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Introduction: The goal of this study was to investigate and compare the classification

performance of machine learning with behavioral data from standard neuropsychological

tests, a cognitive task, or both.

Methods: A neuropsychological battery and a simple 5-min cognitive task were

administered to eight individuals with mild cognitive impairment (MCI), eight individuals

with mild Alzheimer’s disease (AD), and 41 demographically match controls (CN). A fully

connected multilayer perceptron (MLP) network and four supervised traditional machine

learning algorithms were used.

Results: Traditional machine learning algorithms achieved similar classification

performances with neuropsychological or cognitive data. MLP outperformed traditional

algorithms with the cognitive data (either alone or together with neuropsychological data),

but not neuropsychological data. In particularly, MLP with a combination of summarized

scores from neuropsychological tests and the cognitive task achieved ∼90% sensitivity

and ∼90% specificity. Applying the models to an independent dataset, in which the

participants were demographically different from the ones in the main dataset, a high

specificity was maintained (100%), but the sensitivity was dropped to 66.67%.

Discussion: Deep learning with data from specific cognitive task(s) holds promise for

assisting in the early diagnosis of Alzheimer’s disease, but future work with a large and

diverse sample is necessary to validate and to improve this approach.

Keywords: Alzheimer’s disease, machine learning, artificial neural networks, inhibition of return,

neuropsychological test

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common cause
of dementia in older adults. Due to significant progress in basic and clinical research, putative
disease-modifying treatments for AD may be on the horizon - which may be most effective in
early disease stages. As a result, there is increasing impetus to develop techniques that have high
sensitivity and specificity to assist in the diagnosis of early AD (Fiandaca et al., 2014).

Machine learning—with the ability to extract features from high dimensional spaces—holds
strong promise in assisting disease diagnosis in both translational research and clinical practice
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(Weng et al., 2017; Dwyer et al., 2018), especially with recent
advances in deep learning techniques (Esteva et al., 2017). Over
the past decade, there has been increasing interest in developing
machine learning techniques to assist in the diagnosis of AD
and mild cognitive impairment (MCI) and to predict disease
progression. Most of these studies focus on brain imaging data
from magnetic resonance imaging (MRI) or positron emission
tomography (PET) scans (Pellegrini et al., 2018), or cerebrospinal
fluid (CSF) proteomics to assess CNS amyloid deposition (A),
pathologic tau accumulation (T), and neurodegeneration (N)
– the A/T/N criteria under the current NIA-AA research
framework (Jack et al., 2018). Compared to brain imaging
data, behavioral data are feasible and relatively inexpensive to
collect. Behavioral data from speech (Fraser et al., 2016; Nagumo
et al., 2020), body movement (Khan and Jacobs, 2020), and
neuropsychologic test scores (Lemos et al., 2012; Williams et al.,
2013; Kang et al., 2019; Lee et al., 2019a) may provide useful
features to machine learning classifiers for the diagnosis of MCI
and AD.

In addition to standard neuropsychological tests that are
widely used in both research and clinical environments, cognitive
tasks are usually highly specific and customized and are
often only used in research studies. Compared to standard
neuropsychological tests, cognitive tasks have certain advantages
and disadvantages: on the one hand, cognitive tasks are usually
limited by a lack of standardized data and/or validation with a
large population of participants; on the other hand, cognitive
tasks are often based on cutting-edge research hypothesis and
may be more sensitive in detecting very specific changes in
brain function due to brain disease such as AD (Perry and
Hodges, 1999) – which might eventually lead to the development
of improved and/or novel neuropsychological tests (or being
integrated with existing neuropsychological test battery) that can
be used in clinical practice after validation. Machine learning
studies have shown that data from certain cognitive tasks may
contain useful information to differential AD/MCI patients from
healthy controls (Wallert et al., 2018; Valladares-Rodriguez et al.,
2019; Hong et al., 2020). Therefore, it is of a high interest
to investigate whether a combination of neuropsychological
tests and cognitive task(s) may improve machine learning-
based classification accuracy in AD (Wallert et al., 2018; He
et al., 2019). In a previous study with traditional machine
learning models and multivariate feature selection techniques,
we investigated the classification performance with data from a
standard neuropsychological test battery, a 5-min cognitive task,
or both, to distinguish CN from MCI/AD patients (Almubark
et al., 2019). The cognitive task was designed to assess the effects
of spatial inhibition of return (IOR). Spatial IOR refers to the
phenomenon by which individuals are slower to respond to
stimuli appearing at a previously cued location compared to
un-cued locations when the stimuli onset asynchrony (SOA)
between the target and cue is long (∼300–500ms ormore) (Klein,
2000). First reported by Posner and Cohen (1984), spatial IOR
has been extensively studied, including in healthy older adults
(Hartley and Kieley, 1995), patients with various neurogenerative
disorders (Possin et al., 2009; Bayer et al., 2014), and non-
human subjects (Shariat Torbaghan et al., 2012). In addition

to the superior colliculus (Posner et al., 1985), cortical areas
such as the temporoparietal junction (TPJ) and the inferior
parietal cortex are important to maintain normal spatial IOR
function (Seidel Malkinson and Bartolomeo, 2018; Satel et al.,
2019). Both regions have been are implicated in AD progression
(Besson et al., 2015), suggesting that spatial IOR may be useful
to assist MCI and AD diagnosis. While early studies suggest that
spatial IOR is relatively preserved in AD (Amieva et al., 2004),
recently we (Jiang et al., 2020) and others (Tales et al., 2005,
2011; Bayer et al., 2014) have provided evidence that spatial IOR
impairment in MCI/AD, and spatial IOR impairment in MCI
patientsmay be predictive of conversion to dementia (Bayer et al.,
2014). Therefore, machine learning with spatial IOR data may
be useful in assisting diagnosis of MCI and AD. In addition,
spatial IOR have two appealing features: first, the task is simple
to understand and easy to implement, thus making it a feasible
tool with AD/MCI patients in a typical clinical setting; second,
spatial IOR is robust and resistant to practice effect (Pratt and
McAuliffe, 1999; Bao et al., 2011), thus making it an ideal tool in
longitudinal studies or clinical trials. However, in the previous
study, we found that the classification performance with IOR
data as well as the NP data had a low sensitivity and combining
IOR and neuropsychological data did not significantly improve
classification accuracy (Almubark et al., 2019), suggesting a need
for further research.

Deep learning has advantages over machine learning due to
its capacity of extracting useful features from highly complex
and non-linear datasets (Pedregosa et al., 2011; LeCun et al.,
2015), and is gaining popularity in AD research. For example, a
PubMed search revealed 8 relevant publications before 2017, 8 in
2017, 26 in 2018, and 65 in 2019. Convolutional-Neural Network
(CNN) is the most commonly used deep learning techniques
(Gautam and Sharma, 2020). The overwhelmingmajority of these
studies have been focusing on complex and high dimension brain
imaging data, especially PET and structural MRI (Jo et al., 2019;
Ebrahimighahnavieh et al., 2020; Gautam and Sharma, 2020;
Haq et al., 2020). Several recent studies have aimed to integrate
multimodal imaging to improve classification performance (Suk
et al., 2014; Lu et al., 2018; Huang et al., 2019; Punjabi et al.,
2019; Zhou et al., 2019). Deep learning can also help to identify
features that are important for disease progression or serve
as markers for clinical trials (Ithapu et al., 2015). In addition
to harvesting brain imaging data [especially the multimodality
imaging data from the public ADNI database (http://adni.loni.
usc.edu/)], deep learning has been applied to biospecimens (Lee
et al., 2019b; Lin et al., 2020), electronic health records (Landi
et al., 2020; Nori et al., 2020), speech (Lopez-de-Ipina et al., 2018),
neuropsychological data (Choi et al., 2018; Kang et al., 2019), and
a combination of MRI and neuropsychological data (Qiu et al.,
2018; Duc et al., 2020). By contrast, few studies have applied deep
learning to cognitive task data, which – by design – is supposed
to be more sensitive to detect early and mild neurocognitive
impairment (Locascio et al., 1995; Perry and Hodges, 1999).
Highly relevant to the present study, Rutkowski et al. applied
various traditional and deep learning models to behavioral data
collected from a facial emotion implicit short term memory
task (Rutkowski et al., 2020). In their study, Rutkowski et al.
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obtained an accuracy close to 90% in distinguishing MCI
from normal older adults with either deep learning or logistic
regression, supporting a potential of deep learning with cognitive
task to aid MCI/AD diagnosis. However, one limitation of
their study was that the MCI status was solely defined by the
Montreal Cognitive Assessment (MoCA) score rather than a
formal clinical evaluation, which is necessary to diagnose MCI
(Albert et al., 2011).

In the present study, we further investigated the classification
performance of MCI/AD vs. CN using behavioral data from
standard neuropsychological tests, a cognitive task (spatial IOR),
or both. Both MCI and AD patients were formally diagnosed
by clinicians with the consensus guidelines (Albert et al., 2011;
McKhann et al., 2011). A variety of machine learning algorithms
were tested: four traditional machine learning models and a feed-
forward artificial neural network (ANN) model, which has been
widely used in AD research (Jo et al., 2019).

MATERIALS AND METHODS

Machine learning was carried out using Python and related
libraries including Scikit-learn, Pandas, Numpy, TensorFlow, and
Keras (Pedregosa et al., 2011; Chollet, 2015). All experiments
were conducted in Google Colaboratory platform (Bisong, 2019).

Data
Participants
Twelve individuals with MCI, 16 individuals with mild AD, and
50 CN participated in the study between 2014 and 2015 (Table 1).
The MCI and AD patients were part of the Memory Disorders
Program cohort at Georgetown University Medical Center

(https://memory.georgetown.edu/). There was no biomarker
data from the majority of MCI subjects in this study. All MCI
and AD participants were clinically evaluated by clinicians in
the Memory Disorders Program with expertise and experience
with MCI and AD research. The diagnosis for MCI was based on
the clinical interview with the patients and their knowledgeable
partners (and also with neuropsychological data when available)
using the consensus criteria (Albert et al., 2011) – a Clinical
Dementia Rating (CSR) score of 0.5 (https://knightadrc.wustl.
edu/cdr/PDFs/CDR_Table.pdf). The AD diagnosis was based on
clinical and biomarker data (if available) following the consensus
guideline (McKhann et al., 2011). All healthy CN were recruited
from theWashington DCmetropolitan area. Prior to enrollment,
a signed informed consent form approved by the Georgetown
University Medical Center’s Institutional Review Board was
obtained from all participants and their legally authorized
representatives (if they had a diagnosis of MCI or mild AD).With
the entire study sample, the MCI/AD patients were significantly
older than the CN (p = 0.0001). As the difference in age could
potentially confound the classification results, we identified a
subset of demographically comparable subjects, which include 16
MCI/AD patients (8MCI and 8 AD) and 41 CN. The results from
the demographically comparable subset of subjects are included
in the main article, and the results from the entire study sample
are included in the Supplementary Materials.

Neuropsychological Data
The following neuropsychological data were collected from
all participants: Mini-Mental State Examination (MMSE);
Alzheimer’s Disease Assessment Scale – Cognitive subscale
(ADAS-Cog); F-A-S Letter Verbal Fluency (LVF) [or Controlled

TABLE 1 | The demographics and neuropsychological test scores of CN and MCI/mild AD participants.

Characteristics Entire study sample dataset Demographically comparable dataset

CN MCI/mild AD pb CN MCI/mild AD pb

N (F) 50 (32Fa) 28 (10Fa) n.s.c 41 (26Fa) 16 (6Fa) n.s.c

Age 65.9 ± 6.2 72.7 ± 7.4 0.0001 67.4 ± 5.3 69.9 ± 5.3 n.s.

Education (years) 18.1 ± 3.9 18.2 ± 3.9 n.s.c 18.4 ± 3.4 19.0 ± 4.5 n.s.

%CA 82.0% 89.3% n.s.c 78.1% 81.3% n.s.c

MMSE 29.4 ± 1.0 25.8 ± 4.5 5.3E-06 29.3 ± 1.0 27.3 ± 2.3 3.0E-05

MoCAd 25.3 ± 1.8 21.0 ± 4.4 9.7E-05 25.2 ± 1.8 21.4 ± 4.4 0.0035

LM immediate 12.4 ± 3.6 6.6 ± 3.8 4.6E-09 12.0 ± 3.5 7.8 ± 4.2 2.9E-03

LM delayed 9.8 ± 4.3 4.1 ± 3.9 1.2E-07 9.5 ± 4.2 5.4 ± 4.3 0.0019

ADAS-cog 5.9 ± 3.4 18.7 ± 9.7 1.6E-12 6.3 ± 3.4 15.7 ± 7.7 3.1E-08

NPIe 2.0 ± 4.5 7.6 ± 8.8 0.0005 2.3 ± 4.9 5.1 ± 5.6 n.s.

LADLe 76.4 ± 2.8 67.4 ± 11.9 3.3E-6 76.3 ± 3.0 71.1 ± 8.5 0.0013

LVF 46.8 ± 12.9 37.5 ± 15.5 0.0058 48.2 ± 13.1 39.6 ± 14.0 0.035

CA, Caucasian-Americans; MMSE, Mini-Mental State Exam; MoCA, Montreal Cognitive Assessment; LM, Logical Memory Test; ADAS-Cog, Alzheimer’s Disease Assessment

Scale-Cognitive subscale; NPI, Neuropsychiatric Inventory; LADL, Lawton Instrumental Activities of Daily Living Scale; LVF, Letter Verbal Fluency (Controlled Oral Word Association

Test, COWAT).
afemale; buncorrected p-values for the difference between CN and MCI/mild AD with two-tailed two-sample t-tests (unless otherwise specified); cFisher’s Exact Test; dMoCA were

only administered to a subset of participants, including 22 CN and 22 MCI/mild AD patients form the original dataset and 17 CN and 11 MCI/mild AD patients from the demographics

matched dataset, and MoCA test scores were not used in classification. eNPI and LADL data was missing from one control and one MCI/mild AD patient.

The performance with the optimal hyper-parameter tuning for each dataset is shown in bold and italics font (optimal values for class weight and threshold).

Frontiers in Aging Neuroscience | www.frontiersin.org 3 December 2020 | Volume 12 | Article 603179

https://memory.georgetown.edu/
https://knightadrc.wustl.edu/cdr/PDFs/CDR_Table.pdf
https://knightadrc.wustl.edu/cdr/PDFs/CDR_Table.pdf
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Almubark et al. Early Alzheimer’s Disease Detection

OralWord Association Test (COWAT)]; LogicalMemory subtest
of the Wechsler Memory Scale (WMS) – fourth edition (WMS-
IV). In addition, data with the Lawton Instrumental Activities
of Daily Living Scale (LADL) and Neuropsychiatric Inventory
(NPI) were collected and included in this study, as behavioral
disturbance and loss of daily functioning are common in AD
patients and can be assessed by these two tests (Cipriani et al.,
2020; Cummings, 2020).

Cognitive Task [Spatial Inhibition of Return (IOR)]
Experimental details can be found elsewhere (Jiang et al., 2020)
and in Figure 1. Each trial lasted 2.5 s, and there were 130 trials
in total (325 s).

Experimental Design for Classification
The data described in the previous section was arranged into
five datasets: Dataset 1 (NP), the scores of nine standard
neuropsychological tests (including general cognitive
assessments, learning and memory, language, and activities
of daily living); Dataset 2 (IORtrial), the responses and reaction
time of each trial from the 5.5-min spatial attention IOR task
(for a trial without response, the values were set to 0 for response
and 10,000 for reaction time); Dataset 3 (IORcond), the overall
accuracy of all trials (with non-responding trials included or
excluded), the accuracy (with non-responding trials included

or excluded), and the mean reaction time (correct trials only)
of five experimental conditions (Figure 1); Dataset 4 (NP +
IORtrial), a combination of Datasets 1 (NP) and 2 (IORtrial);
Dataset 5 (NP + IORcond), a combination of Datasets 1 (NP)
and 3 (IORcond). There were a total of 9 features in NP Dataset
(7 neuropsychological tests, 3 scores for LVF test (the number of
words generated from the three letters, F, A, and S, within 60 s
for each letter, respectively, i.e., F: fruit, fog, fun, figure, etc.), 260
features for IORtrial Dataset (responses and reaction time of 130
trials), 17 features for IORcond Dataset (accuracy and reaction
time of experimental conditions, Figure 1), 269 features for NP
+ IORtrial Dataset, and 26 features for NP+ IORcond Dataset.

Data Pre-processing
There were 4 missing values in Dataset 1 (NP) (see Table 1), 0
missing value in Dataset 2 (IORtrial), 0 missing value in Dataset
3 (IORcond), 4 missing values in Dataset 4 (NP + IORtrial), and
4 missing values in Dataset 5 (NP + IORcond). Missing values
in data were handled first by using the multivariate imputation
methods available in the fancyimpute library (Rubinsteyn, 2020).
Four different missing value imputation techniques were tested:
(1) Mean imputation fills a missing value with the mean value
of the respective feature from the same group. (2) Nearest
neighbor imputations weights samples using the mean squared
difference on features for which observed data is contained

FIGURE 1 | The cognitive task [spatial inhibition of return (IOR)] experiment paradigm. Within each trial, there were three sequentially presented visual stimuli—two

cues (solid red square) and one target (solid green square)—with a blank screen in between. The three stimuli were presented serially. The two cue stimuli could

appear in any of the three locations (left, middle, right), whereas the target stimuli could only appear in one of the two locations (left or right, but not the middle).

Subjects were instructed to respond to the target (solid green square) by pressing one of two buttons in the right hand to indicate whether the target was presented at

the left or right location (with the index finger or the middle finger). The two cues were presented 200ms each, with a 250ms break in between. The second cue was

followed by another 250ms break before the onset of the target, which was presented for 850ms. The next trial started 750ms after the offset of the target stimulus.

Subjects had to respond within the 1.6 s time-window (before the onset of next trial). There were five conditions based on the relationship of the locations in which the

three stimuli were presented: aaa, in which the two cues and the target were presented at the same location; abb, in which the second cue and the target were

presented at the same location, and the first cue was presented at a different location; aba, in which the first cue and the target were presented at the same location,

and the second cue was presented at a different location; aab, in which the two cues were presented at the same location, and the target was presented at a different

location; abc, in which the two cues and the target were presented at three different locations. The behavioral data from the study team can be found elsewhere

(Jiang et al.), which includes detailed data from each individual subject that can be downloaded by other teams to test with their approaches. Note: ms, millisecond.
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in both rows. (3) Softimpute, fast and effective for datasets
with high dimensionality, completes matrices through iterative
soft thresholding of SVD decompositions (Mazumder et al.,
2010). (4) Nuclear norm minimization adopts the cvxpy library
(Diamond and Boyd, 2016) to provide a simple implementation
of Exact Matrix Completion via Convex Optimization (Candès
and Recht, 2009). Analyses were carried out using each of the
four imputation methods, and nuclear norm minimization was
chosen as it consistently provided superior results across all
classification algorithms.

Imbalanced classes are common but may result in biased
classifiers with poor accuracy on the minority class. To control
for class imbalance in the present study (41 CN vs. 16
MCI/AD), an over-sampling technique called Synthetic Minority
Over-sampling Technique (SMOTE) (Chawla et al., 2002) was
used. Through over-sampling the minority class, the SMOTE
technique has shown to improve classification accuracy of
imbalanced datasets.

Feature scaling was also performed on both
neuropsychological tests and cognitive task datasets. We
used the standard scalar, which transforms the data to have
the mean of zero with a standard deviation of one. Before the
training, a grid search was conducted to obtain an optimal
set of hyper-parameters for each algorithm. The grid search
works by exhaustive searching through a specified subset of
hyper-parameters, and find the best combination of parameters
for each algorithm (Bergstra and Bengio, 2012).

Traditional Machine Learning Algorithms
Algorithms
There are many supervised machine leaning algorithms for
classification problems. Based on the size, quality, and nature
of our data, four machine learning algorithms were investigated;
Support Vector Machine (SVM), Random Forest (RF), Gradient
Boosting (GB), and AdaBoost (AB) classifiers.

Support Vector Machines (SVM) are supervised machine
learning algorithms that analyze data used for classification,
regression and outlier detection (Cristianini and Shawe-Taylor,
2000). Linear SVM seeks a hyperplane that best separates two
classes. SVM trains data to find multiple support vectors, which
define the hyperplane. The prediction only relies on the support
vectors. In addition to linear classification, SVM can use kernels
to perform a non-linear classification by mapping their inputs
into higher dimensional feature spaces.

Random Forest (RF) algorithm is an ensemble classifier
consisting of many decision tree classifiers. Output is determined
by the majority vote among all the decision trees for each
sample (Breiman, 2001). The RF algorithm combines bootstrap
aggregation (bagging) (Breiman, 1996) and random feature
(Amit and Geman, 1997) to construct a collection of decision
trees exhibiting controlled variation. Because the classification is
not based on one tree alone, RF is thought to be more robust than
a single decision tree classifier in performance.

Gradient Boosting (GB) is a machine learning technique for
classification and regression problems that produces a prediction
model in the form of an ensemble of weak prediction models,
typically decision trees (Mayr et al., 2014). It trains many

models sequentially. Each new model gradually minimizes the
loss function of the whole system using gradient descent. The
learning procedure consecutively fits new models to provide a
more accurate estimate of the response variable. We selected
decision trees with tunable hyper-parameter as base learners for
our GB classifier. The GB is used to construct new base learners
with maximum correlation with negative gradient of the loss
function, associated with the whole ensemble.

AdaBoost (AB) is a meta-learning algorithm used to build a
weak classifier iteratively on others according to the performance
of the previous weak classifiers (Feng et al., 2005). The AB
algorithm can be used for both classification and regression
problems. The AB fits a sequence of weak learners on differently
weighted training data. The process begins with prediction of
the original data set and gives equal weight to each observation.
If prediction is incorrect using the first learner, a higher weight
is given to observation. Continuing its iterative process, the AB
adds learners until a limit is reached in the number of models
or accuracy. We used decision stumps (1-layer decision trees) as
base learners for our AB classifier, however any machine learning
algorithm can be used as base learner if it accepts weight on
training data set.

Each of the dataset described in the previous section was
used to train each machine learning algorithm using stratified
K-Fold cross validation (CV) [see next section Cross Validation
(CV)]. Grid search was conducted to determine an optimal set
of hyper-parameters using the training data only. Here is the list
of hyper-parameters we tuned for each of the four traditional
machine learning algorithms. SVM: C (1e-3, 1e-2, 0.1, 1, 10),
kernel (linear, rbf, poly), and gamma (1e-3, 1e-2, 0.1, 1, 10); RF:
n_estimators (10, 20, 30, 50, 80, 100), max_depth:np.arange (1,
6, 8), min_samples_split (2, 3, 4, 5), min_samples_leaf (1, 2, 3),
and max_features (0.5, log2, auto, 1.0); GB: n_estimators (20,
50, 80, 100), learning_rate (0.01, 0.1, 1.), max_depth:np.arange
(1, 4), min_samples_split (2, 3, 4), min_samples_leaf (1, 2),
and max_features (0.5, log2, auto, 1.0); AB: n_estimators
(20, 50, 80, 100), and learning_rate (0.01, 0.1, 1.). For the
definition of each parameter, the readers can refer to Scikit-learn
(Pedregosa et al., 2011).

Feature Extraction and Selection
While machine learning algorithms can be developed to deal with
a large number of features, such classifiers tend to have lower
discriminative power and lower generalization capabilities. Both
principal component analysis (PCA) (García-Gil et al., 2018) and
feature selection (Li et al., 2017) were used to reduce the number
of features in the dataset. In this study, we tested a few feature
selection methods including the SelectKBest (SKB) module from
Scikit-learn with f_classif as the metric (Pedregosa et al., 2011),
Sequential Forward Selection (SFS), and Sequential Backward
Selection (SBS).

Cross Validation (CV)
Cross validation (CV) with stratified K-Fold was used to evaluate
the predictive models. For the stratified K-Fold CV, data was
divided into 5 disjoint subsets with consistent ratios between
patient and control in each fold. Eighty percent (80%) of the data
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was used in training and 20% of the data was used for testing
in each fold. Note that SMOTE over-sampling, PCA, feature
selection, and hyper-parameter grid search were all performed
in each fold on the training data only. Leave-one-out CV with
default parameters from each algorithms (without grid search)
produced similar results (data not shown).

Artificial Neural Networks (ANNs)
A perceptron is a mathematical model of a biological neuron,
which is the basic computing unit for artificial neural networks
(ANNs). An ANN in its simplest form has only three layers: an
input layer, an output layer, and a hidden layer. Deep learning is
an ANN with multiple hidden layers. A perceptron can take in a
few inputs, each of which has a weight to signify how important
it is, and generate an output. A deep learning system can self-
teach to learn from data by filtering information throughmultiple
hidden layers which mimicking the human brain in several ways.
Deep learning networks have been developed to solve many
real-world complex problems (LeCun et al., 2015).

A multilayer perceptron (MLP) is a class of feedforward ANN
which often applied to supervised learning problems and uses
back-propagation to adjust the weights for training. MLP is
commonly used in situations where no analytical solution exists.
MLP is very popular in pattern recognition systems and for
interpolation and processing massive digital images. It has been
used for AD detection with structural MRI images and other
medical images from various types of imaging modalities (Santos
et al., 2008; Joshi et al., 2010; Tufail et al., 2012).

In MLP, learning involves updating parameters including
weights and biases. Training can be broken into three main
steps: forward-propagation, error/loss calculation, and back-
propagation. In the forward-propagation, we take an input x and
multiply it with a weight w and add bias b as in equation (1):

y =

n
∑

i=1

xiwi + b (1)

Where n denotes the input count, x denotes the vector of inputs,
w denotes weights, and b denotes the bias. Then, the activation
function is applied on the output result y. The target output
(label) is known, and therefore can be compared against the
predicted output to compute the loss. A common choice for a loss
function in a binary classification task is a binary cross-entropy
that can be represented as:

Loss = − y log
(

p
)

+
(

1− y
)

log
(

1− p
)

(2)

where y denotes the actual value and p denotes the predicted
probability. Lastly, after calculating the loss, we back-propagate
the loss and update the weights by using an optimizer that
seeks to minimize the loss function. Weight update is performed
according to the formula:

w← w− η
∂E

∂w
(3)

wherew is the weight,η is the learning rate, and ∂E
∂w represents the

partial derivatives of the error function E. The partial derivative

of the error function with respect to the weight can be calculated
using the chain rule as follows:

∂E

∂w
=

∂E

∂yi
.
∂yi

∂xi
.
∂xi

∂w
(4)

where yi is the i-th neuron in the output layer and xi is the
i-th neuron in the input layer. Depending on the utilized loss
function, the process may also involve calculating the partial
derivatives at each node, adding them to the chain rule, and
calculating the product of partial derivatives at each node to
obtain the value of ∂E

∂w . In implementation, a training is stopped
once a convergence criteria is reached. This means a minima is
reached (though this may be a local minima rather than a global
minimum). A training may also be stopped after a number of
epochs, or a number of passes over the training data.

In this study, we developed a fully connectedMLP network for
AD classification using data from neuropsychological tests and
a simple 5.5-min cognitive task. We used Rectified Linear Unit
(ReLU) as the activation function for the input and hidden layers.
The function can be written as:

f (x) = max (0, x) (5)

We used the sigmoid function as the activation function for the
output layer to obtain output between 0 and 1 for prediction of
probabilities. The function can be written as:

f (x) =
1

1+ e−x
(6)

Adaptive moment estimation (Adam) (Kingma and Ba, 2015),
an adaptive learning rate optimization algorithm designed
specifically for training deep neural networks, was used as an
optimizer. Binary cross entropy tunable with class weights was
used as the loss function, in order to penalize more on the
Type II errors. Due to the limited number of samples, our
optimization was performed in a stochastic fashion to get the
best performance: the batch size was set to 1 and the samples
were shuffled before each epoch began. The maximum number
of iterations was set to 250. Both the L1 and L2 regularization
were added to each layer to constrain overfitting. Early stopping
and learning rate shrinkage (with a minimum learning rate of
5 × 10−4) were performed on monitoring the validation loss
function. We performed hyper-parameter tuning with different
class weight ratios and probability threshold to improve the
sensitivity of the proposed model. A 5-folds CV was constructed
by using 20% as the testing set; the rest 80% split into the training
and validation sets. The hyper-parameter tuning was performed
on the training dataset using the sensitivity on the validation
set as the metric. Similar results can be obtained by using the
SMOTE over-sampling with more balanced class weights and
probability thresholds.

Performance Evaluation
Three performance measurements were used to evaluate the
performance of each model: sensitivity, specificity, and accuracy
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(equations 7, 8, and 9, respectively).

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where: TP, True Positives; TN, True Negatives; FN, False
Negatives; FP, False Positives. Based on the predicted
probabilities of each subject, we also plotted the Receiver
Operating Characteristic (ROC) curve and calculated the
corresponding Area Under the Curve (AUC).

RESULTS

Traditional Machine Learning Algorithms
Supplementary Table 1 summarizes the classification
performance for four machine learning algorithms in terms
of sensitivity, specificity, and accuracy using each dataset (NP,
IORtrial, IORcond, NP + IORtrial, and NP + IORcond) and a
5-folds CV. The result from using either all features in each
dataset or PCA with 90% of total variation were compared.
Supplementary Table 2 is similar to Supplementary Table 1

but, in addition, applying SMOTE over-sampling technique to
each dataset before training.

Supplementary Table 3 shows the best model performance
for each machine learning algorithm with a feature selection
technique (SKB or SFS or SBS). The numbers of features used
in each algorithm were also reported which were selected based
on the highest sensitivities in each model.

Figure 2 shows the ROC curves for the best classifiers for each
dataset in which the best traditional machine learning algorithm
without SMOTE and with SMOTE were plotted in Figures 2A,B,
respectively. Note that the best classifier selected for each dataset
can be obtained from Supplementary Tables 1-3.

The classification performance is comparable between
the five datasets across algorithms and techniques
(Supplementary Table 4). Combining neuropsychological
and cognitive data together (NP + IORtrial, and NP + IORcond)
slightly improved classification accuracy over NP only, but the
difference was not significant (Supplementary Tables 1-4).

Multilayer Perceptron (MLP)
The MLP classification performance with each dataset is
shown in Table 2. The mean classification accuracy using the
conventional choice of the class weight (1:1) and threshold (0.5)
is shown, along with the model performance with an optimal
setting for each dataset (shown in bold font). Each optimal
setting was determined by tuning class weight and binarizing

TABLE 2 | Multilayer perceptron (MLP) classification performance using the

demographically comparable dataset.

Datasets Probability

threshold

Class weight SEN% SPE% ACC ± std%

NP 0.5 1:1 62.50 87.8 80.7 ± 7.76

0.4 1:1.17 75.00 87.8 84.21 ± 4.91

IORtrial 0.5 1:1 75.00 95.12 89.47 ± 6.17

0.5 1:1.5 81.25 95.12 91.23 ± 4.28

IORcond 0.5 1:1 68.75 97.56 89.47 ± 3.12

0.4 1:1.5 81.25 90.24 87.72 ± 3.12

NP + IORtrial 0.5 1:1 75.00 95.12 89.47 ± 7.5

0.5 1:1.1 87.50 95.12 92.98 ± 4.28

NP + IORcond 0.5 1:1 87.50 97.56 94.74 ± 6.75

0.5 1:1.5 93.75 92.68 92.98 ± 6.33

The sensitivity (SEN), specificity (SPE), accuracy (ACC), and standard deviation of the

accuracy (std) for each dataset were calculated from 5-fold CV using the default setting

for class weight (1:1) and threshold (0.5). The performance with the optimal hyper-

parameter tuning for each dataset is shown in bold font (optimal values for class weight

and threshold). IOR, inhibition of return; IORtrial , the reaction time and responses of each

trial; IORcond , themean accuracy of all trials, mean accuracy of responded trials, andmean

reaction time of each condition (Figure 1); NP, neuropsychological test scores (Table 1).

FIGURE 2 | The ROC curves for the best classifiers selected by the highest sensitivity for each dataset with traditional machine learning algorithms and with MLP. See

Table 2, Supplementary Tables 1-3 for the specific algorithms and parameters used for these “best” classifiers (shown in bold and italics font). (A) Traditional

machine learning algorithms with all features and PCA (without and with SMOTE over-sampling). (B) Traditional machine learning algorithms with features selection

(without and with SMOTE over-sampling). (C) The ROC curves for each dataset with MLP using the demographically comparable dataset. The AUC score is shown in

the legend box.
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threshold in neural network to improve the sensitivity while
maintaining accuracy. The comparative ROC curves for each
dataset in Table 2 are plotted in Figure 2C.

The MLP classification performance with the 5-min cognitive
task (IOR) data is noteworthy, especially with the NP +
IORcond dataset (a combination of summarized scores from
neuropsychological tests and the IOR task), which resulted in a
high performance, suggesting that deep learning with behavioral
data from certain cognitive task(s) (such as spatial IOR task tested
here) may be useful to assist early AD detection/diagnosis.

The MLP classification performance using the entire study
sample dataset is shown in Supplementary Table 5. A direct
comparison between the best traditional machine learning and
deep learning methods is concluded in Table 3 (a summary of
Table 2, Supplementary Tables 1-3).

In addition, using the scores from the ADAS-Cog test – one
of most commonly used neuropsychological tests in MCI/AD
research and clinical trials (as a primary cognitive outcome), the
specificity and sensitivity to distinguish MCI/AD patients from
controls were 95.1 and 56.3%with a cut-off score of 12 (Chu et al.,
2000), respectively, or 78.1 and 66.8% if a cut-off score of 10 was
used (Nogueira et al., 2018).

DISCUSSION

Using traditional machine learning algorithms, the classification
based on the 5-min cognitive task (IOR) achieved a performance
comparable to the classification based on a neuropsychological
test battery (which takes ∼75–85min to administer), and the
classification performance was slightly improved when both
sets of data (IOR and neuropsychological tests) were used.
Deep learning (MLP) outperformed traditional machine learning
algorithms with IOR data (either alone or together with
neuropsychological data), in particularly, a high performance
(∼90% sensitivity and ∼90% specificity) was obtained when
MLP was applied to a combination of summarized scores from
neuropsychological tests and the 5-min IOR task.

Using standard neuropsychological data (NP Dataset), the
classification performance is comparable to other previous

TABLE 3 | A direct comparison between the best traditional machine learning and

deep learning methods (a summary of Table 2, Supplementary Tables 1-3).

Datasets Method SEN% SPE% ACC ± std%

NP RF 87.5 70.73 75.61 ± 5.76

MLP 75.00 87.8 84.21 ± 4.91

IORtrial AB 62.5 78.05 73.48 ± 9.75

MLP 81.25 95.12 91.23 ± 4.28

IORcond RF 75 80.49 78.79 ± 9.25

MLP 81.25 90.24 87.72 ± 3.12

NP + IORtrial GB 81.25 92.68 89.55 ± 3.12

MLP 87.50 95.12 92.98 ± 4.28

NP + IORcond SVM 87.5 82.93 84.09 ± 3.91

MLP 93.75 92.68 92.98 ± 6.33

studies with traditional machine learning algorithms and
standard neuropsychological data (Lemos et al., 2012; Williams
et al., 2013; Grassi et al., 2019; Lee et al., 2019a). Similar
performance was also obtained using the summarized
performance data of each condition from the 5-min spatial
IOR cognitive task (IORcond Dataset), suggesting that
cognitive tasks such as spatial IOR might provide useful
information to assist MCI/AD diagnosis. However, when
the raw IOR data (i.e., response and reaction time of each
individual trial) (IORtrial Dataset) was used, traditional
machine learning algorithms struggled with low sensitivities,
suggesting that traditional machine learning algorithms might
not be the best tool to extract “diagnostic” information from
individual trials of a cognitive task—likely due to a high
variance in responses to individual trials—and traditional
machine learning algorithms might benefit greatly from
“guided” feature reductions [i.e., by averaging responses
from multiple trials of the same experimental condition (e.g.,
IORcond Dataset)].

Deep learning is gaining popularity in medical application,
including AD. In the present study, deep learning (MLP)
performed comparably to the four traditional machine learning
algorithms when the standard neuropsychological data was
used. Moreover, MLP with either of the two IOR datasets
(IORtrial or IORcond) consistently outperformed traditional
machine learning algorithms with either IOR dataset as well as
deep learning with standard neuropsychological data, suggesting
that: (i) cognitive tasks such as spatial IOR could produce
rich information useful for MCI/AD diagnosis; and (ii) the
rich but complex and non-linear information can be reliably
extracted/captured by the deep learning algorithms (but might
be difficult for traditional machine learning algorithms). It
is noteworthy to point out that spatial IOR effects are
robust and resistant to practice (Müller and von Mühlenen,
1996; Pratt and McAuliffe, 1999), making it an ideal tool in
evaluating disease progression in longitudinal studies and effects
of novel interventional treatments; and the spatial IOR task
is simple and easy to understand, making it an ideal task
in implement in clinical practice and research. Furthermore,
combining IOR data and standard neuropsychological data
further improved classification performance of MLP, with a
sensitivity around 90% and a specificity above 90%, which—
if independently verified in larger cohorts—has potential
clinical implication.

The present study has several limitations. First, the sample
size is small and there are much fewer MCI/AD patients than
CN, which might contribute to the low sensitivity as well as
the unsatisfying performance with traditional machine learning
algorithms. To control for the imbalanced classes in deep
learning analysis, we examined the performance with higher
class weights for AD samples as well as lower probability
thresholds that favor the MCI/AD class to improve sensitivity.
The standard deviations from the 5-folds CV are low, showing
a low possibility of overfitting of our artificial neural network.
This is a result of using appropriate regularization and other
previously described methods. Second, due to the small sample
size, MCI and AD patients were combined together; this is
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suboptimal due to known differences between MCI and AD
as well as the clinical significance of distinguishing between
MCI and AD. Third, deep learning performs better with large
training data sets, thus the classification performance of deep
learning with the NP + IORcond (or NP + IORtrial) must be
verified and validated by independent and larger studies. We
ran an exploratory analysis using the data from the 21 excluded
subjects (12 MCI/AD and 9 CN). That is, during each fold in
MLP, the classifiers were also applied to the excluded subjects.
There was a hit in classification performance. For instance,
for NP + IORcond Dataset, the specificity remained high at
100%, but the sensitivity, however, was dropped to 66.67%.
This is interesting as the excluded MCI/AD patients were either
too old (>80 y.o.) or at more advanced stage of disease (i.e.,
failure to perform the simple IOR task due to time constraints).
Indeed, a close inspection revealed that the low sensitivity was
driven by four MCI/AD patients (AD, n = 2; MCI, n = 2),
who were consistently misclassified as CN. All of them were
older than 80 y.o. and performed high on the spatial IOR
cognitive task, or the neuropsychological tests (except memory,
for which three of them performed poorly), or both, suggesting
that behavioral markers/features in the sixteen MCI/AD patients
included in the main analysis (only three of them were older
than 74 y.o.) might be different from the markers in the four
relatively high performance older MCI/AD patients (Koedam
et al., 2010; Ye et al., 2012). That is, visuospatial attention
as measured by spatial IOR is more likely being affected in
relatively young MCI/AD patients, whereas memory is more
likely affected in MCI/AD patients who are at more advanced
stage of age (Koedam et al., 2010; Ye et al., 2012). This is
confirmed by a high classification performance when the training
sample included some of the oldest MCI/AD patients (>80 y.o.)
(Supplementary Table 5). In addition, we tested our methods to
a large and independent dataset from ADNI (http://adni.loni.
usc.edu/) and obtained encouraging classification performance
using neuropsychological data (Almubark et al., 2020). However,
spatial IOR data is not available in the ADNI database, thus
the prediction power of double-cue spatial IOR task needs to be
validated in future studies with a diverse and large sample.

In summary, most previous machine learning studies have
focused on brain imaging data. With the readily availability
and lower cost of behavioral data, here we investigated the
classification performance of MCI/AD vs. CN using traditional
machine learning algorithms and deep learning with behavioral
data (from standard neuropsychological tests, a specific cognitive
task, or both). Deep learning with a combination of standard
neuropsychological data and cognitive task (IOR) produced a
classification performance with ∼90% sensitivity and ∼90%
specificity, which may be clinically meaningful and supports
the collection of simple cognitive task(s) data in future clinical
studies. However, due to the small sample size in this study,
the conclusion should be taken with caution, and future
studies with larger samples are needed to verify, validate,
and improve upon the techniques presented in the study,
i.e., to exploit public database from the large cohorts in

which both standard neuropsychological tests and cognitive
task(s) were administered, or to develop a mobile app to
collect spatial IOR data from a large and diverse sample
of participants.
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