs 25427168
GSE126805 Illumina HiSeq 3000 Homo sapiens Kidney 82 Validation of DEGs 30429361
GSE90861 Illumina NextSeq 500 Homo sapiens Kidney 46 Validation of DEGs 30094915
GSE21374 Affymetrix Human Genome U133 Plus 2.0 Array Homo sapiens Kidney 282 Graft survival analysis 20501945
GSE52004 Affymetrix Mouse Gene 1.0 ST Array Mus musculus Kidney 45 Cell type analysis 24569379
GSE98622 Illumina HiSeq 2000 and Illumina NextSeq 500 Mus musculus Kidney 40 Time course analysis 28931758
GSE151648 Illumina HiSeq 3000 Homo sapiens Liver 80 Cross-organ investigation 32426849
GSE23649 Illumina HumanHT-12 V3.0 Expression BeadChip Homo sapiens Liver 66 Cross-organ investigation No publication
GSE12720 Affymetrix Human Genome U133 Plus 2.0 Array Homo sapiens Liver 42 Cross-organ investigation 19353763
GSE127003 Affymetrix Human Genome U133 Plus 2.0 Array Homo sapiens Lung 92 Cross-organ investigation 32060066
GSE18995 Affymetrix Human Genome U133 Plus 2.0 Array Homo sapiens Lung 35 Cross-organ investigation No publication
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carried out by the “DESeq2” package (21). Log2 transformation was
performed for all datasets.

Study Design
The flowchart of the current article is presented in Figure 1. In the
discovery cohort, 260 biopsies taken before and after reperfusion in
renal allografts acquired from healthy living donors, brain-dead
donors, and cardiac death donors were included to seek common
DEGs associated with RIRI across donor types (17). Those DEGs
were utilized for functional analysis and then verified in another two
independent renal transplant cohorts, consisting of 82 and 46
eligible biopsies, respectively (22, 23). Subsequently, we performed
Frontiers in Immunology | www.frontiersin.org 3
survival analysis to further screen prognostic DEGs utilizing 282
biopsies of kidney allografts with long-term follow-up data (24), and
the time–space expression patterns of prognostic DEGs were also
detected in specific cells and at various time points after RIRI in
mouse model (18, 25). After systematic literature searching and
reviewing, two newly identified genes in RIRI were selected for
further analysis. Their expression levels were validated by
quantitative real-time polymerase chain reaction (qRT-PCR) in
the mouse RIRI model. Moreover, their roles in renal and other
solid organ transplantations (liver and lung) were explored (26–28).
Additionally, we conducted gene set enrichment and single-cell
analyses for these novel genes.
FIGURE 1 | Flowchart of this study. RIRI: renal ischemia–reperfusion injury, IRI: ischemia–reperfusion injury, qPCR: quantitative polymerase chain reaction.
September 2021 | Volume 12 | Article 747020
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Identification and Validation of
DEGs in RIRI
Differential expression analyses were performed to identify
DEGs before and after reperfusion. We compared samples pre-
and post-reperfusion because previous studies reported that
there was little difference of transcriptome before and after
cold ischemia and no pathway was enriched based on DEGs,
while the transcriptome changes were significant after
reperfusion (17). The threshold was set as the adjusted p-value <
0.05 and the absolute value of log2-fold change > 1. DEGs observed
simultaneously in all three kinds of donor types (DBD, DCD, and
donation from living donors) were selected for validation and
subsequent analyses.

PPI Analysis and Functional
Annotations of DEGs
Candidate DEGs were submitted to the STRING online database
(https://string-db.org/) for protein–protein interaction (PPI)
analysis (29), and the PPI network was visualized by Cytoscape
software (30). Hub genes were then identified through
CytoHubba, a plugin in Cytoscape. Subsequently, Metascape
(https://metascape.org/gp/index.html#/main/step1), a powerful
annotation analysis tool functioning by integrating several
authoritative data resources (GO and KEGG were applied as
annotations), was applied to analyze the potential biological
processes and signaling pathways occurring in the episodes of
IRI (31). The threshold was set as an adjusted p-value < 0.05, a
minimum enrichment score of 2, and a minimum overlap of
five genes.

Graft Survival and Immune
Infiltrate Analysis
To further explore the effects of DEGs on long-term allograft
survival, the GSE21374 dataset was applied, which contains gene
expression and graft survival data of renal transplant patients
with 51 graft loss and 231 graft survival. ImmuCellAI (http://
bioinfo.life.hust.edu.cn/ImmuCellAI#!/), a novel gene
expression-based tool, was used to estimate the abundance of
24 immune cells in renal biopsies (32). Subsequently, we applied
univariate Cox regression analyses to assess the prognostic
significance of DEGs and immune cells; their predictive
abilities were also quantified by bootstrapped C-index.
Correlations between gene expression and immune cell
infiltration were also calculated by Pearson analysis, and the
threshold was set as an absolute value of coefficient > 0.25 and
p-value<0.05.

Specific Cell Type and Time
Course Analyses
In GSE52004, expression levels of candidate prognostic DEGs in
macrophage, monocyte, nephron, vascular endothelium, and
interstitial cells of renal tissues taken from bilateral RIRI mice
(three mice in each group) were acquired. Besides, RNA-seq data
of renal tissues collected at 10 different time points (three mice in
each group) following RIRI—2 and 4 h; 1, 2, and 3 days; 1, 2, and
4 weeks; and 6 and 12 months—were obtained in GSE98622.
Frontiers in Immunology | www.frontiersin.org 4
Combining the above two datasets, time–space expression
patterns of prognostic genes were elucidated.

Animals and Procedures
In animal experiments, C57BL/6 mice (8–10 weeks old, male)
were purchased from Vital River Laboratory Animal Technology
(Beijing, China). All animals were maintained in a specific
pathogen-free facility at the Medical Research Center. Mice
were divided into three groups (sham group, IRI_6h group,
and IRI_24h group), each group consisting of six mice. Both
renal pedicles were clamped for 45 min in the IRI group, and
kidney samples were harvested at 6 and 24 h after reperfusion.
Mice in the sham group underwent all surgical procedures except
bilateral renal pedicle occlusion.

Assessment of Kidney Injury and
Quantification of mRNA Expression
Kidney injury was assessed by measuring levels of serum
creatinine (SCr) and blood urea nitrogen (BUN). Blood
samples were collected from the vena cava, and the serum was
separated by centrifugation at 3,000 rpm for 15 min and then
sent to the Department of Biochemistry to detect levels of Scr and
BUN. Besides, renal samples were fixed in 4% formaldehyde,
dehydrated, and embedded in paraffin. Tissue sections (4 mm)
were stained with hematoxylin–eosin (HE). Total RNA was
extracted using TRIzol reagent (Invitrogen, Carlsbad, CA), and
reverse transcription reactions were performed following
instructions. The levels of transcripts were determined by qRT-
PCR using a standard protocol from the SYBR Green PCR kit
(Toyobo, Osaka, Japan). Primers of Rhob and Btg2 are listed in
Supplementary Table 3.

Further Exploration of Novel Genes
We firstly performed Kaplan–Meier (K-M) survival analysis to
show the prognostic value of two novel RIRI genes for renal
allograft long-term survival and compared their expression levels
between biopsy-proven rejection and non-rejection allograft
samples. Next, IRI specimens taken from liver and lung
transplantations were utilized to investigate their potential
roles in other solid organ transplantations. In addition, gene
set enrichment analysis (GSEA) of these two genes was
conducted using post-reperfusion samples in GSE43974 based
on hallmark and cell-type signature gene sets from the molecular
signatures database (MSigDB) by the “clusterProfiler” R package.
Finally, single-cell analysis was performed using the Human
Protein Atlas (https://www.proteinatlas.org/).

Statistical Analysis
All statistical analyses were carried out by R software (version
3.6). The D’Agostino and Pearson omnibus normality test was
performed to determine if data follow a normal distribution in
each comparison. If the data passed the normality test,
parametric tests (two-tailed unpaired t-tests, one-way ANOVA
with Tukey’s correction for multiple comparisons, and Pearson
correlation) would be conducted. On the contrary, non-
parametric tests were applied (Mann–Whitney-U test, one-way
ANOVA using Kruskal–Wallis with Dunn’s correction for
September 2021 | Volume 12 | Article 747020
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multiple comparisons, and Spearman correlation). The reported
results were all considered statistically significant at the 5%
critical level (p < 0.05).
RESULTS

Identification of DEGs in RIRI
Differential expression analyses were performed in biopsies taken
before and after reperfusion from living and deceased donor
kidneys (DBD and DCD) to select robust and general genes. As
illustrated in Figure 2A, there were 70 DEGs (61 upregulated
genes and 9 downregulated genes) and 46 DEGs (45 upregulated
genes and 1 downregulated gene) observed in DBD and DCD
donor samples, respectively, while 30 DEGs (30 upregulated
genes) were identified in renal tissues derived from healthy living
Frontiers in Immunology | www.frontiersin.org 5
donors (Supplementary Table 4). Twenty DEGs simultaneously
selected in three types of donations were all upregulated and then
included for subsequent analyses (Figure 2B). Heat maps of
DEGs were depicted in Figure 2C, and hierarchical clustering
analysis showed that DEGs ideally clustered samples before and
after IRI.

PPI Network and Functional
Enrichment Analysis
Using the STRING database, 20 upregulated DEGs were
constructed into the PPI network (Figure 2D). Results showed
that 20 genes were all strongly connected without exception. Among
them, 10 genes, including BTG2, EGR1, DUSP1, FOS, JUN, ZFP36,
JUNB, FOSB, GADD45B, and PPP1R15A, were identified as hub
genes in accordance with the degree score generated by CytoHubba
and showed an even closer network (Figure 2E). Metascape analysis
A B

D E F

C

FIGURE 2 | Screening and analysis of DEGs for RIRI. (A) Volcano plots show DEGs between samples taken before and after reperfusion in brain death (61
upregulated and 9 downregulated genes), cardiac death (45 upregulated and 1 downregulated genes), and healthy living donors (30 upregulated genes),
respectively. (B) The Venn diagram demonstrates the intersection of DEGs among three kinds of donor types. (C) Clustering heat maps illustrate expression levels of
20 robust DEGs in different phases of renal transplantation. Protein–protein interaction network of 20 DEGs (D) and 10 hub genes (E). The deeper color indicates
higher connectivity. (F) Network of enriched clusters, where each node represents one statistically significant term of biological process, and terms with similarity of
more than 0.3 are connected by edges. DEGs, differentially expressed genes.
September 2021 | Volume 12 | Article 747020
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illustrated clusters of enriched biological processes (Figure 2F).
Results manifested that identified genes were significantly enriched
in regulation of transcription from RNA polymerase II, MAPK
signaling pathway, response to oxidative stress, and multiple
processes related to the cell cycle.

Validation of DEGs in RIRI
To verify the robustness of 20 upregulated DEGs in RIRI, we
employed two independent renal transplantation cohorts. As
demonstrated in Figures 3A, B, those DEGs all remained
differentially expressed after reperfusion in renal allograft
tissues suffered from IRI.
Frontiers in Immunology | www.frontiersin.org 6
Graft Survival Analysis of DEGs and
Immune Cells
Among 20 DEGs, 10 of them were associated with renal allograft
survival (Figure 3C, Supplementary Table 5). Higher
expressions of KLF4, JUN, KLF6, KLF2, EGR1, JUNB, RHOB,
BTG2, PPP1R15A, and FOS in renal allograft tissues indicated
poorer prognosis. The C-indexes of the top 3 genes with the
highest hazard ratio (KLF4, JUN, KLF6) were above 0.7, and C-
indexes of all prognostic genes were above 0.6. By evaluating the
infiltration of immune cells, high infiltration of macrophage,
cytotoxic T cell, monocyte, MAIT, gdT, and CD8+ T cell were
risk factors for graft survival, while CD4+ T cell, Th17 cell, CD8+
A

B

D

EC

FIGURE 3 | Validation and graft survival analysis of DEGs. Box and scatter plots compare the expression levels of 20 upregulated RIRI-associated DEGs (A, B).
Forest plots show hazard ratios and their 95% confidence intervals of 10 prognostic DEGs (C) and immune cells (D). C-indexes are also displayed on the right
side of both pictures. (E) Correlation heat map for gene expression and immune cell infiltration; red and blue represent positive and negative correlations,
respectively. No statistically significant correlations (p > 0.05) are denoted by black crosses.
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naive cell, Tfh, and neutrophil were protective factors. The
C-indexes of prognostic immune cells were around 0.6
(Figure 3D, Supplementary Table 6).

In addition, correlations between genes and immune cells
with prognostic values are shown in Figure 3E. Prognostic genes
were almost negatively correlated with subsets of protective
immune cells and exhibited partly positive correlations with
potential risk immune cells, which were in accordance with
survival analysis results. Notably, macrophages showed strong
correlations with nearly all risk genes.

Specific Cell Type and Time Course
Analyses of Prognostic Genes
As for gene expression changes in specific cell types during the
episodes of RIRI, the above 10 prognostic genes all remained
Frontiers in Immunology | www.frontiersin.org 7
upregulated in whole kidney tissues 24 h after IRI, which
suggested the strong concordance of RIRI-invoked genes
between the human cohort and the mouse model. Similarly,
these 10 genes were all upregulated in the nephron (Figure 4A),
while certain genes showed no changes of expression levels in the
vascular endothelium, interstitium, macrophage, and monocyte
(Figure 4B). Among them, Rhob was found to be only
upregulated in the nephron, which suggested its special role in
specific cells.

As illustrated in Figure 4C, all genes showed similar
upregulated changes in 24 h post-IRI surgery. Intriguingly,
over a time series after 24 h, the expression of genes included
Btg2, Egr1, Fos, Jun, Junb, Klf4, Klf6, and Rhob remained higher
than the baseline level stably until 12 months after IRI. In
contrast, minor changes around the baseline were detected
A B

C

FIGURE 4 | Specific cell type and time course analyses of prognostic genes in mice RIRI model. (A) Histograms represent expression levels of prognostic genes in
the nephron of mice from sham and 4- and 24-h post-IRI groups. (B) Histograms compare gene expression levels between sham and 24-h post-IRI samples of
macrophage and monocyte, vascular endothelium and interstitial, and whole kidney. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not statistically
significant. (C) Line plots with 95% confidence intervals show changes in expression levels of prognostic genes over time post-IRI; a total of 10 different time points
were included in analyses as illustrated on the bottom-right side of the picture. Genes marked in purple kept higher expressed than baseline until 12 months after IRI.
September 2021 | Volume 12 | Article 747020
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after 24 h post-IRI surgery for other genes (Klf2 and Ppp1r15a).
Those alterations indicated that the continuously upregulated
genes like Btg2 and Rhob may cause long-term injury for renal
allografts and therefore were suitable for therapeutic targets.

Verification of Novel Genes in a
Mouse Model
Among 10 prognosis-related DEGs, Btg2 and Rhob were firstly
identified to be associated with RIRI, so they were chosen to be
confirmed in the RIRI mouse model. The results of HE staining,
Scr, and BUN are shown in Figures 5A–C. Through expression
validation by qRT-PCR, Btg2 and Rhob were validated to be
upregulated 6 and 24 h post-IRI in the mouse model (Figure 5D).

Further Exploration of BTG2 and RHOB
In GSE21374, specimens with a higher expression of BTG2
(HR = 2.064, p = 0.0092) and RHOB (HR = 2.41, p = 0.0046)
showed poorer allograft survival in renal transplant patients
(Figure 5E). However, there were no differences in their
expression levels between normal and rejection samples
(Figure 5F). Similar to the upregulated changes after IRI in renal
biopsies, BTG2 and RHOB displayed the same trend during the
Frontiers in Immunology | www.frontiersin.org 8
response to ischemia/reperfusion in liver (Figure 5G) and lung
transplantations (Figure 5H).

Interestingly, the top enriched biological pathways of BTG2
and RHOB in IRI kidney samples were both “TNFa signaling via
NF-kB” (Figures 6A, B, Supplementary Table 7). When using
cell-type gene signatures as reference, the top enriched cell types
in the kidney of BTG2 and RHOB were “collecting system” and
“proximal tubule epithelial cells,” respectively (Figures 6C, D,
Supplementary Table 8). The results of single-gene GSEA were
confirmed by the single-cell analysis, which showed that BTG2
was most highly expressed in collecting duct cells and RHOB was
most highly expressed in proximal tubular cells (Figures 6E–H).
DISCUSSION

In recent years, IRI has attracted increasing attention especially
in the field of transplantation due to the extension of the donor
pool by employing kidneys from DBD and DCD donors (14, 15).
Compared to healthy living donors, kidneys from DBD donors
are at a higher risk of organ damage and inferior graft survival
because of the pathological changes during brain death (33),
A B

D E

F G H

C

FIGURE 5 | Verification of Btg2 and Rhob in a mouse model and comprehensive analysis in clinical cohorts. HE staining of renal tissues from sham and 6-h post-
IRI, and 24-h post-IRI groups (A). Histograms illustrate differences in SCr (B), BUN (C), Btg2, and Rhob expression (D) among sham, 6-h post-IRI, and 24-h post-
IRI groups. (E) K-M survival curves for Btg2 and Rhob. (F) Expression levels of Btg2 and Rhob between normal and rejection groups. Differential expression patterns
of Btg2 and Rhob before and after reperfusion in liver (G) and lung transplantations (H). *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not statistically
significant. HE, hematoxylin–eosin; SCr, serum creatinine; BUN, blood urea nitrogen.
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while kidneys from DCD donors suffer from prolonged warm
ischemia times during cardiac arrest which leads to an increased
risk of delayed graft function (34). Therefore, three types of
donations were all included in our research, and as a result, 20
common upregulated DEGs regardless of donor types were
identified for RIRI. Those DEGs were also successfully
validated in another two independent cohorts of renal
transplantation, which further demonstrated their stability and
robustness. Moreover, those DEGs were found to be strongly
connected as a tight network without exception based on the PPI
network and mainly enriched in several biological processes such
as regulation of transcription and cell cycle, MAPK signaling
pathway, response to oxidative stress, and calcium ion. Similarly,
the above biological processes were all well elucidated in previous
studies (5, 35, 36), proving the reliability of our identified genes.

As a highly relevant detrimental consequence of transplantation,
IRI adversely affects clinical outcomes of transplantation patients (5,
Frontiers in Immunology | www.frontiersin.org 9
37, 38). Therefore, we investigated the impact of IRI-associated
genes on long-term graft survival. The results of survival analyses
demonstrated that the upregulation of 10 genes (KLF4, JUN, KLF6,
KLF2, EGR1, JUNB, RHOB, BTG2, PPP1R15A, and FOS) was
significantly associated with poor long-term allograft outcomes.
Among these genes, KLF2, KLF4, and KLF6 are highly conserved
zinc finger transcription factors that regulate cell apoptosis,
proliferation, differentiation, and migration. KLF2 and KLF4 are
proved to be highly expressed in the endothelium during the
episodes of IRI and responsible for disease progression (39, 40),
while KLF6 targeting improved IRI-induced AKI through effects on
inflammation, apoptosis, and renal function (41). Combined with
our results, those prognostic genes may control the progression of
RIRI to adversely affect long-term outcomes of posttransplant
patients and would be possibly utilized as effective targets, which
was also applicable for other confirmed prognostic genes in the
current study.
A B D

E F

G H

C

FIGURE 6 | Gene set enrichment and single-cell analyses of Btg2 and Rhob. Enriched hallmark gene signatures (A, B) and cell type signatures (C, D) of Btg2 and
Rhob. UMAP clustering of Btg2 and Rhob in the kidney (E, F). The red color represents immune cell types, and the blue color represents other renal cell types. Cell
types are sorted from high to low according to expression levels in bar graphs (G, H). UMAP, uniform manifold approximation and projection.
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RIRI engages the innate and adaptive immune responses and
interplays with cytokine generation within the kidney, resulting
in tissue damage (42). Among 24 immune cells estimated by
ImmuCellAI, aberrantly high infiltrations of macrophages,
cytotoxic T cells, monocytes, MAIT, gdT, and CD8+ T cells
were harmful to patients after renal transplantation, while CD4+

T cells, Th17 cells, CD8+ naive cells, Tfh, and neutrophils were
protective. As the leading risk factor, macrophages were expected
to have a significant function in immune-mediated kidney injury
since these cells function as both effector cells and antigen-
presenting cells, thereby connecting the innate and adaptive
immune systems (43). Their influx upon reperfusion of the
post-ischemic kidney seemed to facilitate the inflammatory
cascade and contribute to the development of renal fibrosis
(43, 44). Their relationships with expression levels of
prognostic genes may serve as potential regulatory pathways.
For example, expression levels of JUNB were positively correlated
with amounts of macrophages, which meant that JUNB may
stimulate the activation of macrophages or the infiltration of
macrophages facilitates the expression of JUNB thus
participating in downstream responses. Some other immune
cells that negatively impact clinical outcomes like gdT cells,
which were proved to be protective after being deficient (45),
deserved more investigation in further research and may be
targeted to reduce amounts, thus improving prognosis. Notably,
the administration of cells to modulate the course of IRI has
attracted considerable interest in recent years (9). In particular,
mesenchymal stem cells and regulatory T cells have been reported
aspromising therapies to reduce renal IRI inanimalmodels (46, 47).
That is to say, those protective immune cells detected in this study
wouldbepossiblyusedas supplementations toalleviate renal IRI for
future exploration.

To deepen our understanding of the identified key RIRI
genes, we further employed two studies based on the mouse
RIRI model, which offers more dimensions of sampling. We
firstly validated expression levels of 10 prognostic genes to ensure
that similar changes could also be found in animal models.
Results illustrated consistent upregulated trends in both whole
kidney tissues and nephrons after bilateral renal pedicles clipped
for 28 min followed by 24-h reperfusion. Our data suggest a high
concordance between human and mouse IRI datasets, indicating
that multiple injury-invoked gene regulatory responses are
conserved across species, as previous studies reported (22).
Besides, genes like Rhob, which was found to be upregulated
only in the nephron, may perform functions as a response to IRI
in specific cell types, thus deserving further experiments. These
findings may contribute to filling up the vacancies of organ-wide
approaches which have not elucidated distinct cell-type
responses involved in the pathophysiology of RIRI. As for
time-course analysis, several genes including Btg2 and Rhob
remained more highly expressed than baseline for 12-month
post-IRI surgery, further indicating their long-term effects
on allografts.

Among prognostic genes identified in our research, it is worth
noting that Btg2 (B-cell translocation gene 2) and Rhob (Ras
homolog family member B) were hardly investigated in RIRI.
Frontiers in Immunology | www.frontiersin.org 10
Therefore, we verified the aberrant upregulated expression of
these two genes in our mouse RIRI model. Moreover, although a
higher expression of Btg2 and Rhob indicated poorer prognosis,
there was no difference in their expression levels between normal
and rejection groups. That is to say, the mechanisms underlying
the prognostic value of these two IRI-associated genes were not
related to rejection, which ruled out the impact of transplant-
related factors. It is also worth mentioning that Btg2 and Rhob
kept being more highly expressed after IRI in liver and lung
transplantations. These similar transcriptional alterations across
organs further indicated their promising potential in the field of
solid organ transplantation across organ types.

BTG2, a p53-inducible gene, exerts its antiproliferation effects
by regulating cell-cycle progression, apoptosis, and
differentiation (48). As for RHOB, belonging to the Ras
superfamily, it could stimulate multiple pathways that regulate
gene transcription and then control the growth and
differentiation of cells (49). In our research, GSEA indicated
that NF-kB signaling was the most significantly enriched
pathway of both Btg2 and Rhob. Previous studies reported that
the NF-kB signaling pathway was activated in RIRI, leading to
aggravation of tubular injury and exacerbation of inflammatory
response, while its inhibition improves renal function (50, 51).
Besides, Btg2 can be aberrantly stimulated by activation of NF-
kB signaling as a response to oxidative stress (52), and Rhob is
transiently upregulated by cell exposure to inflammatory
cytokines, which may be dependent on the NF-kB pathway
(53). Combined with our results, we infer that Btg2 and Rhob
function through the NF-kB signaling pathway during RIRI. In
addition, highly consistent results of GSEA and single-cell
analysis revealed that Btg2 and Rhob were widely expressed in
kidney tissues and especially most highly expressed in collecting
duct cells and proximal tubule cells, respectively. These results
lay the foundation for future experiments, guiding the specific
pathway and cell type. Overall, these novel prognostic genes may
function through NF-kB signaling in specific cell populations
during RIRI and were suitable for precisely targeted in future
therapeutic studies.

Our research successfully identified and validated 10 RIRI-
associated genes, which have significant prognostic impacts on
renal allograft survival. Cell type and time course analyses in the
mouse RIRI model additionally enhanced our understanding of
disease progression over space and time. Moreover, Btg2 and
Rhob were identified to be involved in the process of RIRI for the
first time and processed the potential to be applied to other solid
organs (as shown in the liver and lung). Our results not only set
the foundation for mechanisms investigation but also offered
novel and promising therapeutic targets for RIRI in
clinical practice.
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