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Abstract: We previously reported that radioimmunotherapy (RIT) using 90Y-labeled anti-ROBO1 IgG
(90Y-B5209B) achieved significant anti-tumor effects against small-cell lung cancer (SCLC) xenografts.
However, subsequent tumor regrowth suggested the necessity for more effective therapy. Here, we
evaluated the efficacy of combination 90Y-B5209B and cisplatin therapy in NCI-H69 SCLC xenograft
mice. Mice were divided into four therapeutic groups: saline, cisplatin only, RIT only, or combination
therapy. Either saline or cisplatin was administered by injection one day prior to the administration
of either saline or 90Y-B5209B. Tumor volume, body weight, and blood cell counts were monitored.
The pathological analysis was performed on day seven post injection of 90Y-B5209B. The survival
duration of the combination therapy group was significantly longer than that of the group treated
with RIT alone. No significant survival benefit was observed following the isolated administration
of cisplatin (relative to saline). Pathological changes following combination therapy were more
significant than those following the isolated administration of RIT. Although combination therapy
was associated with an increase of several adverse effects such as weight loss and pancytopenia,
these were transient. Thus, cisplatin pre-treatment can potentially enhance the efficacy of 90Y-B5209B,
making it a promising therapeutic strategy for SCLC.
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1. Introduction

Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer-related
deaths worldwide, with small-cell lung cancer (SCLC) accounting for 15% of all lung cancer cases [1,2].
A two-stage classification scheme, such as limited-stage and extensive-stage disease, is routinely
used for SCLC clinical staging [3]. Unfortunately, 60–70% of SCLC patients exhibit hematogenous
metastases at initial diagnosis [3,4]. Although SCLC is highly sensitive to initial chemotherapy and
radiotherapy (methods commonly used to treat SCLC) [5], overall SCLC patient prognosis remains
poor. The 2-year survival rate of the limited-stage disease patients is only 20–40%, whereas that
of the extensive-stage disease (typically treated with chemotherapy alone) drops precipitously to
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5% [3]. Therefore, the development of a combination chemotherapy-radiotherapy regimen applicable
to extensive-stage disease is imperative.

Radioimmunotherapy (RIT) is a type of internal radiation therapy applicable to extensive-stage
SCLC, as RIT agents can deliver cytotoxic radionuclide to cancer cells, including metastatic cancer cells
throughout the patient’s body [6,7]. We previously reported a ROBO1-targeted RIT preclinical study in
murine SCLC models [8]. The human ROBO1 gene is a homolog of the Drosophila Roundabout gene
and acts as a cell-surface receptor for slit2 [9,10]. Such slit2–ROBO1 interactions mediate repulsive
cues in axons and growth cones during neural development [9,10]. In cancer, ROBO1 contributes
to both metastasis and angiogenesis [11–13]. Moreover, it is frequently expressed in hepatocellular
carcinoma and small-cell lung cancer [14,15]. We previously developed an RIT agent—90Y-labeled
anti-ROBO1 IgG B5209B (90Y-B5209B)—and conducted studies in ROBO1-positive SCLC xenograft
mice [8]. Although 90Y-B5209B induced anti-tumor effects (e.g., tumor cell death and shrinkage), tumor
regrowth after day 21 post injection highlighted the need to improve the efficacy of therapy to achieve
complete remission [8].

Cisplatin is a chemotherapeutic drug used to treat lung cancer, including SCLC [5,16].
A combination of radiotherapy and platinum-based chemotherapy is generally used for SCLC
treatment, although this approach is restricted to limited-stage disease since external-beam radiation
therapy is unsuitable for extensive-stage disease [5]. Unlike external-beam radiation therapy, RIT
can target metastatic foci, and therefore has the potential for combination with chemotherapy in the
treatment of extensive-stage SCLC. In addition, cisplatin is also a radiosensitizer [17,18] with the
potential to enhance the anti-tumor effect of 90Y-B5209B.

The present study evaluated the impact of a combination of cisplatin pre-treatment and
90Y-B5209B-based RIT in a murine SCLC xenograft model. Specifically, the survival benefit,
histopathologic tumor response, and adverse effects were investigated.

2. Results

2.1. In Vivo Therapeutic Study

The results are illustrated in Figure 1. All intervals are reported as days following treatment.
Regarding tumor volume (Figure 1a), baseline measurements were as follows: 223.8 ± 104.0 mm3

(control group, i.e., receiving only saline), 222.6 ± 102.8 mm3 (cisplatin-only group), 240.0 ± 110.4 mm3

(RIT-only group), and 221.5 ± 140.1 mm3 (combination therapy group). All mice in the control group
exhibited tumor enlargement, whereas the other groups exhibited tumor regression to 87.9 ± 20.7%
(cisplatin-only; transient effect lasting nine days), 12.1 ± 6.2% (90Y-B5209B-based RIT-only), and
8.0 ± 8.4% (combination therapy). Thus, tumor volume decreased to a progressively greater extent and
for a longer duration with increasing treatment aggressiveness. The median survival time (MST) in the
control group was 27 days, whereas the other groups exhibited MSTs of 30 days (cisplatin-only), 51 days
(RIT-only), and 65 days (combination therapy) (Figure 1b). Thus, survival improved progressively with
increasing treatment aggressiveness. The difference in MST between the control and cisplatin-only
groups was not significant, whereas combination therapy significantly extended MST relative to
each of the other groups (p < 0.01). A single mouse in the combination therapy group survived 90
days (the endpoint of the observation period). Regarding body weight (Figure 1c), the control group
exhibited no significant weight loss, whereas the other groups exhibited a transient weight loss to
91.5 ± 2.7% (cisplatin-only), 90.4 ± 8.8% (RIT-only), and 86.4 ± 4.0% (combination therapy). Thus,
weight loss increased progressively with increasing treatment aggressiveness. The difference in weight
loss between groups receiving only cisplatin versus combination therapy was significant only on days
seven and ten. The difference in weight loss between groups receiving only RIT versus combination
therapy was non-significant at all time-points.
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Figure 1. Therapeutic impact and adverse effects observed in distinct treatment groups. (a) Change 
in tumor volume of the control group; (b) Kaplan–Meier survival curves; (c) Change in body weight. 
Black represents the control group, green represents the cisplatin-only group, blue represents the 
radioimmunotherapy (RIT)-only group, and red represents the combination therapy group. * p < 0.05 
(vs. control group), ** p < 0.01 (vs. control group). 

Peripheral blood counts—including white blood cell (WBC) count, red blood cell (RBC) count, 
and platelet (PLT) count—were performed daily for 28 days following treatment (Figure 2). Neither 
the control nor the cisplatin-only groups exhibited a significant decrease in peripheral blood counts. 
No significant differences in peripheral blood counts were observed between these groups at any 
time point. However, both the RIT-only and combination therapy groups exhibited transient 
pancytopenia. In the RIT-only group, WBC, RBC, and PLT counts decreased to 41.0 ± 24.1%, 70.8 ± 
20.2%, and 40.2 ± 12.9%, respectively. In the combination therapy group, WBC, RBC, and PLT counts 
decreased to 20.3 ± 8.6%, 61.6 ± 5.3%, and 19.0 ± 9.6%, respectively. Thus, peripheral blood counts 
decreased progressively with increasing treatment aggressiveness. Differences between the control 
or cisplatin-only groups versus the RIT-only or combination treatment groups were significant. 
Although counts were lower in the combination treatment than the RIT-only group, differences were 
non-significant. 

Figure 1. Therapeutic impact and adverse effects observed in distinct treatment groups. (a) Change
in tumor volume of the control group; (b) Kaplan–Meier survival curves; (c) Change in body weight.
Black represents the control group, green represents the cisplatin-only group, blue represents the
radioimmunotherapy (RIT)-only group, and red represents the combination therapy group. * p < 0.05
(vs. control group), ** p < 0.01 (vs. control group).

Peripheral blood counts—including white blood cell (WBC) count, red blood cell (RBC) count,
and platelet (PLT) count—were performed daily for 28 days following treatment (Figure 2). Neither the
control nor the cisplatin-only groups exhibited a significant decrease in peripheral blood counts. No
significant differences in peripheral blood counts were observed between these groups at any time point.
However, both the RIT-only and combination therapy groups exhibited transient pancytopenia. In the
RIT-only group, WBC, RBC, and PLT counts decreased to 41.0 ± 24.1%, 70.8 ± 20.2%, and 40.2 ± 12.9%,
respectively. In the combination therapy group, WBC, RBC, and PLT counts decreased to 20.3 ± 8.6%,
61.6 ± 5.3%, and 19.0 ± 9.6%, respectively. Thus, peripheral blood counts decreased progressively with
increasing treatment aggressiveness. Differences between the control or cisplatin-only groups versus
the RIT-only or combination treatment groups were significant. Although counts were lower in the
combination treatment than the RIT-only group, differences were non-significant.
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Figure 2. Peripheral blood count trends across distinct treatment groups. (a) Change in white blood 
cell (WBC) count; (b) Change in red blood cell (RBC) count; (c) Change in platelet (PLT) count. Black 
represents the control group, green represents the cisplatin-only group, blue represents the RIT-only 
group, and red represents the combination treatment group. * p < 0.05 (vs. control group), ** p < 0.01 
(vs. control group). 

2.2. Ex Vivo Tumor and Organ Histopathology 

Representative day seven tumor specimen histology is shown in Figure 3. Control group tumor 
tissue demonstrated solid growth within hyalinized fibrous stroma (Figure 3a). Tumor tissue in the 
cisplatin-only group demonstrated evidence of mild cell denaturation, such as cell body swelling 
(Figure 3b). Tumor tissue of the RIT-only group demonstrated massive coagulative necrosis and 
evidence of cell denaturation, including cell body swelling and chromatin condensation (Figure 3c). 
Tumor tissue in the combination treatment group demonstrated more extensive massive coagulative 
necrosis and evidence of cell denaturation, including cell body swelling and chromatin condensation 
(Figure 3d). 

 

Figure 2. Peripheral blood count trends across distinct treatment groups. (a) Change in white blood
cell (WBC) count; (b) Change in red blood cell (RBC) count; (c) Change in platelet (PLT) count. Black
represents the control group, green represents the cisplatin-only group, blue represents the RIT-only
group, and red represents the combination treatment group. * p < 0.05 (vs. control group), ** p < 0.01
(vs. control group).

2.2. Ex Vivo Tumor and Organ Histopathology

Representative day seven tumor specimen histology is shown in Figure 3. Control group tumor
tissue demonstrated solid growth within hyalinized fibrous stroma (Figure 3a). Tumor tissue in the
cisplatin-only group demonstrated evidence of mild cell denaturation, such as cell body swelling
(Figure 3b). Tumor tissue of the RIT-only group demonstrated massive coagulative necrosis and
evidence of cell denaturation, including cell body swelling and chromatin condensation (Figure 3c).
Tumor tissue in the combination treatment group demonstrated more extensive massive coagulative
necrosis and evidence of cell denaturation, including cell body swelling and chromatin condensation
(Figure 3d).

Representative day seven organ specimen histology is shown in Figure 4. No apparent pathological
changes were evident in organ tissues of the control or cisplatin-only groups. Only splenic tissue
of the RIT-only group demonstrated a remarkable decrease in red pulp hematopoietic cells and
white pulp lymphocytes; changes were also observed in the combination treatment group. Only
the combination treatment group demonstrated decreased femur hematopoietic cells (especially
megakaryocytes) and hepatocyte ballooning. Thus, organ pathology increased progressively with
increasing treatment aggressiveness.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) indices are shown in
Figure 5: 2.2 ± 0.6% (control group), 3.4 ± 1.3% (cisplatin-only group), 10.5 ± 3.9% (RIT-only group),
and 21.1 ± 7.2% (combination treatment group). Thus, indices increased progressively with increasing
treatment aggressiveness. The index difference between the control and cisplatin-only groups was
non-significant. However, the RIT-only group index was significantly higher than that of the control
and the cisplatin-only groups (p < 0.05), and the combination group index was significantly higher
than that of any of the other three groups (p < 0.01).
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Cisplatin likely enhances the anti-tumor effects of 90Y-B5209B via the radiosensitizing effects of 
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mechanism of radiosensitization. One involves DNA platination. Platinum drugs bind DNA to form 
Pt-DNA lesions, which may suppress non-homologous end-joining-mediated DNA repair, thereby 
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3. Discussion

The present study evaluated the impact of a combination of cisplatin pre-treatment and
90Y-B5209B-based RIT in a murine SCLC xenograft model, and demonstrated that cisplatin pre-treatment
significantly enhanced RIT efficacy (while also worsening transient weight loss and pancytopenia).
Although cisplatin alone transiently suppressed tumor growth, it offered no survival benefit, while RIT
alone and in combination with cisplatin pre-treatment significantly prolonged survival. Combination
therapy offered a significant benefit over RIT alone by prolonging survival by a median of 14 additional
days. Histopathology demonstrated results consistent with those of the therapeutic study. Collectively,
these results suggest that cisplatin pre-treatment enhances the anti-tumor effects of 90Y-B5209B-based
RIT while also enhancing adverse effects, albeit transiently.

Cisplatin likely enhances the anti-tumor effects of 90Y-B5209B via the radiosensitizing effects of
platinum drugs [18]. Although incompletely understood, two major hypotheses exist regarding the
mechanism of radiosensitization. One involves DNA platination. Platinum drugs bind DNA to form
Pt-DNA lesions, which may suppress non-homologous end-joining-mediated DNA repair, thereby
inhibiting proliferation or inducing cell death when Pt-DNA lesions are proximal to double-strand
breaks generated by ionizing radiation [19,20]. The other hypothesis involves the induction of cell-cycle
arrest [18]. Cisplatin DNA binding can induce G1 and G2/M arrest, thereby inhibiting replication
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(the latter synchronizing cells in the G2/M phase in a dose-dependent manner until several days
after in vitro treatment) [21,22]. It is well known that cells in the G2/M phase exhibit enhanced
radiosensitivity (relative to cells in other phases of the cell cycle) [23]. Thus, cisplatin-exposed cells are
likely to remain radiosensitive for several days post exposure. In the present study, cisplatin treatment
preceded 90Y-B5209B administration. Tumor 90Y-B5209B uptake has been reported to plateau at two to
three days following administration [8,24]. Therefore, when combined with cisplatin pre-treatment,
this plateau would coincide with tumor cell G2/M phase synchronization, and therefore would enhance
radiosensitivity. This may explain the observations of the present study indicating that single-dose
cisplatin pre-treatment enhances RIT efficacy.

While combination treatment amplified adverse effects (weight loss and pancytopenia) relative to
RIT alone, these were well-tolerated and transient: body weight and peripheral blood counts returned
to their original values by the end of the observation period. Histopathology demonstrated changes in
hematopoietic tissue (spleen and femur), consistent with the above results. Since hematopoietic tissues
exhibit high proliferative rates (and thus radiosensitivity), it is unsurprising that they were impacted
to a greater extent than somatic tissues. However, cisplatin administration is systemic (via circulation)
and therefore enhances RIT effects not only on tumor cells but also on normal tissues. For translation to
the clinic, the side effects of the combination therapy should be managed, while it was well-tolerated in
the treatment schedule in mice. Cisplatin nanoparticles could be promising to decrease the side effects
because of the sustained release of cisplatin from the particles [25]. In the clinical setting, combination
therapy would require careful consideration of the implications of these adverse effects, as well as their
monitoring during treatment.

Although combining cisplatin pre-treatment with 90Y-B5209B-based RIT demonstrated enhanced
anti-tumor effects and prolonged survival in SCLC xenograft mice, it did not achieve SCLC cure.
Several potential curative strategies include the following. First, optimization of combination treatment
dosage and timing would maximize SCLC xenograft radiosensitivity and the therapeutic effect. While
a cisplatin (radiosensitizer) dose of 5 mg/kg enhanced 90Y-B5209B efficacy, the anti-tumor effect of
cisplatin was limited. Dose escalation and continuous administration of cisplatin may improve the
therapeutic effect. Second, combining an antibody–drug conjugate (ADC) with RIT may be a promising
strategy to enhance therapeutic effects without a concomitant increase in adverse effects. The superior
tumor specificity and potency of ADCs relative to traditional drugs may decrease non-specific uptake
by organs not afflicted by tumor [26]. Indeed, Sharkey et al. reported the feasibility of combining ADC
and RIT for improved efficacy without increased toxicity [27]; ADC combined with 90Y-B5209B-based
RIT may enhance anti-tumor effects without enhancing adverse effects. Third, radionuclides with
superior cytotoxicity, such as 225Ac, have the potential to exert enhanced anti-tumor effects (relative to
90Y). Specifically, 225Ac is a nanogenerator nuclide, generating daughter radionuclides with shorter
10-day half-lives, each emitting four high-energy α particles per decay cycle [28]. Kratochwil et al.
reported a prostate-specific membrane antigen (PSMA)-targeted α-radiation therapy (225Ac-PSMA-617)
which induced complete remission in prostate cancer patients (including decreasing PSA levels to
less than 0.1 ng/mL) without hematologic toxicity [29]. Such results strongly suggest the potential for
significant benefits of this therapy in advanced-stage prostate cancer patients. Thus, 225Ac-labeled
B5209B may have a superior therapeutic effect (relative to 90Y-B5209B), and may prove curative in
combination with chemotherapeutic agents.

In conclusion, cisplatin pre-treatment enhances the efficacy of 90Y-B5209-based RIT in a murine
SCLC xenograft model. Moreover, the optimization of this combination treatment strategy may
minimize adverse effects and prove therapeutic or, indeed, curative in extensive-stage disease.
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4. Materials and Methods

4.1. Cell Cultures and Animal Models

A ROBO1-positive SCLC cell line—NCI-H69 (ATCC HTB-119, Manassas, VA, USA)—was obtained
from the American Type Culture Collection and cultured as previously described [8]. Five-week-old
male BALB/c nude mice were purchased from Clea Japan, Inc. (Tokyo, Japan), and NCI-H69 xenograft
mice were generated as previously described [8]. All animal study protocols were approved by the
Animal Care Committee of the University of Tokyo (ethics approval number: P10–017, 28 April 2010).

4.2. Antibodies

A murine monoclonal IgG2b antibody against human ROBO1 was raised as previously
described [24] and was termed B5209B. It does not cross-react with murine ROBO1.

4.3. Chelate Conjugation and Radiolabeling

Bifunctional chelator: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was
purchased from Macrocyclics (Dallas, TX, USA), and 90YCl3 was obtained from Eckert and Ziegler
(Braunschweig, Germany). Chelate conjugation and radiolabeling of B5209B were performed by
FUJIFILM Toyama Chemical Co., Ltd. (Chiba, Japan), as previously described [24]. Immunoreactivity
of 90Y-labelled B5209B (90Y-B5209B) is not impaired relative to unlabeled B5209B [24]. Labeling yield
(approximately 80%) and radiochemical purity (approximately 99.3%) were estimated via instant
thin-layer chromatography (Pall Corp., Port Washington, NY, USA).

4.4. Therapeutic Study

Xenograft mice were randomized to four groups (n = 6–7 per group): saline (control), cisplatin-only,
RIT-only, and combination (cisplatin and RIT) therapy. Injection doses (per mouse) of cisplatin and
90Y-B5209B were 5 mg/kg and 6.7 MBq (80 µg), respectively. On day 0, mice received saline or cisplatin
intraperitoneally (Figure 6). On day 1, mice received saline or 90Y-B5209B. The present study made
use of single-dose cisplatin and 90Y-B5209B. Tumor volume and body weight were assessed twice per
week until 90 days following treatment. Tumor volume was calculated using the following formula:
0.5 × (shortest diameter)2

× (longest diameter). Tumor growth (%) was calculated using the formula:
(tumor volume at each time point)/(tumor volume on day 0) × 100. Peripheral blood counts, including
white blood cell (WBC) count, red blood cell (RBC) count, and platelet (PLT) count were measured
once a week until four weeks following treatment. Peripheral blood was collected from the tail vein
and subjected to automated hematology using a Celltac α analyzer (MEK-6400; Nihon Kohden, Tokyo,
Japan). Mice were euthanized by isoflurane inhalation once tumor volume reached 1000 mm3 or
weight loss exceeded 20%.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 11 

 

approved by the Animal Care Committee of the University of Tokyo (ethics approval number: P10–
017, 28 April 2010). 

4.2. Antibodies 

A murine monoclonal IgG2b antibody against human ROBO1 was raised as previously 
described [24] and was termed B5209B. It does not cross-react with murine ROBO1. 

4.3. Chelate Conjugation and Radiolabeling 

Bifunctional chelator: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was 
purchased from Macrocyclics (Dallas, TX, USA), and 90YCl3 was obtained from Eckert and Ziegler 
(Braunschweig, Germany). Chelate conjugation and radiolabeling of B5209B were performed by 
FUJIFILM Toyama Chemical Co., Ltd. (Chiba, Japan), as previously described [24]. Immunoreactivity 
of 90Y-labelled B5209B (90Y-B5209B) is not impaired relative to unlabeled B5209B [24]. Labeling yield 
(approximately 80%) and radiochemical purity (approximately 99.3%) were estimated via instant 
thin-layer chromatography (Pall Corp., Port Washington, NY, USA). 

4.4. Therapeutic Study 

Xenograft mice were randomized to four groups (n = 6–7 per group): saline (control), cisplatin-
only, RIT-only, and combination (cisplatin and RIT) therapy. Injection doses (per mouse) of cisplatin 
and 90Y-B5209B were 5 mg/kg and 6.7 MBq (80 µg), respectively. On day 0, mice received saline or 
cisplatin intraperitoneally (Figure 6). On day 1, mice received saline or 90Y-B5209B. The present study 
made use of single-dose cisplatin and 90Y-B5209B. Tumor volume and body weight were assessed 
twice per week until 90 days following treatment. Tumor volume was calculated using the following 
formula: 0.5 × (shortest diameter)2 × (longest diameter). Tumor growth (%) was calculated using the 
formula: (tumor volume at each time point)/(tumor volume on day 0) × 100. Peripheral blood counts, 
including white blood cell (WBC) count, red blood cell (RBC) count, and platelet (PLT) count were 
measured once a week until four weeks following treatment. Peripheral blood was collected from the 
tail vein and subjected to automated hematology using a Celltac α analyzer (MEK-6400; Nihon 
Kohden, Tokyo, Japan). Mice were euthanized by isoflurane inhalation once tumor volume reached 
1000 mm3 or weight loss exceeded 20%. 

 
Figure 6. Therapeutic study experimental schedule. 

4.5. Pathological Study 

Xenograft mice were randomized to four groups (n = 2 per group): saline (control), cisplatin 
alone, RIT alone, and combination (cisplatin and RIT) therapy. Mice were euthanized seven days 
following RIT treatment, and specimens of NCI-H69 tumor as well as tumor-unaffected tissues (liver, 
kidney, lung, heart, intestine, spleen, pancreas, and femur) were obtained. All specimens were fixed 
overnight in 4% paraformaldehyde at 4 °C, embedded in paraffin, and cut into 3 µm sections. Femurs 
were decalcified prior to paraffin embedding. Tissue sections were stained using hematoxylin and 
eosin (H&E), excluding femoral bone sections, which were stained using Giemsa solution. To 
determine apoptotic status, TUNEL analysis was performed on tumor sections. Apoptosis was 
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Figure 6. Therapeutic study experimental schedule.

4.5. Pathological Study

Xenograft mice were randomized to four groups (n = 2 per group): saline (control), cisplatin
alone, RIT alone, and combination (cisplatin and RIT) therapy. Mice were euthanized seven days
following RIT treatment, and specimens of NCI-H69 tumor as well as tumor-unaffected tissues (liver,
kidney, lung, heart, intestine, spleen, pancreas, and femur) were obtained. All specimens were
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fixed overnight in 4% paraformaldehyde at 4 ◦C, embedded in paraffin, and cut into 3 µm sections.
Femurs were decalcified prior to paraffin embedding. Tissue sections were stained using hematoxylin
and eosin (H&E), excluding femoral bone sections, which were stained using Giemsa solution. To
determine apoptotic status, TUNEL analysis was performed on tumor sections. Apoptosis was detected
using the ApopTag Plus Peroxidase In Situ Apoptosis Detection Kit (Chemicon International, Inc.,
Billerica, MA, USA), according to the manufacturer’s instructions. Apoptotic cells were quantified by
determining the percentage of TUNEL-positive cells (TUNEL index), as previously described [24].

4.6. Statistical Analyses

Statistical analyses were performed with Graphpad Prism software (version 6.07; Graphpad
Software, San Diego, CA). Data were expressed as the mean ± standard deviation. Means were
compared using a one-way ANOVA and Tukey–Kramer HSD test. Log-rank tests were performed to
compare survival outcomes. Results with p < 0.05 were considered statistically significant.
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Abbreviations

SCLC Small-cell lung cancer
RIT Radioimmunotherapy
MST Median survival time
WBC White blood cell
RBC Red blood cell
PLT Platelet

DOTA
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid

TUNEL Transferase-mediated dUTP nick end labeling
ADC Antibody–drug conjugate
PSMA Prostate-specific membrane antigen
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