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Influence of Resting Venous Blood 
Volume Fraction on Dynamic Causal 
Modeling and System Identifiability
Zhenghui Hu1, Pengyu Ni1,2, Qun Wan3, Yan Zhang4, Pengcheng Shi5 & Qiang Lin1

Changes in BOLD signals are sensitive to the regional blood content associated with the vasculature, 
which is known as V0 in hemodynamic models. In previous studies involving dynamic causal modeling 
(DCM) which embodies the hemodynamic model to invert the functional magnetic resonance imaging 
signals into neuronal activity, V0 was arbitrarily set to a physiolog-ically plausible value to overcome the 
ill-posedness of the inverse problem. It is interesting to investigate how the V0 value influences DCM. In 
this study we addressed this issue by using both synthetic and real experiments. The results show that 
the ability of DCM analysis to reveal information about brain causality depends critically on the assumed 
V0 value used in the analysis procedure. The choice of V0 value not only directly affects the strength of 
system connections, but more importantly also affects the inferences about the network architecture. 
Our analyses speak to a possible refinement of how the hemody-namic process is parameterized (i.e., 
by making V0 a free parameter); however, the conditional dependencies induced by a more complex 
model may create more problems than they solve. Obtaining more realistic V0 information in DCM 
can improve the identifiability of the system and would provide more reliable inferences about the 
properties of brain connectivity.

Dynamic causal modeling (DCM) is now widely employed to explore causality between neural systems based on 
neuroimaging data obtained using methods such as electroencephalography (EEG), magnetoencephalography 
(MEG), and functional magnetic resonance imaging (fMRI)1–3. DCM is based on a neurobiology-based model of 
neuronal population dynamics. A typical application of this technique is to select a set of specific task-dependent 
“nodes” (active loci) within regions of interest (ROI) on the basis of conventional activation analysis, then to infer 
the causal links among these distributed brain regions from the candidate models4–6; this constitutes a classic 
inverse problem. For the case of fMRI data, because the hemodynamic response is a secondary effect induced by 
neuronal activity, the method also incorporates a hemodynamic model (Balloon model) to convert the under-
lying neuronal activity into the observed fMRI response in each brain region of interest7,8 (Fig. 1). This hemod-
ynamic step in data generation can result in complications when attempting to make statistical inferences about 
the connectivity architecture.

DCM reflects the increasing interest in functional integration among brain regions, as measured using neu-
roimaging. Figure 1 shows a schematic representation of DCM. In contrast to conventional model analysis of 
region-specific activations only allowing model inputs of experimental factors (εu in Fig. 1), in DCM the inputs 
from several regions (represented by a neuronal state vector z with one state per region) embrace not only the 
direct efficacy of experimental inputs (the C matrices in Fig. 1) but also the efficacy of neuronal input from other 
regions (the A matrices in Fig. 1)9,10. In this sense, DCM can be regard as a collection of hemodynamic models, 
one for each area, in which the experimental inputs are supplemented with neural activity from other areas1. The 
causal correlation is then parameterized in terms of coupling among the neuronal activities in different regions. 
The objective is to correctly estimate these parameters on the basis of all of the observed hemodynamic responses.
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The nonlinearities inherent in hemodynamic response, and the conditional dependece between hemodynamic 
and the neuronal model parameters make model inversion and subsequent inference a challenging problem. The 
output of the hemodynamic model is the product of the resting blood volume fraction V0 and a nonlinear func-
tion of the state variables (Equation y(t) in Fig. 1). This means that it is not possible to simultaneously estimate 
V0 and other parameters without applying additional constraints; instead, only their product can be estimated11. 
Moreover, the use of a complicated nonlinear model means that the effects of some parameters on the output 
interfere with those of other parameters11,12. The influence of changing one parameter could be compensated by 
adjusting other parameters to produce exactly the same output11. On the other hand, changes in BOLD signals are 
sensitive to the regional venous blood volume fraction, which is represented as the physiological parameter V0 in 
the hemodynamic model13. This can result in the active domain of the BOLD signal often being overly influenced 

Figure 1.  Schematic illustration of DCM. DCM expresses brain causality at the level of neuronal dynamics. 
The neurobiological model z describes neural dynamics and connectivity among brain regions. Matrix A 
represents the fixed connectivity among the regions in the absence of input, matrix B encodes the change in 
connectivity induced by an input, and matrix C embodies the strength of the direct influences of inputs. The 
B parameters correspond to condition or context sensitive changes in the A parameters. These mediate the 
influence of experimental or exogenous inputs u on the (linear) connectivity encoded by the A parameters. It 
is usually these (B parameters) that are of interest because they report the effects of changes in experimental 
condition. The hemodynamic model with four state variables s, f, v, and q converts the neural dynamics 
into the observed BOLD signals. The model parameters comprise inputs u, neuronal efficacy ε, the time 
constant for vasodilatory signal decay τf, the feedback autoregulation time constant τs, transit time τ0, stiffness 
parameter α, resting oxygen extraction fraction E0, and resting blood volume fraction V0. Abbreviation: dHb, 
deoxyhemoglobin.
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by regions with large blood contents14; in these regions V0 might exceed 0.615. Many pathological conditions also 
might be associated with an abnormal V0

16,17.
To assess the sensitivity of the inference to all parameters, we computed the variance in measurement space 

(fMRI time-series) induced by changes in V0 (and other parameters). If a parameter change causes a large change 
in measurement space, then this usually means it can be identified efficiently. Figure 2a shows the results of 
this analysis. Because the measurements space is a time-series, we can expressed this sensitivity as a function of 
peristimulus time using a short input (2s). It is clear that the general variance of model output prodcued by all 
parameters is similar to the known BOLD responses. The relative contribution of output variance associated with 
V0 is shown in Fig. 2b. The results show that V0 plays a leading role in driving the uncertainty of the hemody-
namic model output, especially during a positive BOLD response. Calibrating this parameter is therefore of great 
importance for increasing the system identifiability18. Despite its importance, as reflected by numerous attempts 
to design models and suggest improvements to them3,4,19, in most studies this parameter is arbitrarily assigned a 
physiologically plausible value (e.g., V0 =​ 0.04), owing to the ill-posedness of the inverse problem11,12,19.

While the DCM approach is often applied to the analysis of activation areas, such an arbitrary assumption 
about V0 is not always appropriate, and it might lead to inaccurate estimation of the model behavior. It is therefore 
necessary to consider the vascular content of areas showing significant BOLD activation in DCM studies. In this 
study we investigated how V0 influence DCM using both synthetic and real experiments. We approached the 
problem from a purely mathematical and modeling perspective, and did not consider the physiological mecha-
nism underlying the BOLD contrast.

Experiments
Synthetic Data.  Since ground-truth fMRI data are not available, a simulated architecture was chosen in this 
study. The model architecture, which is depicted in Fig. 3, comprises three regions: A1, A2, and A3. The extrinsic 
input is applied to A1, while A1 drives A2 and A3 directly, and gets feedback from them. We designed three arti-
ficial BOLD responses with three distinct V0 values for the three regions: = .V 0 04A

0
1 , = .V 0 02A

0
2 , and 

= .V 0 04A
0

3 . The experimental condition of the synthetic dataset involved successive blocks alternating between 
rest and task, starting with task. All connectivity parameters are set as 1. The prior expectations for the biophysical 
parameters follow the defaults set in SPM software12. The analysis was performed over 120 time points (repeat 
time, TR =​ 2s) in blocks of 6, giving 12 20-s blocks. The external stimulus had value of 1 and 0 when the stimulus 
was on and off, respectively11,20. We then added white Gaussian noise at a signal-to-noise ratio of 3 to the clear 
BOLD signal3. The addition of white Gaussian noise is a slight simplification, which violates the prior assump-
tions of DCM. This is because DCM expects serial correlations in observation noise that are, in part, mediated 
neuronally. However, this mild violation does not affect the point that we want to make using our simulations. 
Uncorrelated or white thermal noise is present in fMRI time-series; however, this is generally averaged away when 
taking region of interest summaries. Except where stated otherwise, all data manipulation (simulation and pro-
cessing) performed in this study was conducted using SPM software.

We specified 13 competing models in the model space. For all of these models, the exogenous stimulation was 
applied over area A1. Figure 4 shows the results of DCM analysis applied to the synthetic data when V0 was pre-
supposed to be correctly known ( = .V 0 04A

0
1 , = .V 0 02A

0
2 , and = .V 0 04A

0
3 ) in the analysis procedure. The values 

in brackets are V0 in these regions, and the coupling parameters are shown alongside the corresponding 

Figure 2.  Time course of the total output variance (a) and total effects sensitivity indices STi
 of V0 and other 

parameters (b) in an event-related paradigm for a 2s stimulus in the hemodynamic model. (a) The general 
uncertainty of the model output for all model variables is similar to the known BOLD responses. It starts to 
deviate from the baseline at approximately 2s after the onset of the stimulus, peaks at about 5s, and takes about 
13s to return to the baseline after the stimulus is turned off. (b) STi

 indicates the relative contribution of model 
output associated with variables Xi. It is clear that V0 play a leading role in driving the hemodynamic model 
output, especially during a positive BOLD response, indicating that calibrating V0 is an important parameter for 
raising the identifiability of hemodynamic system. The red line indicates the duration of the external stimulus.
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connections. Not surprisingly, DCM analysis can reliably and accurately identify the model architecture in this 
case (Fig. 4). However, when another set of unrealistic V0 value was introduced in the DCM analysis ( = .V 0 04A

0
1 , 

= .V 0 04A
0

2  and = .V 0 02A
0

3 ), this produced a completely different (and wrong) inferences about the architecture 
(Fig. 5). The most plausible model now had a false connection from A2 to A3, whereas the backward link from A2 
to A1 was missing. Figure 6 is another example for a different set of V0 values: = .V 0 02A

0
1 , = .V 0 04A

0
2 , and 

= .V 0 02A
0

3 . The results suggest that the choice of V0 value directly affects not only the estimated connection 
strength but also even the underlying architecture.

Figure 7 shows the results of combining all 13 models under the three different sets of prior assumptions about V0.  
We see here that the correct model under the correct prior assumptions is superior.

Real Data.  Real fMRI data were collected in a visual attention experiment, which can be downloaded freely 
from the SPM website (http://www.fil.ion.ucl.ac.uk/spm/). Details of the experimental paradigm and acquisition 
parameters are available elsewhere21. Four regions were selected for DCM analysis following a conventional SPM 
analysis. The entire model comprised four regions: V1, V5, PPC, and PFC. Figure 8 shows the locations of the 
regions and their time series that were entered into the DCM.

In this study we specified 17 competing models in the model space. In all of these competing models, the 
extrinsic influences of the inputs (e.g., a photic stimulus, indicated in green in Figs 9 and 10) on neuronal activity 
and the modulation of motion by the experimental manipulations (blue in Figs 9 and 10) were the same, but the 
attentional modulation of the response (yellow in Figs 9 and 10) could switch between functionally specialized 
sensory areas and the backward connection from area PFC to area PPC. Figure 9 shows the most reasonable 
model based on the present observations selected from the models space when V0 values of areas V1, V5, PPC, 
and PFC were assigned as 0.02, 0.02, 0.04, and 0.04 respectively. We then changed the V0 value in area V5, VV

0
5, 

from 0.02 to 0.04, while other conditions remained unchanged. In this case the most reasonable model did not 
contain the backward connection from area PFC to area PPC, and attentional modulation was imposed on the 
link from area PPC to area V5 (9). Its structure was completely different from the one in Figs 9 and 10 presents the 
model structure and results obtained comparisons of the DCMs.

Discussion
This study used DCM to address how the resting venous blood volume fraction (i.e., V0) influences effective con-
nectivity. The employment of an arbitrary V0 is universal in DCM analysis due to the ill-posedness of the inverse 
problem11,22. However, for the BOLD modality, the signal intensity is sensitive to the regional V0. This can result 
in the active domains that are subject to DCM analysis being overly influenced by those areas with large blood 
contents14. In this situation the use of incorrect V0 values might lead to inaccurate causality inference between 
brain areas. In this study we have addressed this concern by using both synthetic and real experiments. The 

Figure 3.  Simulated model. The value of all connectivity parameters are 1.

http://www.fil.ion.ucl.ac.uk/spm/
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obtained results show that the ability of DCM analysis to discover the effective connectivity depends critically on 
the assumed V0 value used in the analysis procedure. The choice of V0 value not only directly affects the estimated 
connection strengths, but more importantly might also affect the inferred connection structure. Making inappro-
priate assumptions about V0 could interfere with the accurate identification of causal correlations23. We therefore 
argue that prior knowledge about V0 should be introduced in DCM analysis, given that we have demonstrated 
that the use of the physiologically realistic V0 can improve the identifiability of the system. The incorporation 
of more accurate information (i.e., V0 values) in the analysis procedure can be expected to yield more accurate 
information about brain connectivity.

In illustrating the importance of valid prior expectations, in terms of inferences about models and their 
parameters, we have used what is called a ‘Bayesian illusion’. In other words, we have deliberately generated data 
in a way that violates prior expectations to show that Bayesian inversion produces posterior beliefs that are wrong. 
This is the basis of most perceptual illusions, in which stimuli are generated in an implausible way to produce 
illusory percepts in subjects. Indeed, the psychophysics of illusions are a powerful way to demonstrate a subject’s 
prior beliefs. An interesting question here is which is the best belief? For example, in Fig. 6, if we did not know the 
true parameters or architecture generating the data, then is this architecture ‘wrong’? As shown by the Bayesian 
model comparison, this model is a better explanation for the data in the sense that it provides an accurate but 
more parsimonious explanation than the model used to generate the data. Clearly, this is a philosophical question 
but has practical relevance when dealing with real world analyses.

In presenting these analyses, we are not implying that DCM is invalid. We are trying to illustrate the impor-
tance - and potential usefulness - of using more informed prior expectations. As noted above, we are effectively 
reporting a Bayesian illusion by generating data that violates prior expectations to show that posterior beliefs can 
deviate from ground truth. However, to illustrate this failure we had to use data that was very implausible: 
although a change in V0 from 0.04 to 0.02 may seem small, it corresponds a large departure from prior expecta-
tions. This is because it entails a doubling of the hemodynamic sensitivity to neuronal inputs. In other words, we 
have effectively multiplied the amplitude of one regional time-series in our simulations by 100%. When we 
repeated the analysis using a more plausible violation (of 10%), DCM was able to recover the correct model in 
most instances24.

Figure 4.  The most reasonable model based on the present observations with = .V 0 04A
0

1 , = .V 0 02A
0

2 , and 
= .V 0 04A

0
3 , selected from 13 competing models. The green line represents the extrinsic input. The coupling 

strength is shown alongside each corresponding connection. The values in brackets are the V0 values in the 
corresponding regions. The right graphs provide the results obtained in comparisons of the DCMs, illustrating 
that Model 3 is superior to the other models.
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The key issue that we have highlighted rests upon the conditional dependence between uninteresting parameters  
with tight priors (e.g., V0) and interesting parameters such as effective connectivity (that have relatively unin-
formative priors). The conditional dependency between posterior estimates means that improperly specified prior 
beliefs about V0 can be expressed in terms of connectivity estimates. This behaviour is well-known in DCM and 
its parameterisation has been designed to attenuate conditional independencies. For example, most Bayesian 
model comparisons deal with experimental effects mediated by the coefficients of the B matrix in Fig. 1. Our 
simulations exploited the conditional dependency between V0 and A, which is much less pronounced between V0 
and B. When we repeated the above simulations using a full connectivity (A) matrix but modelling an increase 
in the forward connection from A1 to A2 in the B matrix, DCM was able to recover the true model. This is 
because changing the V0 parameter cannot reproduce the effects of changing a condition-specific connection  
(B parameter)1.

We have used our results to illustrate the putative failure of DCM when violating its prior expectations (in 
terms of V0). However, DCM can be used to infer the values of V0 (either by treating it as a free parameter or using 
Bayesian model comparison). For example, if we combine the free energies across all three sets of 13 models in 
Figs 4–6, we can include different beliefs about V0 in our model space. Figure 7, shows the result of this Bayesian 
model comparison (noting that the previous figures expressed the log evidence or free energy relative to the 
worst model within each set). Here we see that the winning model corresponds to the correct model under the 
correct values of V0. The more interesting application of Bayesian model comparison, in this context, is the use 
of family-wise comparisons to compare the three sets of V0 parameters. In other words, we can use DCM to test 
different prior beliefs about V0 and assess whether empirically informed priors are better than the uniform priors 
currently adopted. This device has been used to assess the improvement in model evidence afforded by priors on 
connectivity from probabilistic tractography data10. In principle, exactly the same approach can be used to test 
the improvement in model evidence provided by empirical estimates of V0. A promising development in MRI 
physics that may provide such measures (VasA) uses the spectral behaviour of residuals from any fMRI timeseries 
to estimate V0 in a way that does not require any extra scans or data25.

In the ideal situation, perfect prior knowledge of V0 will make it possible for DCM analysis to reliably recon-
struct the connections between brain areas. However, in practice, the V0 value associated with the BOLD signal 
in a specific tissue region can not be determined. This has resulted in previous studies instead adopting an arbi-
trary V0 value. We suggest that more useful information could be obtained using two other techniques that are 
also based on magnetic resonance: magnetic resonance angiography (MRA) imaging and cerebral blood volume 
(CBV) imaging. In the hemodynamic model, V0 is the venous volume of blood present in a voxel; it represents 
the ratio of occupied vessels with sizes ranging from capillaries to large veins that all contribute to the fMRI 

Figure 5.  Same as Fig. 4 but with = .V 0 04A
0

1 , = .V 0 04A
0

2 , and = .V 0 02A
0

3  illustrate that Model 12 is 
superior to the other models.
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measurements in that area7,8. MRA images (each of which has a spatial resolution of 0.9375 ×​ 0.9375 ×​ 1.5 mm3 
in a typical MRA protocol) provide much finer detail than fMRI images (which have a typical resolution of 
3.75 ×​ 3.75 ×​ 6 mm3). MRA may therefore provide additional information about large blood vessels (veins and 
venules with a radius >​μm, depending on the magnetic-field intensity) that can be used to refine the V0 value22. 
On the other hand, CBV imaging measures the volume of blood across arteries, capillaries, and veins in a more 
direct manner, and it provides a slightly overestimated value of V0 due to the inclusion of arterial blood com-
ponents26–28. However, although the proposed methods have potential physiological meaning and attractive 
robustness, it is indeed difficult to determine if the combinative approach really present an improvement for 

Figure 6.  Same as Fig. 4 but with = .V 0 02A
0

1 , = .V 0 04A
0

2 , and = .V 0 02A
0

3  illustrate that Model 12 is 
superior to the other models.

Figure 7.  The comparisons of all 3 × 13 = 39 models for each of the 13 architectures under the three 
different sets of prior assumptions about V0. The correct model (Model 3) under the correct prior 
assumptions is superior. Set 1: = .V 0 04A

0
1 , = .V 0 02A

0
2 , = .V 0 04A

0
3 ; Set 2: = .V 0 04A

0
1 , = .V 0 04A

0
2 , = .V 0 02A

0
3 ; 

Set 3: = .V 0 02A
0

1 , = .V 0 04A
0

2 , = .V 0 02A
0

3 .
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DCM analysis, because simultaneous fMRI and electrophysiological measurement are unavailable. In fact, such 
a concern exists in all effective connectivity studies (includes DCM and Granger causal analysis, GCA). It is a 
logical argument what obtaining more realistic V0 information in DCM analysis would provide more reliable 
inferences about the properties of brain connectivity18. In our knowledge, there is the only study that compares 
causal connectivity determined from fMRI time series with actual neural coupling estimated from iEEG in a rat 

Figure 8.  Location of ROI and their time series. 

Figure 9.  The most reasonable model based on the present observations with = .V 0 02V
0

1 , = .V 0 02V
0

5 , 
= .V 0 04PPC

0 , and = .V 0 04PFC
0 , selected from 17 competing models. The green line represents the extrinsic 

input, the blue line represents the modulation of motion by experimental manipulation, and the yellow line 
represents attentional modulation. The right graphs provide the results obtained in comparisons of the DCMs, 
illustrating that Model 11 is superior to the other models.
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model of absence epilepsy, where fMRI and iEEG measurements are recorded neither at the same time nor in the 
same subject23. Currently, we are trying to design the psychological experiment to partly validate the effectiveness 
of proposed approach.

Recently there have been fairly extensive discussions on effective connectivity studies using neuroimaging 
methods29–33. Although there is still controversy about which technique is the most suitable for addressing the 
causal correlation of neural system (e.g., DCM versus Granger causality analysis, GCA), there is broad consensus 
that hemodynamic model/deconvolution and model inference/selection are crucial to identifying the connec-
tions among distributed brain areas34. DCM marries neurobiological and hemodynamic models and expresses 
causality at the level of neuronal dynamics that we are actually concerned with, whereas GCM operates at the 
level of the measured signals. The observed hemodynamic responses in the BOLD modality represent a second-
ary effect induced by neuronal activity. Different brain regions may exhibit marked differences in neurovascular 
coupling, and the associated difference in latencies, undershoots, and other features could lead to false inferences 
about connectivity. In this sense, DCM is superior to GCM. However, the use of nonlinear physiological mode-
ling generally increases the modeling complexity. Our results suggest that the hemodynamic model parameters 
may be helpful for eliminating imaging bias but it may impair the overall system identifiability. In other words, 
the benefit of introducing the hemodynamic model parameters may be partly offset by difficulties in parameter 
estimation and conditional dependencies.

It also should be noted that the relationship between neuronal activity and BOLD signals is still being 
debated35, with in particular it being unclear how neuronal activity in the hemodynamic model corresponds to 
physical mechanisms underlying the measured electro-physiological signals, such as obtained using EEG and 
MEG36,37. This might be another factor in uncovering causality using the DCM analysis23.

These findings could lead to future directions for DCM developments29. Moreover, we would like to highlight 
the relevance of system identifiability to any causal inference about neural systems (not just DCM) using neuro-
imaging techniques. Although nonlinear modeling is indispensable for neural signal analysis, the nonlinearity of 
the signal does not always imply the validity of the application of a nonlinear model38. For a low-time-resolution 
BOLD signal, nonlinear GCA only can provide a predictive performance comparable to that obtained by linear 
GCA39, suggesting that it would be more efficient to apply a linear model when describing such real-world data 
sets. This is because nonlinear models are more complex and require a greater number of parameters than linear 
models, since the model efficiency depends on a trade-off between the complexity of the model and the accuracy 
of data fitting40. In addition, from a pure mathematical perspective, DCM, GCA, and indeed scientific method 
used for making evidence-based inferences involve solving an inverse problem. They use the results of actual 
observations to infer model information (e.g., parameters, and architecture) characterizing the system under 
investigation. The internal mechanisms of the system always have a substantially higher order than the external 

Figure 10.  Same as Fig. 9, but with = .V 0 02V
0

1 , = .V 0 04V
0

5 , = .V 0 04PPC
0 , and = .V 0 04PFC

0 . The right 
graphs illustrate that Model 14 is superior to the other models.
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observations41. Although the modeling approach is closely linked to a reductionistic world view, the description 
of the system still requires a large and complex model42, and such a model is often poorly identifiable. In this sit-
uation it is hardly reasonable to expect that it will possible to identify true information from the experimentally 
measured data43,44. Instead, the task is to find biologically reasonable parameter values and modeling structure 
that together describe the data adequately, rather than providing true information45. The goal of identification is 
to obtain some insight into the system. Therefore, despite these limitations, we still believe that applying the DCM 
technique to neuroimaging data can provide useful insight at least on a rational basis into the understanding of 
brain connectivity.
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