
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12362  | https://doi.org/10.1038/s41598-021-90514-x

www.nature.com/scientificreports

In situ decoration of Au NPs 
over polydopamine encapsulated 
GO/Fe3O4 nanoparticles 
as a recyclable nanocatalyst 
for the reduction of nitroarenes
Saba Hemmati2, Majid M. Heravi2*, Bikash Karmakar3 & Hojat Veisi1*

A new and efficient catalyst has been designed and prepared via in situ immobilization of Au NPs 
fabricated polydopamine (PDA)-shelled Fe3O4 nanoparticle anchored over graphene oxide (GO) 
(GO/Fe3O4@PDA/Au). This novel, architecturally interesting magnetic nanocomposite was fully 
characterized using different analytical techniques such as Field Emission Scanning Electron 
Microscopy, Energy Dispersive X-ray Spectroscopy, elemental mapping, Transmission Electron 
Microscopy, Fourier Transformed Infrared Spectroscopy, X-ray Diffraction and Inductively Coupled 
Plasma-Atomic Electron Spectroscopy. Catalytic activity of this material was successfully explored 
in the reduction of nitroarenes to their corresponding substituted anilines, using NaBH4 as reducing 
agent at ambient conditions. The most significant merits for this protocol were smooth and clean 
catalysis at room temperature with excellent productivity, sustainable conditions, ease of separation 
of catalyst from the reaction mixture by using a magnetic bar and most importantly reusability of 
the catalyst at least 8 times without any pre-activation, minimum loss of activity and considerable 
leaching.

Recently, utilization of engineered and appropriately designed heterogeneous catalysts has attracted much atten-
tion and stirred up the interest in synthetic organic chemists. Heterogeneous catalysts have showed superiority 
over their homogeneous counterparts in terms of their ease of separation from the reaction mixture, mildness 
of reaction conditions, evading tedious work-up procedures and most importantly, the regeneration and reus-
ability of catalysts without any pre-activations. Moreover, instead of successive runs there occurs no appreciable 
loss in their catalytic activity and considerable leaching.

Synthetic chemistry has accomplished utmost sophistication in terms of easy handling of chemicals, facile 
and effective purification of products, ease of separation, avoiding decontamination and efficient reusability of 
catalysts several times1–6. While dealing with the catalyzed synthesis of pharmaceutically active compounds, 
retrieval of the catalyst is important both from economic and hygienic points of view. In some pharmacological 
processes, the product should be absolutely free from even trace amount of catalyst based on the US or British 
pharmacopeia assay7. Consequently, the magnetic nanoparticles have emerged as an effective way out concern-
ing the facile procedure of separation simply by using an external magnet8–17. Moreover, when the magnetic 
catalysts were isolated in pure form, they could efficiently be reused several times with reproducible results. The 
nanometric size, higher surface to volume ratio augments their catalytic activity tremendously due to increase in 
the surface atoms18–21. In this regard, use of nano ferrites (Fe3O4) has opened a new gateway to synthetic organic 
chemists. It contains large number of hydroxy groups for further organo-functionalizations in order to shape it 
as a core–shell moiety. These types of encapsulated structure provide additional stability to the nanoparticles by 
preventing their tendency towards agglomeration, high thermal stability, resistance to oxidation, corrosion and 
decreased solubility in organic solvents22–26.

Different magnetic polymer composites such as Fe3O4@polyaniline, Fe3O4@polypyrrole, Fe3O4@polydoap-
mine have previously been synthesized in situ and reported. The high density polar core structure was found 
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being responsible for their high affinity towards the noble metals by the virtue of which their catalytic activity 
is undisputable27–31.

In material science graphene is considered as a remarkable member with a single atom distance across and a 
densely packed two-dimensional honeycomb like matrix32. It brings in several unique properties like high ther-
mal and mechanical stability, exceptional electrical conductivity within credibly large surface area and adsorp-
tion ability. Consequently, graphene has recently acquired significant attention for being used as support in the 
preparation of efficient catalysts33–38. In its oxidized form, so called graphene oxide (GO), contains large number 
of diverse oxygenated functional groups like –OH, –COOH, carbonyl and epoxy on its surface which facilitates 
the immobilization of different organo-funationalities and metal nanoparticles (MNP) towards the modified 
solid acid nanocomposites39,40. The synergistic effects of the MNP and GO sheet adjoin several extraordinary 
features to these novel architectured materials thus, undoubtedly could be considered as one of the marvelous 
effective catalysts of future41.

Gold catalysis has been an enthralling research field due to its well-known fascinating characteristics. They 
exhibit excellent photocatalytic activities under both UV and visible lights42. A wide variety of Au materials find 
applications in the degradation of organo-pollutants, biological transmission electron microscopy, colorimetric 
DNA sensing, biomedical applications and catalysis43,44. Their unique catalytic activity which relied on its nega-
tive redox potential, found being much smaller than bulk gold43–51.

In continuation to our current research on the precise designing and sustainable development of novel het-
erogeneous nano materials as effective catalysts15,18,20,21,52–69, we thought, it is worthwhile to construct a noble 
metal adorned magnetically isolable high surface area nanocomposite and examine its catalytic activity. We are 
specifically interested in nanocatalyzed organic transformations being conducted under green conditions in order 
to keep the environment safe and clean. We usually try to use water as the most abundant and cheap greenest 
solvent to carry out the reactions at room temperature conditions10,70–77. Reduction of nitroarenes to correspond-
ing amines is one of the elementary but very important reaction having outstanding industrial implications. The 
aromatic amines are relatively safer chemical and have broad range of synthetic and biological applications like 
photographic development, synthesis of dye intermediates, optical brightening, corrosion inhibition, anticorro-
sion lubrication and in agrochemicals, in pharmaceuticals for the preparation of analgesic, antipyretic and other 
drugs78–80. In addition, nitrophenols are recognized as significant organopollutant of water and highly toxic for 
human and marine lives. They cause severe damage of liver, kidney and central nervous system. The reduced 
product, the aminophenols are non-toxic and have many other applications81,82.

Herein, we wish to disclose our experiences in the design and synthesis of a new hybrid nanomaterial, the 
in situ synthesized Au NP decorated on polydopamine (PDA) functionalized magnetic Fe3O4 nanoparticles 
grafted over GO nanocomposite (GO/Fe3O4@PDA/Au). Its structure was analyzed based on the data obtained 
using different standard techniques. After unambiguous structural elucidation, we examined its catalytic activity 
of this novel nanocomposite in the reduction of nitoarenes using conventional reductive agent such as NaBH4 
under ambient reaction conditions in water (Scheme 1). It is worthy to mention, the reduction of 4-nitrophenol 
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Scheme 1.   Synthetic scheme of GO/Fe3O4@PDA/Au nanocatalyst and its application.
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by this catalyst was selected as model reaction and was carefully and prudently monitored using UV–Vis spec-
troscopy followed by the kinetic study of this reaction.

Experimental
Synthesis of GO/Fe3O4 nanocomposite.  GO was prepared following modified Hummer’s method 
reported elsewhere83. A suspension of GO (0.2 g) was ultrasonically treated for 30 min in 100 mL DI H2O for 
exfoliation and then100 mL of 2.5 (M) NaOH solution was added to it under vigorous stirring. In a separate 
container 0.25 g FeCl2·4H2O and 0.67 g FeCl3·6H2O were mixed in 25 mL deoxygenated water with the addition 
of 0.45 mL conc. HCl. The resulting solution was added dropwise to the alkaline GO suspension and sonicated 
further. The GO impregnated MNP were isolated from mixture by an external magnet and rinsed with 200 mL 
DI H2O thrice. Finally, it was dried at 40 °C to obtain GO/Fe3O4 nanocomposite.

Synthesis of GO/Fe3O4@PDA/Au nanocomposite.  A mixture of 0.5 g GO/Fe3O4nanocomposite and 
0.5 g dopamine was suspended in 500 mL tris buffer (10 mM, pH 8.5) and stirred for 24 h at room temperature 
in order to polymerize. After completion of reaction, the GO/Fe3O4@PDA composite was isolated with a magnet 
and washed with DI H2O followed by anhydrous ethanol and dried at 40 °C to afford GO/Fe3O4@PDA. In the 
next phase, the GO/Fe3O4@PDA composite (0.5 g) was ultrasonically dispersed in 100 mL distilled water for 
20 min. A solution of 0.04 g HAuCl4 in 20 mL water was then added it and refluxed for 12 h. Finally, the GO/
Fe3O4@PDA/Au nanocomposite was magnetically separated and sequentially washed with DI water, ethanol and 
acetone. The Au content on the catalyst was 4.1 wt%, as determined by ICP-OES.

Catalytic reduction of nitrobenzene.  In the typical synthesis, an emulsion of nitrobenzene (0.003 M) 
in H2O (0.03 mL) was stirred in presence of water suspended GO/Fe3O4@PDA/Au nanocomposite (0.5 mL, 
0.001 g/mL) for 5 min. Then, 0.05 mL aqueous solution of NaBH4 (0.001 g/mL) was added to it and stirring was 
continued. As the reaction progressed, the yellow color of the solution gradually faded out. The entire course of 
reaction was monitored over UV–Vis spectroscopy. After completion, the catalyst was isolated using a magnet, 
regenerated and reused in further cycles.

Results and discussion
Study of catalyst characterizations.  The GO/Fe3O4@PDA/Au nanocomposite was synthesized follow-
ing a stepwise post-functionalization approach. At the outset, magnetic graphene oxide (GO/Fe3O4) was synthe-
sized according the experimental. The NPs were then covered using PDA, being synthesized by in situ polymeri-
zation. PDA organizes a suitable polar environment to anchor Au(III) ions over them and reduces to metallic Au 
NPs promoted by its active catechol and amine functionalities. Scheme 1 depicts the graphic preparative scheme. 
The as designed nanocomposite was characterized using FT-IR, FESEM, EDX, elemental mapping, TEM, XRD 
and ICP-OES techniques.

In order to justify the sequential synthesis of GO/Fe3O4@PDA/Au nanocomposite, FT-IR spectra of all the 
corresponding intermediates have been presented in Fig. 1. In Fig. 1a the strong broad band observed in the 
region ∼3100 to 3450 cm−1 were attributed to combined C–OH stretching, O–H coupled and the water interca-
lated stretching vibrations. The C=O stretching vibrations for carbonyl functions and carboxylic acids appeared 
at 1741 cm−1. The absorptions at 1378 cm−1 and 1060 cm−1 were due to carboxyl O–H and epoxy C–O groups 
respectively. In Fig. 1b the characteristic absorption peaks at 568 cm−1 and 635 cm−1 were corresponded to the 
Fe–O stretching vibrations from Fe3O4. The overlapping bands from Fig. 1a,b in Fig. 1c clearly indicates the suc-
cessful incorporation of Fe3O4 onto GO surface. In the consequent spectrums of GO/Fe3O4@PDA (1d) and GO/
Fe3O4@PDA/Au (1e), the characteristic band appeared around 2900–2950 cm−1was due to C–H stretching and 

Figure 1.   FT-IR spectra of (a) GO, (b) Fe3O4, (c) GO/Fe3O4, (d) GO/Fe3O4@PDA and (e) GO/Fe3O4@PDA/Au.
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those observed at 3373 and 1586 cm−1 were due to N–H stretching. A shifting of N–H band to lower wavenumber 
region was observed from Fig. 1d–e, probably because of the strong interaction between the N and O groups of 
dopamine with Au NPs. A further decrease in Fe–O absorption was inferred due to gold attachment (Fig. 1e).

The structural morphologies of GO, GO/Fe3O4, GO/Fe3O4@PDA and GO/Fe3O4@PDA/Au samples were 
determined by FESEM analysis (Fig. 2). GO exhibited a typical folded and wrinkled thin sheet-like appearance 
(2a). The incorporation of Fe3O4 NPs into GO surface results an increase in the wrinkles over the surface. It also 
restrains the stacking of GO planes towards polymeric strictures. The globular magnetite NPs are clearly visible 
over the GO sheet in Fig. 2b. Due to higher concentration during sampling, it seems somewhat agglomerated. 
In Fig. 2c the polymeric DA is found to immobilize homogeneously over the GO/Fe3O4 surface. Au NPs were 
generated in situ by reduction and capped over PDA and decorated on the GO/Fe3O4@PDA composite (Fig. 2d).

The elemental constitution of GO/Fe3O4@PDA/Au was further confirmed by EDX analysis. Figure 3 displays 
the EDX profile where Fe and Au are present as metallic component. The C, N and O element validates the PDA 
and GO attachment in the nanocomposite.

In addition to EDX, elemental mapping of GO/Fe3O4@PDA/Au nanocomposite was further carried out to 
study the atomic composition and their distribution over the whole surface. From the SEM image a small surface 
section is chosen and is analyzed via X-ray dispersion. The results are presented in Fig. 4. The mapping displayed 
a homogeneous dispersion of C, N, O, Fe and Au atoms in the composite. The occurrence of C, N and O also 
justifies the organic functionalization over GO.

More detail of the structural framework was ascertained by TEM analysis of the GO/Fe3O4@PDA/Au nano-
composite (Fig. 5). It demonstrates the Fe3O4@PDA/Au conjugates, being seen as dark spots, are uniformly 

Figure 2.   SEM images of (a) GO, (b) GO/Fe3O4, (c) GO/Fe3O4@PDA,and (d) GO/Fe3O4@PDA/Au NPs.
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embedded over the transparent GO sheet. However, in some regions it shows the sign of agglomeration. Due to 
large surface area of GO, individually Au NPs are not visible in the image. Nevertheless, the high dispersion of 
the active sites led to higher catalytic performance.

To determine the crystallinity of the GO/Fe3O4@PDA/Au phases, it was analyzed by XRD. Figure 6 displays 
the single phase XRD profile of the material which indicates that the nanomaterial is a united entity. The cor-
responding FWHM and d-spacing are also shown there. The Bragg’s peaks observed at 30.22°, 35.65°, 43.29°, 
53.54°, 57.33° and 62.90°(2θ) are attributed to the reflections on (220), (311), (400), (422), (511), and (440) 
planes respectively of crystalline Fe3O4 (JCPDS standard 19-0629 of Fe3O4)84. The pattern indicates that phase 
morphology of crystalline cubic spinel Fe3O4 remains intact even after post-grafting. Again, the diffraction peaks 
at 38.26°, 44.43°, 64.66° and77.61° (2θ) are related to the (110), (200), (220), and (311) planes of crystalline Au 
phases (JCPDS card no. 04-784)75. The decrease in peak intensity from the standard can bepredicted based on 
the grafting of Au/PDA complex of Fe3O4over GO.

Study of catalytic application.  The catalytic exploration of GO/Fe3O4@PDA/Au nanocomposite was 
started in the reduction of 4-nitrophenol as model reaction at room temperature using NaBH4as reducing agent. 
The entire process was quantitatively monitored over a UV–Vis spectrophotometer. Initially, in the absence of 
catalyst, when NaBH4 was added, the pale yellow color was intensified due to the formation of 4-nitrophenate 
ion and a red shift was identified. The characteristic absorption maxima of 317 nm were shifted to 400 nm. 
Just after the addition of catalyst, the color as well as peak intensity started diminishing, which indicated the 
initiation of reduction of 4-NP. Without the addition of catalyst, reaction did not proceed at all. As the reaction 
progressed, the bell shaped curve, corresponding to λmax 400 nm, gradually flattened and concurrently a new 
peak was generated at 295 nm due to the formation of 4-AP (Fig. 7a). The reduction was completed in 16 min 
as visually indicated by the decoloration of solution85. A kinetic study for the reaction was also carried out using 
the spectroscopic data. It represented a linear relationship when − ln (At/A0) was plotted against reaction time (t) 
for the process (Fig. 7b) where At and A0 being the absorbance of 4-NP at time t and 0, respectively. The curve 
fitted absolutely with pseudo first-order reaction kinetics86. The rate constants (k) was obtained from the slope 
as being 0.15 min−1 (R2 = 0.985).

The control experiments for the reduction of 4-NP to 4-AP were tested. With the purpose of having optimized 
catalytic conditions, the experiment was also investigated with bare Fe3O4 NPs, GO/Fe3O4 and GO/Fe3O4@
PDA nanocomposites as catalyst keeping other conditions intact. Interestingly, no noticeable transformation 
was detected even after 2 h, which evidently demonstrates the role of Au NPs being stabilized over GO/Fe3O4@
PDA. The results showed that in both conditions without NaBH4 and in the presence of the GO/Fe3O4@PDA/
Au there is no progress in the reduction reaction after 5 h. Also, the reduction reaction was done in the presence 
of Fe3O4 NPs, GO/Fe3O4 and GO/Fe3O4@PDA nanocomposites, which showed the yield was low and end time 
of the reduction reaction was longer than GO/Fe3O4@PDA/Au nanocomposite (Table 1).

Now, in order to generalize, we further extended our catalytic explorations with our developed catalyst in the 
reduction of several other nitroarenes, being monitored over UV–Vis spectrometry and the results have been 
documented in Table 2 Notwithstanding the type and location of substituent (1-Cl, 2/3/4-CH3, 2/4-OH, 2/3/4-
NH2, 2-OCH3) in the aryl ring, all the substrates were highly compatible in the reaction conditions and afforded 
excellent conversions. The productivity was in the range of 90–98%. Notably, the electron rich nitroanilines 
(Table 2, entries 11–13) were found to undergo reduction at a relatively faster rate (10–15 min) as compared to 
electron deficient chloro (Table 2, entry 2) or dinitro substrates (Table 2, entry 6) (90 min). Among the nitro-
phenols, the reduction of 2-susbtituted nitroarene was sluggish, might be due to field effect or spatial electron 
inhibition. A wide number of nitroarenes have been found to be compatible at the developed conditions resulting 

Figure 3.   EDX pattern of GO/Fe3O4@PDA/Au nanocomposite.
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outstanding yields in very short reaction times. Due to the innate ferromagnetism, the catalyst was easily isolated 
using a magnetic stick and reused for several times (Table 2, entry 8).

Discussion of reaction mechanism.  For mechanism discussion, more attention should be paid to the 
catalytic kinetics. The catalytic process is a complex process, which involves the diffusion process, adsorption 
process, catalyst wetting angle and etc.87–89. The plausible catalytic pathway for the reduction of nitrobenzene 
over GO/Fe3O4@PDA/Au nanocomposite in presence of NaBH4 can be explained based on the Langmuir–
Hinshelwood model90,91. Initially, the BH4

–ions get adsorbed on the catalyst surface and generate hydride ions 
(H–) in situ towards the formation an Au-hydride complex. Subsequently, the substrate nitrobenzene (NB) also 
approaches the nano Au surface. The adsorption of both H− and NB occurs reversibly following Langmuir iso-
therm. Then, interfacial electron transfer occurs from hydrides to NB. The rate of electron transfer is propor-
tional to the conversion rate. The reduction pathway to aniline involves two fast intermediate steps via nitroso-
benzene and hydroxylamine92,93. A slow hydro-deoxygenation step is followed thereafter in the reduction from 
hydroxylamine to aniline, being considered as the rate determining step. Finally, desorption of aniline takes 
place from the catalyst surface to make it free for a new cycle. These whole process of diffusion of reactants, 
adsorption/desorption equilibria are very facile over the Au catalyst (Scheme 2).

Figure 4.   Elemental mapping of GO/Fe3O4@PDA/Au nanocomposite.
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Figure 5.   TEM representation of GO/Fe3O4@PDA/Au nanocatalyst.

Figure 6.   XRD pattern and the peak lists of GO/Fe3O4@PDA/Au nanocomposite.
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Figure 7.   The UV–Vis spectroscopic study in the reduction of 4-NP to 4-AP over GO/Fe3O4@PDA/Au 
nanocatalyst.

Table 1.   The control experiments for the reduction of 4-NP to 4-AP. Reaction conditions: 0.3 mL of 0.003 M 
4-NP, 0.05 mL of 1 mg mL−1catalyst, and 0.3 mL of 1.2 (M) NaBH4 solution in water.

Entry Catalyst Time (min) Conversion (%)

1 Fe3O4-NaBH4 120 55

2 Go/Fe3O4-NaBH4 120 60

3 GO/Fe3O4@PDA-NaBH4 120 50

4 GO/Fe3O4@PDA/Au-NaBH4 16 98

5 GO/Fe3O4@PDA/Au 3000 N.R

Table 2.   Reduction of various nitrobenzenes using GO/Fe3O4@PDA/Au catalyst. Reaction conditions: 0.3 mL 
of 0.003 M nitrobenzene, 0.05 mL of 1 mg mL−1catalyst, and 0.3 mL of 1.2 (M) NaBH4 solution in water.

Entry Nitroarene Time (min) Conversion (%)

1 Nitrobenzenes 30 98

2 2-Nitrochloro-benzene 90 95

3 4-Nitrotoluene 20 96

4 2-Nitrotoluene 45 95

5 3-Nitrotoluene 60 90

6 2,4-Dinitrotoluene 90 98

7 4-Nitrophenol 16 100

8 2-Nitrophenol 60 95

9 2,4-Dinitrophenol 30 98

10 2-Nitroanisole 15 98

11 4-Nitroaniline 10 98

12 2-Nitroaniline 12 98

13 3-Nitroaniline 15 96
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Reusability and leaching test of GO/Fe3O4@PDA/Au nanocomposite.  In sustainable catalytic 
methodology, facile isolation, regeneration and reusability of catalyst is an indispensable task. After the success-
ful demonstration of catalytic efficiency of GO/Fe3O4@PDA/Au nanocomposite in the reduction of nitroarenes, 
it was the turn to prove those said criteria. Due to the strong inner ferromagnetic core, it was isolated totally with 
ease from the reaction mixture 4-NP reduction by using an external magnet. The catalyst was then washed with 
aqueous ethanol, dried and recycled for 8 times with no appreciable loss in activity (Fig. 8). To emphasize the 
fact, a TEM analysis was conducted with the reused catalyst after 8th run. Amusingly, it retained its structural 
morphology as initial, which can be seen from Fig. 9a. Also, a FT-IR spectrum for reused catalyst after 8th run 
(Fig. 9b) shown the same signals without changes in functionality with fresh catalyst. Hence, significant stability 
of the material validates its outstanding reusability. A leaching test was carried out as well in order to prove the 
robustness of our catalyst. After the isolation of the catalyst from reaction mixture, an ICP-AES analysis was per-
formed with the reaction filtrate. It was gratifying to ensure that only a marginal amount of Au has been leached 
out. After the 7th cycle, the Au content in the nanocomposite was greater than 90%. The slight decrease in yield 
in the 8th cycle is probably due to this loss of Au and the adsorption of product (4-AP) over the catalyst surface94.

Distinctiveness of our result.  To prove the uniqueness of our devised protocol, we justified our results 
in the reduction of 4-NP with some previously reported methods which have been shown in Table 3. As can be 
seen, the GO/Fe3O4@PDA/Au catalyst definitely has superiority over others in terms of rate constant.

Conclusions
In summary, we have prepared an Au NP implanted PDA coated magnetic GO nanocomposite (GO/Fe3O4@PDA/
Au). The material was prepared following stepwise post-synthetic approach involving the in situ green reduction 
of Au (III) ions, without using any harsh conditions. PDA acts as the green reductant as well as the stabilizer of 
Au NPs. The enormous surface area of GO was exploited for grafting the Au(0)/PDA@Fe3O4 complex. After full 
characterization of this novel catalyst using different standard techniques, its catalytic activity was examined 
towards the reduction of nitroarenes to their corresponding amines. Initially, 4-nitrophenol was selected as a 
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model compound and treated with sodium borohydride in the presence of aforementioned composite at room 
temperature. The reduction proceeds smoothly leading to the formation of p-hydroxyaniline, a useful starting 
material for production of acetoaminophen (paracetamols), an over –counter analgesic medication. Then, the 
as synthesized nanocatalyst was employed in the reduction of a wide range of nitroaromaticssusingNaBH4 as 
the hydrogen source with outstanding conversions and great selectivity. After the completion of the reaction, 
the catalyst was separated easily, just by using a magnet bar and without any pre-activation were reused for 8suc-
cessive cycles with almost consistent reactivity. The material was stable enough towards leaching as confirmed 

Figure 9.   TEM image (a) and FT-IR spectrum (b) of GO/Fe3O4@PDA/Au catalyst after 8th run.

Table 3.   Comparison of catalytic results between GO/Fe3O4@PDA/Au with some reported methods in the 
reduction of 4-NP.

Entry Catalyst T (K) k (s−1) × 10–3 References

1 Ag-DENs 298 7.0 95

2 AgNPs-rGO 298 0.44 96

3 Ni@Au/KCC-1 293 4.3 97

4 Ag/C 298 5.4 98

5 Ag/Nanosilica 306 1.1 99

6 Ni/RGO 298 6.7 100

7 Au/graphene 298 3.17 101

8 Carbon@Au 298 5.43 102

9 Fe3O4/Ag@NFC 298 3.3 103

10 GO/Fe3O4@PDA/Au 298 14.4 This work
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by ICP-AES analysis. Its excellent catalytic performance is assumed to be due to synergistic bridged interac-
tion between Au(0),Fe3O4 and GO sheets, facilitating the faster electron transport to the substrate towards the 
reduction.
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