metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3,14-Dimethyl-2,6,13,17-tetraaza-tricyclo[16.4.0.0^{7,12}]docosane- $\kappa^4 N, N', N'', N'''$)bis(nitrato- κO)copper(II)

Jong-Ha Choi,^a Md Abdus Subhan^a and Seik Weng Ng^{b,c}*

^aDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 3 January 2012; accepted 15 January 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.052; wR factor = 0.132; data-to-parameter ratio = 14.7.

The Cu^{II} atom in the title compound, $[Cu(NO_3)_2(C_{20}H_{40}N_4)]$, is N, N', N''-chelated by the macrocyclic ligand: the four N atoms form a square, above and below which are located the O atoms of the nitrate ions. The metal atom exists in a tetragonally distorted octahedron, on a special position of $\overline{1}$ site symmetry. One of the amino groups is hydrogen bonded to an O atom of the nitrate ion. The other amino group is hydrogen bonded to O atom of an adjacent molecule, generating a supramolecular dimeric hydrogen-bonded dinuclear aggregate.

Related literature

For the synthesis of the cyclam, see: Choi et al. (2012). For similar copper nitrate-cyclam adducts, see: Amadei et al. (1999); Choi et al. (2001, 2006); Dong et al. (1999); Liu & Chu (2010).

Experimental

Crystal data [Cu(NO₃)₂(C₂₀H₄₀N₄)]

 $M_r = 524.12$

Iriclinic, P1	
a = 8.2552 (10) Å	
b = 8.8074 (11) Å	
c = 9.1399 (10) Å	
$\alpha = 67.879 \ (12)^{\circ}$	
$\beta = 68.780 \ (11)^{\circ}$	
$\gamma = 75.096 \ (11)^{\circ}$	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Agilent, 2011) $T_{\rm min} = 0.751, T_{\rm max} = 0.906$	4122 measured reflections 2332 independent reflections 1963 reflections with $I > 2\sigma(I)$ $R_{int} = 0.064$
Refinement $R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$wR(F^2) = 0.132$	independent and constrained
S = 1.02	refinement
2332 reflections	$\Delta \rho_{\rm max} = 0.96 \ {\rm e} \ {\rm \AA}^{-3}$
159 parameters	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
2 restraints	

 $V = 568.23 (12) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

 $\mu = 1.01 \text{ mm}^{-1}$ T = 100 K

7 - 1

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$\begin{array}{c} 0.88 \ (1) \\ 0.88 \ (1) \end{array}$	2.15 (2) 2.23 (2)	2.992 (3) 2.961 (3)	160 (3) 140 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Andong National University and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/ SC/12) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5440).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Amadei, G. A., Dickman, M. H., Wazzeh, R. A., Dimmock, P. & Earley, J. E. (1999). Inorg. Chim. Acta, 288, 40-46.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
- Choi, M.-H., Kim, B. J., Kim, I.-C., Kim, S.-Y., Kim, Y., Harrowfield, J. M., Lee, M. K., Mocerino, M., Rukmini, E., Skelton, B. W. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 707-722.
- Choi, J.-H., Subhan, M. A., Ryoo, K. S. & Ng, S. W. (2012). Acta Cryst. E68, o102
- Choi, J.-H., Suzuki, T. & Kaizaki, S. (2006). Acta Cryst. E62, m2383-m2385.
- Dong, Y., Lawrence, G. A., Lindoy, L. F. & Turner, P. (1999). J. Chem. Soc. Dalton Trans. pp. 1567-1576.
- Liu, X.-Y. & Chu, H.-Y. (2010). Acta Cryst. E66, m837.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m190 [doi:10.1107/S1600536812001845]

{3,14-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane- $\kappa^4 N, N', N'', N'''$)bis(nitrato- κO)copper(II)

J.-H. Choi, M. A. Subhan and S. W. Ng

Comment

The macrocycle, cyclam (1,4,8,11-tetraazacyclotetradecane), forms a large number of complexes with copper(II) salts in which the macrocle chelates in a tetradentate matter. In same cases, the counterion bonded to the metal atoms and in other cases, the metal atom exists in square-pyramidal geometry as the counterion is far away. The crystal structure of copper nitrate–cyclam has not been reported; the crystal structures of other substituted cyclams have the metal atom in a tetragonally elongated octahedral geometry (Amadei *et al.*, 1999; Choi *et al.*, 2006; Choi *et al.*, 2001; Dong *et al.*, 1999; Liu & Chu, 2010).

The Cu^{II} atom in the title compound (Scheme I) is similarly chelated by the macrocyclic ligand in a tetragonally distorted octahedron (Fig.1). The atom lies on a special position of -I site symmetry. One of the amino groups is hydrogen-bonded to an O atom of the nitrate ion. The other amino group is hydrogen-bonded to O atom of an adjacent molecule to generate a hydrogen-bonded dinuclear molecule (Table 1).

Experimental

The macrocycle co-crystal, 3,14-dimethyl-2,6,13,17-tetraazatricyclo $(16.4.0.0^{7,12})$ docosane (naphthalen-1-yl)methanol prepared as described (Choi *et al.*, 2012). Copper nitrate trihydrate (0.242 g, 1 mmol) dissolved in methanol (10 ml) was mixed with a suspension of the macrocycle co-crystal (0.163 g, 2.5 mmol) dissolved in methanol (10 ml). The mixture was heated for 30 minutes and then set aside for the growth of purple crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.99 to 1.00 Å, $U_{iso}(H)$ 1.2 to 1.5 $U_{eq}(C)$] and were included in the refinement in the riding model approximation.

The amino H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $Cu(NO_3)_2(C_{20}H_{40}N_4)$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

$(3,14-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}] docosane- \kappa^4 N, N^{,}, N^{,,}, N^{,,,}) bis(nitrato-\kappa O)copper(II)$

Crystal d	lata
-----------	------

$[Cu(NO_3)_2(C_{20}H_{40}N_4)]$	Z = 1
$M_r = 524.12$	F(000) = 279
Triclinic, <i>P</i> T	$D_{\rm x} = 1.532 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.2552 (10) Å	Cell parameters from 1668 reflections
b = 8.8074 (11) Å	$\theta = 2.5 - 27.5^{\circ}$
c = 9.1399 (10) Å	$\mu = 1.01 \text{ mm}^{-1}$
$\alpha = 67.879 \ (12)^{\circ}$	T = 100 K
$\beta = 68.780 \ (11)^{\circ}$	Prism, purple
$\gamma = 75.096 \ (11)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
$V = 568.23 (12) \text{ Å}^3$	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	2332 independent reflections
Radiation source: SuperNova (Mo) X-ray Source	1963 reflections with $I > 2\sigma(I)$
Mirror	$R_{\rm int} = 0.064$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
ω scan	$h = -7 \rightarrow 10$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)	$k = -10 \rightarrow 11$
$T_{\min} = 0.751, \ T_{\max} = 0.906$	$l = -11 \rightarrow 10$
4122 measured reflections	

Refinement

Refinement on F^2	Primai metho
Least-squares matrix: full	Secon
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydro sites
$wR(F^2) = 0.132$	H ator constr
<i>S</i> = 1.02	w = 1/w
2332 reflections	$(\Delta/\sigma)_n$
159 parameters	$\Delta \rho_{max}$
2 restraints	$\Delta \rho_{min}$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0874P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.96$ e Å⁻³ $\Delta\rho_{min} = -0.68$ e Å⁻³

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.5000	0.5000	0.5000	0.0158 (2)
N1	0.5570 (3)	0.5225 (3)	0.2605 (3)	0.0152 (5)
H1	0.473 (3)	0.481 (4)	0.257 (4)	0.022 (9)*
N2	0.6852 (3)	0.2945 (3)	0.5073 (3)	0.0154 (5)
H2	0.777 (3)	0.342 (3)	0.484 (4)	0.014 (8)*
N3	0.8305 (3)	0.6621 (3)	0.5099 (3)	0.0193 (6)
01	0.7574 (3)	0.6375 (3)	0.4223 (3)	0.0228 (5)
O2	0.7518 (3)	0.6441 (3)	0.6596 (3)	0.0280 (5)
O3	0.9780 (3)	0.7070 (3)	0.4452 (3)	0.0260 (5)
C1	0.5512 (4)	0.6927 (4)	0.1448 (4)	0.0201 (6)
H1A	0.5787	0.6891	0.0312	0.024*
H1B	0.6413	0.7475	0.1460	0.024*
C2	0.7261 (4)	0.4161 (4)	0.2131 (4)	0.0171 (6)
H2A	0.8227	0.4708	0.2045	0.020*
C3	0.7647 (4)	0.3870 (4)	0.0493 (4)	0.0203 (6)
H3A	0.7728	0.4940	-0.0408	0.024*
H3B	0.6675	0.3379	0.0528	0.024*
C4	0.9369 (4)	0.2708 (4)	0.0141 (4)	0.0207 (6)
H4A	0.9581	0.2509	-0.0913	0.025*
H4B	1.0353	0.3236	0.0023	0.025*
C5	0.9308 (4)	0.1064 (4)	0.1531 (4)	0.0206 (6)
H5A	1.0448	0.0348	0.1299	0.025*
H5B	0.8386	0.0494	0.1593	0.025*
C6	0.8921 (4)	0.1347 (4)	0.3181 (4)	0.0196 (6)
H6A	0.9906	0.1813	0.3155	0.024*
H6B	0.8821	0.0275	0.4079	0.024*
C7	0.7216 (4)	0.2533 (4)	0.3538 (4)	0.0169 (6)
H7	0.6221	0.2001	0.3659	0.020*
C8	0.6715 (4)	0.1477 (4)	0.6603 (4)	0.0177 (6)
H8	0.7896	0.0787	0.6487	0.021*
C9	0.6290 (4)	0.2073 (4)	0.8083 (4)	0.0192 (6)
H9A	0.6398	0.1093	0.9053	0.023*
H9B	0.7189	0.2758	0.7851	0.023*
C10	0.5417 (4)	0.0404 (4)	0.6826 (4)	0.0206 (6)
H10A	0.5752	0.0052	0.5846	0.031*
H10B	0.4238	0.1039	0.6971	0.031*
H10C	0.5422	-0.0573	0.7804	0.031*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0102 (3)	0.0195 (3)	0.0187 (3)	-0.00213 (18)	-0.0034 (2)	-0.0080 (2)
N1	0.0079 (11)	0.0190 (13)	0.0199 (13)	-0.0024 (9)	-0.0025 (10)	-0.0087 (10)
N2	0.0119 (12)	0.0181 (13)	0.0187 (12)	-0.0057 (9)	-0.0030 (10)	-0.0077 (10)

supplementary materials

N3	0.0125 (12)	0.0193 (13)	0.0287 (15)	-0.0028 (9)	-0.0085 (11)	-0.0076 (11)
01	0.0175 (11)	0.0303 (12)	0.0264 (11)	-0.0086 (9)	-0.0087 (9)	-0.0097 (10)
O2	0.0239 (12)	0.0397 (14)	0.0253 (12)	-0.0131 (10)	-0.0032 (10)	-0.0138 (10)
O3	0.0137 (11)	0.0310 (13)	0.0362 (13)	-0.0103 (9)	-0.0086 (10)	-0.0078 (10)
C1	0.0147 (14)	0.0264 (17)	0.0190 (15)	-0.0034 (12)	-0.0033 (12)	-0.0084 (13)
C2	0.0079 (13)	0.0242 (16)	0.0223 (15)	-0.0026 (11)	-0.0026 (11)	-0.0122 (13)
C3	0.0184 (15)	0.0252 (17)	0.0207 (15)	-0.0028 (12)	-0.0053 (12)	-0.0115 (13)
C4	0.0163 (15)	0.0252 (16)	0.0216 (15)	-0.0010 (12)	-0.0021 (12)	-0.0131 (13)
C5	0.0155 (15)	0.0241 (16)	0.0258 (16)	-0.0010 (12)	-0.0039 (12)	-0.0151 (13)
C6	0.0146 (14)	0.0233 (16)	0.0224 (15)	-0.0003 (11)	-0.0047 (12)	-0.0110 (13)
C7	0.0123 (14)	0.0232 (15)	0.0197 (15)	-0.0042 (11)	-0.0033 (11)	-0.0120 (12)
C8	0.0117 (14)	0.0210 (15)	0.0196 (15)	-0.0015 (11)	-0.0049 (11)	-0.0057 (12)
C9	0.0174 (15)	0.0215 (15)	0.0198 (15)	-0.0012 (11)	-0.0067 (12)	-0.0077 (12)
C10	0.0163 (15)	0.0216 (16)	0.0253 (16)	-0.0057 (11)	-0.0048 (12)	-0.0081 (13)

Geometric parameters (Å, °)

Cu1—N1	2.007 (2)	С3—НЗА	0.9900
Cu1—N1 ⁱ	2.007 (2)	С3—Н3В	0.9900
Cu1—N2 ⁱ	2.044 (2)	C4—C5	1.523 (4)
Cu1—N2	2.044 (2)	C4—H4A	0.9900
Cu1—O1	2.463 (2)	C4—H4B	0.9900
N1—C1	1.475 (4)	C5—C6	1.527 (4)
N1—C2	1.486 (3)	С5—Н5А	0.9900
N1—H1	0.879 (10)	С5—Н5В	0.9900
N2—C7	1.487 (4)	C6—C7	1.532 (4)
N2—C8	1.496 (4)	С6—Н6А	0.9900
N2—H2	0.878 (10)	С6—Н6В	0.9900
N3—O3	1.241 (3)	С7—Н7	1.0000
N3—O2	1.251 (3)	C8—C10	1.517 (4)
N3—O1	1.265 (3)	C8—C9	1.525 (4)
C1—C9 ⁱ	1.524 (4)	C8—H8	1.0000
C1—H1A	0.9900	C9—C1 ⁱ	1.524 (4)
C1—H1B	0.9900	С9—Н9А	0.9900
C2—C3	1.520 (4)	С9—Н9В	0.9900
C2—C7	1.521 (4)	C10—H10A	0.9800
C2—H2A	1.0000	C10—H10B	0.9800
C3—C4	1.530 (4)	C10—H10C	0.9800
N1—Cu1—N1 ⁱ	180.0	НЗА—СЗ—НЗВ	108.1
N1—Cu1—N2 ⁱ	95.20 (9)	C5—C4—C3	110.9 (2)
N1 ⁱ —Cu1—N2 ⁱ	84.80 (9)	C5—C4—H4A	109.5
N1—Cu1—N2	84.80 (9)	С3—С4—Н4А	109.5
N1 ⁱ —Cu1—N2	95.20 (9)	C5—C4—H4B	109.5
N2 ⁱ —Cu1—N2	180.000 (1)	C3—C4—H4B	109.5
N1—Cu1—O1	87.75 (8)	H4A—C4—H4B	108.1
N1 ⁱ —Cu1—O1	92.25 (8)	C4—C5—C6	110.4 (2)
N2 ⁱ —Cu1—O1	97.63 (8)	C4—C5—H5A	109.6

N2—Cu1—O1	82.37 (8)	С6—С5—Н5А	109.6
C1—N1—C2	113.1 (2)	C4—C5—H5B	109.6
C1—N1—Cu1	116.33 (18)	C6—C5—H5B	109.6
C2—N1—Cu1	108.35 (17)	H5A—C5—H5B	108.1
C1—N1—H1	106 (2)	C5—C6—C7	111.2 (2)
C2—N1—H1	108 (2)	С5—С6—Н6А	109.4
Cu1—N1—H1	104 (2)	С7—С6—Н6А	109.4
C7—N2—C8	114.3 (2)	С5—С6—Н6В	109.4
C7—N2—Cu1	107.58 (17)	С7—С6—Н6В	109.4
C8—N2—Cu1	121.32 (18)	H6A—C6—H6B	108.0
C7—N2—H2	102 (2)	N2—C7—C2	107.0 (2)
C8—N2—H2	111 (2)	N2—C7—C6	113.1 (2)
Cu1—N2—H2	98 (2)	C2—C7—C6	111.3 (2)
O3—N3—O2	120.9 (2)	N2—C7—H7	108.4
O3—N3—O1	119.5 (2)	С2—С7—Н7	108.4
O2—N3—O1	119.6 (2)	С6—С7—Н7	108.4
N3—O1—Cu1	131.16 (18)	N2	112.4 (2)
$N1-C1-C9^{i}$	111.0 (2)	N2—C8—C9	108.9 (2)
N1—C1—H1A	109.4	C10—C8—C9	112.8 (3)
C9 ⁱ —C1—H1A	109.4	N2—C8—H8	107.5
N1—C1—H1B	109.4	С10—С8—Н8	107.5
C9 ⁱ —C1—H1B	109.4	С9—С8—Н8	107.5
H1A—C1—H1B	108.0	C1 ⁱ —C9—C8	116.4 (2)
N1—C2—C3	114.3 (2)	C1 ⁱ —C9—H9A	108.2
N1—C2—C7	107.1 (2)	С8—С9—Н9А	108.2
C3—C2—C7	111.1 (2)	C1 ⁱ —C9—H9B	108.2
N1—C2—H2A	108.0	С8—С9—Н9В	108.2
C3—C2—H2A	108.0	Н9А—С9—Н9В	107.3
С7—С2—Н2А	108.0	C8—C10—H10A	109.5
C2—C3—C4	110.7 (2)	C8—C10—H10B	109.5
С2—С3—НЗА	109.5	H10A-C10-H10B	109.5
С4—С3—Н3А	109.5	C8—C10—H10C	109.5
С2—С3—Н3В	109.5	H10A-C10-H10C	109.5
C4—C3—H3B	109.5	H10B—C10—H10C	109.5
N2 ⁱ —Cu1—N1—C1	35.3 (2)	Cu1—N1—C2—C7	42.3 (2)
N2-Cu1-N1-C1	-144.7 (2)	N1—C2—C3—C4	-177.7 (2)
O1—Cu1—N1—C1	-62.11 (19)	C7—C2—C3—C4	-56.3 (3)
N2 ⁱ —Cu1—N1—C2	164.12 (17)	C2—C3—C4—C5	57.5 (3)
N2—Cu1—N1—C2	-15.88 (17)	C3—C4—C5—C6	-57.2 (3)
O1—Cu1—N1—C2	66.66 (18)	C4—C5—C6—C7	56.0 (3)
N1—Cu1—N2—C7	-14.16 (18)	C8—N2—C7—C2	178.5 (2)
N1 ⁱ —Cu1—N2—C7	165.84 (18)	Cu1—N2—C7—C2	40.6 (2)
O1—Cu1—N2—C7	-102.58 (18)	C8—N2—C7—C6	-58.6 (3)
N1—Cu1—N2—C8	-148.4 (2)	Cu1—N2—C7—C6	163.59 (19)
N1 ⁱ —Cu1—N2—C8	31.6 (2)	N1—C2—C7—N2	-55.2 (3)
O1—Cu1—N2—C8	123.1 (2)	C3—C2—C7—N2	179.4 (2)
O3—N3—O1—Cu1	166.62 (19)	N1—C2—C7—C6	-179.2 (2)

supplementary materials

O2—N3—O1—Cu1 N1—Cu1—O1—N3	-14.8 (4) -172.7 (2)	C3—C2—C7—C6 C5—C6—C7—N2	55.3 (3) -175.7 (2)
N1 ⁱ —Cu1—O1—N3	7.3 (2)	C5—C6—C7—C2	-55.2 (3)
N2 ⁱ —Cu1—O1—N3	92.4 (2)	C7—N2—C8—C10	-52.7 (3)
N2—Cu1—O1—N3	-87.6 (2)	Cu1—N2—C8—C10	78.8 (3)
C2—N1—C1—C9 ⁱ	175.8 (2)	C7—N2—C8—C9	-178.4 (2)
Cu1—N1—C1—C9 ⁱ	-57.8 (3)	Cu1—N2—C8—C9	-46.9 (3)
C1—N1—C2—C3	-63.6 (3)	N2—C8—C9—C1 ⁱ	67.3 (3)
Cu1—N1—C2—C3	165.83 (19)	C10-C8-C9-C1 ⁱ	-58.2 (3)
C1—N1—C2—C7	172.8 (2)		
Symmetry codes: (i) $-x+1, -y+1, -z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$		
N1—H1···O2 ⁱ	0.88 (1)	2.15 (2)	2.992 (3)	160 (3)		
N2—H2···O3 ⁱⁱ	0.88 (1)	2.23 (2)	2.961 (3)	140 (3)		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $-x+2$, $-y+1$, $-z+1$.						

