
RESEARCH ARTICLE

Extract, transform, load framework for the

conversion of health databases to OMOP

Juan C. QuirozID
1*, Tim Chard1, Zhisheng Sa1, Angus RitchieID

2,3, Louisa Jorm1,

Blanca Gallego1

1 Centre for Big Data Research in Health, UNSW, Sydney, Australia, 2 Concord Clinical School, University of

Sydney, Sydney, Australia, 3 Health Informatics Unit, Sydney Local Health District, Camperdown, Australia

* juan.quiroz@unsw.edu.au

Abstract

Common data models standardize the structures and semantics of health datasets,

enabling reproducibility and large-scale studies that leverage the data from multiple loca-

tions and settings. The Observational Medical Outcomes Partnership Common Data Model

(OMOP CDM) is one of the leading common data models. While there is a strong incentive

to convert datasets to OMOP, the conversion is time and resource-intensive, leaving the

research community in need of tools for mapping data to OMOP. We propose an extract,

transform, load (ETL) framework that is metadata-driven and generic across source data-

sets. The ETL framework uses a new data manipulation language (DML) that organizes

SQL snippets in YAML. Our framework includes a compiler that converts YAML files with

mapping logic into an ETL script. Access to the ETL framework is available via a web appli-

cation, allowing users to upload and edit YAML files via web editor and obtain an ETL SQL

script for use in development environments. The structure of the DML maximizes readability,

refactoring, and maintainability, while minimizing technical debt and standardizing the writ-

ing of ETL operations for mapping to OMOP. Our framework also supports transparency of

the mapping process and reuse by different institutions.

Introduction

Electronic health records (EHRs), administrative data, clinical registries, and linked data

enable observational studies and evidence-based research that leverage the data of large and

heterogeneous populations [1–3]. The growing availability of EHR-linked biobanks also facili-

tates research and implementation of patient phenotyping and personalized medicine [4].

Depending on the location, context, and purpose of the data, different datasets store informa-

tion using different structures and semantics, which makes conducting analysis across them a

challenge. Common data models offer a solution by standardizing the structure and semantics

of data. The Observational Medical Outcomes Partnership Common Data Model (OMOP

CDM), managed by the Observational Health Data Sciences and Informatics (OHDSI), con-

tinues to be one of the leading common data models for leveraging clinical and administrative

health data for research purposes [5]. Since its introduction, different types of health databases

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Quiroz JC, Chard T, Sa Z, Ritchie A, Jorm

L, Gallego B (2022) Extract, transform, load

framework for the conversion of health databases

to OMOP. PLoS ONE 17(4): e0266911. https://doi.

org/10.1371/journal.pone.0266911

Editor: Thomas Martin Deserno, University of

Braunschweig - Institute of Technology, GERMANY

Received: October 25, 2021

Accepted: March 29, 2022

Published: April 11, 2022

Copyright: © 2022 Quiroz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

this article are available in GitHub at https://github.

com/clinical-ai/omop-etl.

Funding: This work has been funded by the Sydney

Local Health Area District under the umbrella of

Australian Research Data Commons (ARDC) grant

10.47486/PS014. ARDC had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-0241-5376
https://orcid.org/0000-0002-8164-8786
https://doi.org/10.1371/journal.pone.0266911
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266911&domain=pdf&date_stamp=2022-04-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266911&domain=pdf&date_stamp=2022-04-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266911&domain=pdf&date_stamp=2022-04-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266911&domain=pdf&date_stamp=2022-04-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266911&domain=pdf&date_stamp=2022-04-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0266911&domain=pdf&date_stamp=2022-04-11
https://doi.org/10.1371/journal.pone.0266911
https://doi.org/10.1371/journal.pone.0266911
http://creativecommons.org/licenses/by/4.0/
https://github.com/clinical-ai/omop-etl
https://github.com/clinical-ai/omop-etl


have been mapped to OMOP CDM: EHRs [6–10], claims datasets [9, 11, 12], biospecimen

data [13], and registries [14].

Converting routinely collected health data to OMOP is driven by the aims of: (1) efficiency–

reuse of analytics tools and software, (2) transparency and reproducibility—compare findings

from different data sources with a variety of methods without sharing the actual data and pro-

tecting patient privacy, and (3) scalability—conducting studies by leveraging the data from mul-

tiple locations and settings [5, 15]. The need for OMOP also stems from health databases

originating or being designed to track patients within a hospital, mainly for administrative pur-

poses such as billing and managing claims, not for conducting observational studies or other

study designs [2, 16]. At its best, data in OMOP allows for multicenter observational studies,

allowing for models to be externally validated across health datasets over the world [5, 17, 18].

Converting a dataset to the OMOP CDM entails the development of an extract, transform,

load process (ETL), which converts both the structure and semantics of the original data to the

standards defined by the OMOP CDM. Conceptually, the mapping process identifies how

fields in the source health datasets relate to the fields in OMOP CDM and the data transforma-

tions that need to take place. Resources currently available to a team or institution interested

in converting their data to OMOP include: OMOP experts, other users who have mapped data

to OMOP, OHDSI web forums, OHDSI tools, and private companies that perform the ETL

process for a fee.

In contrast to generic ETL tools (i.e. Talend Open Studio), the OHDSI tools (i.e. White

Rabbit, Rabbit in a Hat) were developed exclusively for mapping data to OMOP. White Rabbit

helps explore and understand the source database, while Rabbit in a Hat visually documents

the mapping from source to OMOP [19]. However, the graphical approach of Rabbit in a Hat

and ETL tools such as Talend Open Studio becomes visually cumbersome when dealing with a

large number of tables and columns. Confusing visual clutter is compounded when dealing

with complex mapping logic involving multiple source tables—commonly encountered in the

mapping of sophisticated, proprietary relational databases used by commercial EHRs. Tools

are required that improve the ETL process, complement existing generic and OHDSI ETL

tools, enable mapping efforts from research institutions to be shared, and standardize the writ-

ing of mapping operations for complex and simple datasets.

The aim of this paper is to develop an ETL framework for the conversion of health data-

bases to the Observational Medical Outcomes Partnership Common Data Model (OMOP

CDM) that supports transparency of the mapping process, readability, refactoring, and main-

tainability. Our proposed ETL framework uses a data manipulation language (DML) that orga-

nizes SQL in YAML, a widely used human-readable serialization language. The ETL

framework was developed as part of our ongoing work mapping Cerner Millennium (Cerner

Corporation, Kansas City, MO, USA, “CERNER”) electronic health records used by Australian

Local Health Districts to OMOP CDM, and all examples presented in this paper use this CER-

NER to OMOP conversion to showcase the DML.

Extract, transform, load framework

Fig 1 illustrates the architecture of our ETL process from a source database to the target

OMOP CDM dataset. A compiler reads rules written in our data manipulation language

(DML) and generates an ETL SQL script containing all the executable operations to extract,

transform, and load the data from the source database to OMOP. The ETL script can then be

used in any development environment. Access to the source code of the compiler is available

at https://github.com/clinical-ai/omop-etl. See S1 File for an example of the SQL script gener-

ated from the YAML in Fig 2.

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 2 / 13

https://github.com/clinical-ai/omop-etl
https://doi.org/10.1371/journal.pone.0266911


Data manipulation language

The DML uses YAML and PostgreSQL syntax. YAML is a human-readable data format, com-

monly used for storing configuration settings and metadata of software programs. The DML

uses YAML key-value pairs to define the source data, the target OMOP tables and columns,

and the extract, transform, and load operations to map from source data to OMOP. Statements

for extraction from the source schema are coded in the YAML values.

The source-to-OMOP ETL operations are organized by OMOP table (i.e. PERSON,

OBSERVATION_PERIOD, DRUG_EXPOSURE). Each YAML file describes the mapping

logic for a target OMOP table (Fig 2) and contains three sections: (1) name of the OMOP table

being mapped (YAML field name), (2) definition of primary keys used by the ETL framework

to manage the load (insert) operations (YAML field primary_key), and (3) mapping rules for

each column in the targeted OMOP table (YAML field columns).

Defining primary keys

The first step in the ETL framework maps every row in the OMOP table to all of the relevant

rows in the source table(s). The primary_key YAML field (Figs 2 and 3) defines how to con-

struct the primary key of the OMOP table and whether it is composed of one or more sources.

The framework uses definitions of primary keys to handle the load operations. In cases where

an OMOP table is populated with the data from a single source table (as in the case of populat-

ing the OMOP Person table with data from the CERNER Person table, Fig 2), the framework

directly derives the primary key for the OMOP table from the primary key in the source table.

When the primary key of the source table does not have a compatible type for the primary key

of the OMOP table, such as when the source table has a composite primary key, the ETL

framework creates an intermediate table that maps the rows from the source to the target

table. Similarly, in cases where the data from multiple source tables are used to populate a

Fig 1. Architecture of the extract, transform, load (ETL) framework. A compiler converts mapping logic, written by

organizing SQL snippets in YAML key-value pairs, to an ETL SQL script, which contains all the executable operations

to map from the source database to OMOP.

https://doi.org/10.1371/journal.pone.0266911.g001

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 3 / 13

https://doi.org/10.1371/journal.pone.0266911.g001
https://doi.org/10.1371/journal.pone.0266911


single OMOP table, i.e. the OMOP table represents a union of two or more source tables (Fig

3), multiple primary key sources can be defined. Here the ETL framework creates an interme-

diate table with all the relevant information (the source unique identifier) for each source table

and maps each row from the source tables to the appropriate row in the target table.

Fig 3 illustrates the primary key definition for the CONDITION_OCCURRENCE OMOP

table, which is populated by mapping the medical codes from two CERNER tables: (1) diagno-

sis and (2) problem. The primary key YAML field defines a source for each of the diagnosis

and problem tables, along with an alias ("DIAGNOSIS_PK" and "PROBLEM_PK”) used to dis-

tinguish between each source table when writing mapping logic (Fig 5).

Defining columns

The information needed to define the extract and transform operations from source data to an

OMOP column are: (1) the name of the targeted OMOP column (YAML field name), (2) a list-

ing of one or more source tables containing the data needed to populate the target field

(YAML field tables), and (3) an SQL expression defining how one or more fields from the

Fig 2. Source to OMOP YAML file structure. Rules for mapping from the CERNER PERSON table to the OMOP

PERSON table, with rules defined for two columns of the OMOP PERSON table: year_of_birth and death_datetime.

For each target table, the mapping rules are defined on a column-by-column basis using SQL snippets organized into

YAML fields. Mapping a table requires three sections: (1) name of the OMOP table being mapped, (2) definition of

primary keys used by the ETL framework to manage the load (insert) operations, and (3) mapping rules for columns in

the OMOP table.

https://doi.org/10.1371/journal.pone.0266911.g002

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 4 / 13

https://doi.org/10.1371/journal.pone.0266911.g002
https://doi.org/10.1371/journal.pone.0266911


source table(s) map to the OMOP field (YAML field expression). Fig 2 shows the extract and

transform operations to populate two columns (year_of_birth and death_datetime) of the

PERSON OMOP table. The expression field supports PostgreSQL syntax, enabling the use of

all functions and syntax supported by PostgreSQL (see Fig 4). For complex mapping logic, the

tables field also supports SQL select queries.

When data from multiple source tables is needed to populate an OMOP field, as illustrated

in Fig 4, the constraints field (a Boolean PostgreSQL expression) can be used to define how the

source tables are joined and to filter rows from the source tables that meet the conditions

listed. Constraints can also be used with a single source table and to restrict fields on the

basis of primary keys (as shown in Fig 3). See S1 File for an example of the SQL generated for

Fig 3.

Fig 3. Definition of primary keys in YAML. Definition of the primary key for the OMOP

CONDITION_OCCURRENCE table, which is populated—in the illustrated example—with the data from two source

tables: DIAGNOSIS and PROBLEM. For the framework to handle the load operations, the primary keys of each source

table must be defined under the sources YAML field.

https://doi.org/10.1371/journal.pone.0266911.g003

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 5 / 13

https://doi.org/10.1371/journal.pone.0266911.g003
https://doi.org/10.1371/journal.pone.0266911


Multiple rules per column

The mapping logic defines operations on a column-by-column basis, but in complex cases, all

the rows needing to be mapped may be updated using separate rules. This is especially useful

for breaking down complex logic into rules that map subsets of a single column. Fig 5 shows

an example of two rules mapping source data to the condition_start_date OMOP column in

the CONDITION_OCCURRENCE OMOP table (https://github.com/OHDSI/

TheBookOfOhdsi). This table contains records indicating the presence of a disease or medical

condition. In Fig 5, one rule is used to map diagnosis events, and the second rule maps prob-

lem events to OMOP condition occurrence events. The mapping operations in Fig 5 will result

in (1) the dates of diagnosis events from the source DIAGNOSIS table and (2) the dates of

problem events from the source PROBLEM table being inserted as entries into the target

Fig 5. Example of complex mapping rules. Two rules are used to map diagnosis records and problem records from

multiple source tables to the condition_start_date field in the OMOP CONDITION_OCCURRENCE table. Multiple

rules can be written to map source data to a single OMOP column, dividing complex logic into queries that are easier

to read and debug.

https://doi.org/10.1371/journal.pone.0266911.g005

Fig 4. Use of PostgreSQL syntax to define mapping logic. An example of mapping logic to populate the

gender_concept_id and the gender_source_value columns in the OMOP PERSON table. The transformation to

populate gender_concept_id uses a CASE statement (if-then-else). The transformation to populate

gender_source_value uses the data from two source tables, with the constraint indicating how these two source tables

are joined.

https://doi.org/10.1371/journal.pone.0266911.g004

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 6 / 13

https://github.com/OHDSI/TheBookOfOhdsi
https://github.com/OHDSI/TheBookOfOhdsi
https://doi.org/10.1371/journal.pone.0266911.g005
https://doi.org/10.1371/journal.pone.0266911.g004
https://doi.org/10.1371/journal.pone.0266911


CONDITION_OCCURRENCE OMOP table. When multiple primary keys are defined, the

alias of the primary key is used to indicate the primary key corresponding to a particular rule.

Reducing repetition in mapping logic

The use of YAML allows mapping rules to be written using YAML anchors and aliases. Anchors

and aliases enable YAML fields to be defined once and reused multiple times, removing repeti-

tion in the YAML files. Fig 6 shows an example of an anchor being defined (“default_values”),

which is subsequently used in the two columns year_of_birth and death_datetime.

Web application

A web application (http://www.omop.link/) provides end-users with API access to the YAML to-

SQL compiler, including an editor for writing mapping logic, validating the DML, and default

pre-filled OMOP v6 YAML for OMOP tables (see S1 Fig for web editor view). The web applica-

tion converts the YAML ETL operations to an ETL SQL script containing all the executable opera-

tions to extract, transform, and load the data from the source database to OMOP. No information

about the source database schema is needed, as all the necessary logic is contained in the YAML

content. The use of our DML and our web application thus has the potential to support the map-

ping from any source SQL database to OMOP. The web application uses React, Bootstrap, and

the Monaco Editor for the front-end. The backend uses the Python FastAPI library.

Results

System testing

The ETL framework was system tested with 16 test cases (S1 Table) consisting of different

combinations of features of the DML (for example, cases where the target column is a foreign

Fig 6. Use of YAML anchors and aliases. Rules for mapping from the CERNER PERSON table to the OMOP

PERSON table, using YAML anchors to define a set of default values to be used by the column fields.

https://doi.org/10.1371/journal.pone.0266911.g006

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 7 / 13

http://www.omop.link/
https://doi.org/10.1371/journal.pone.0266911.g006
https://doi.org/10.1371/journal.pone.0266911


key or the target table involves primary keys from multiple source tables). The selection of the

most common features was guided by our mapping of CERNER electronic health records used

by Australian Local Health Districts to OMOP CDM. Once these test cases were identified, we

chose columns in the OMOP CDM tables that were appropriate candidates for each test case.

We then manually generated synthetic CERNER source data and the expected mapped OMOP

data for the 16 test cases for comparison against the output of the ETL framework (see S2 Fig

for a diagram of how the CERNER source test data was associated with OMOP tables). Finally,

we wrote the corresponding YAML files using our DML and generated an SQL script using

our compiler. The test CERNER data was converted to OMOP by executing the SQL script

against a PostgreSQL database. The resulting OMOP data was then compared with the manu-

ally mapped data, with the resulting OMOP data looking as expected by the OMOP CDM.

Throughout the development lifecycle, the system was also unit tested. The unit tests are

included as part of the open-source software available in https://github.com/clinical-ai/omop-etl.

Readability

Code Listing 1 in S2 File shows a single SQL statement that maps from the MIMIC-III data-

base—comprised of ICU patients from a large tertiary care hospital—to the OMOP PERSON

table [20, 21]. Code listing 1 is an example of a spaghetti query, a complex monolithic SQL

query. Reading the spaghetti query from Code listing 1 involves understanding all the elements

in the query: three tables, two left joins, three sub-queries, 18 source fields, and 18 target fields.

The WITH clause and the structure of the INSERT statement create two degrees of separation

between source and target fields, affecting readability. Even for one-to-one mappings (i.e.

year_of_birth, gender_source_value), the 18 variables in the insert statement must be mentally

lined up with the 18 variables in the SELECT statement to determine which variable is which.

Code listing 2 in S3 File shows the equivalent mapping from the MIMIC-III database to the

OMOP PERSON table using our framework, which breaks down the mapping of the entire

table into smaller tasks: mapping column by column. The structure imposed by YAML

increases the number of lines compared to Code listing 1 but lowers the time and complexity

involved in reading the spaghetti query. The source fields used to populate the target fields are

placed within the same YAML block, removing the separation in the spaghetti query from

Code listing 1. The structured blocks in YAML are also easier to understand for non-experts

compared to the single SQL statement, because the YAML keys use names that are self-explan-

atory: columns, tables, expression, constraints.

Development and version control

The spaghetti query from Code listing 1 (S2 File) is not amenable to multiple developers work-

ing on it at the same time, due to all the interconnected parts in the query (the sub-queries and

the joins). In contrast, development with our YAML framework enables developers to work

concurrently on the mapping of different columns of a table. This also integrates effectively

with source control, with changes reflected with the addition or deletion of YAML blocks, as

opposed to changes in the middle of a spaghetti query.

Refactoring and maintainability

The spaghetti query from Code listing 1 (S2 File) has a higher refactoring and maintenance

cost than the equivalent logic written using our ETL framework. These costs are a result of the

poor readability of spaghetti queries. Refactoring and maintenance costs are even higher if a

developer other than the original developer does the refactoring or maintenance, a common

occurrence in the lifecycle of software projects, because the new developer must understand

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 8 / 13

https://github.com/clinical-ai/omop-etl
https://doi.org/10.1371/journal.pone.0266911


the code from scratch. Any schema change to the source data or the target data will incur the

cost of understanding the spaghetti query (to determine where to make changes) and intro-

duce the risk of compromising the integrity of the query (as any change has the potential to

affect all fields).

The YAML equivalent in Code listing 2 (S3 File) lowers the cost of refactoring because only

the relevant YAML blocks need to be understood and changed, by the original or new develop-

ers. The risk of introducing errors is minimized because any new changes to the mapping of a

column does not affect any other column. Any schema changes requiring new table joins, are

easier to write because there is no dependency on other columns. For example, adding or edit-

ing a left join to a column using our YAML framework involves the simple task of adding or

modifying a single line under the constraints key. This can be achieved easily and indepen-

dently from the other columns, as well as from any other constraint within the column under

consideration.

Discussion

Our work was driven by the need for tools that support ETL processes when mapping health

datasets to OMOP. This new ETL design approach is driven by the design principles of col-

umn-by-column mapping of data to OMOP, maximizing readability, and standardizing the

writing of ETL operations for mapping datasets to OMOP. Our framework divides the ETL

process into (1) a core ETL pipeline that reads and executes extract-transform operations from

YAML files, and (2) YAML files that organize SQL snippets defining ETL operations on a col-

umn-by-column basis. This approach makes the core ETL pipeline reusable to other research

groups, accessible via a web application, with users being responsible for writing the YAML

files with the ETL operations. It also enables our tool to be used with sensitive health datasets,

as our web application only relies on the YAML content to generate the ETL script that can be

used in various deployment and secure environments. The definition of a YAML schema in

our DML also provides validation of YAML files, ensuring that rules written by users with our

DML follow the right structure, standardizing the writing of OMOP mapping rules.

In contrast to an ETL process written entirely in a programming language such as Python

(or otherwise), our approach stores the ETL operations in separate YAML files, making them

easily accessible and promoting transparency of the ETL process. In contrast to an ETL process

written entirely as an SQL script, the structure of the YAML configuration leads to readable

ETL logic by defining operations on a column-by-column basis. Our proposed framework

provides an alternative to existing ETL pipelines and can be used in combination with existing

ETL frameworks, expanding the toolbox for mapping complex datasets to OMOP.

The column-by-column processing of our framework tackles the spaghetti query anti-pat-

tern [22], as forcing users to think of data manipulation on a column-by-column basis is a

form of divide-and-conquer that encourages users to write simple queries. This is in contrast

to mapping data on a row-by-row basis, with a single complex (spaghetti) query defining the

transformations for all the columns of a table. Writing rules on a column-by-column basis also

allows for mapping logic to be written for a subset of OMOP, with later additions simply con-

sisting of adding column mappings to the YAML files. Hence, logic added to map new col-

umns does not affect or change prior column definitions, making it less likely that bugs will be

introduced as a result of revising mapping logic. Finally, the column-centric approach also

allows flexibility in the mapping process, afforded by both the SQL and YAML syntax,

enabling the same logic to be written in different ways.

The resulting ETL operations are easier to read and understand in comparison to spaghetti

queries. The readability facilitates debugging, refactoring, and understanding by users other

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 9 / 13

https://doi.org/10.1371/journal.pone.0266911


than the original writer of the mapping logic. This serves to minimize the technical debt associ-

ated with maintaining the mapping logic and “bad smells” (code suggestive of design prob-

lems) of complex SQL queries [23, 24]. The readability of our DML also enables the sharing of

the mapping logic with stakeholders who are not database experts and across institutions map-

ping data to OMOP. Sharing mapping logic, or subsets thereof, is as simple as sharing the

YAML files.

Our web application and ETL framework have several advantages for health datasets and

sensitive data. The web application does not need access to the source data. Users have the

freedom to write rules inside a secure environment or within firewalls meant to protect sensi-

tive health data. Because rules do not contain sensitive information, they can be uploaded to

the web application, converted into an ETL SQL script, which can then be executed in any

number of environments.

An OMOP CDM goal is to increase the transparency and replicability of real-world evi-

dence research. If the first step in performing these research studies—the mapping of the

source data to OMOP—is not transparent, reproducibility may be compromised. Our ETL

framework and DML prioritize mapping logic standardization and readability, promoting

transparency and reproducibility.

Comparison with existing literature

Rabbit in a Hat is a graphical documentation tool for generating mapping requirements [19],

with mappings defined by drawing arrows from source tables to the corresponding columns in

OMOP tables. When mapping a large number of tables with a large number of columns, con-

fusing visual clutter is a disadvantage, and it does not lend itself to complex mapping logic

(multiple source tables used to populate one OMOP column). Rabbit in a Hat generates a map-

ping Word document (a requirements specification), that must then be coded by software

engineers or a database expert. It can also generate an SQL skeleton including all fields to be

mapped, saving developers the time to copy field names to SQL, but it still requires the actual

logic to be implemented.

Our DML and YAML syntax can easily be integrated in the notes section of Rabbit in a Hat,

providing users with a structured format to define the transformation logic associated with the

arrows drawn between source and target fields. The readability and YAML structure also

enable stakeholders from medical institutions to complete some of the YAML fields in Rabbit

in a Hat, saving time for the developer who finalizes the mapping logic. The DML and YAML

syntax can also be incorporated into the notes section of any graphical ETL tool, such as

Talend Open Studio.

Limitations

For complex health databases, such as CERNER EHR, the most challenging aspect of mapping

data to OMOP is determining the logic that will best fit the source data to the OMOP CDM

constraints with minimal data loss [15]. Our ETL framework does not address this need, and

instead focuses on the standardization of mapping logic and improving transparency of the

ETL process. However, the research community and health institutions need more tools to

support this process, such as OHDSI’s White Rabbit.

Vocabulary mapping is a particularly challenging aspect that is commonly highlighted in

studies mapping to OMOP or standardizing medical terminologies [9, 25]. As such, improve-

ments to tools such as Usagi [26] and natural language processing approaches are needed to

support vocabulary mapping. This effort has been left for future work.

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 10 / 13

https://doi.org/10.1371/journal.pone.0266911


The Web API tool currently generates an ETL PostgreSQL script. However, this can be eas-

ily extended to generate scripts for other relational database management systems (MySQL,

Oracle) and in more dynamic scripting languages (Python, R) as future work.

Our ETL framework has undergone unit and system testing, but no user study or survey

has been conducted to quantify the benefits of our approach. The discussion of benefits of our

approach is based on established good software engineering practice and hands-on experience

using the framework to map CERNER data to OMOP.

Conclusion

The ETL framework proposed in this study was developed as part of our effort to map the elec-

tronic health records of local health districts in Australia to OMOP. Our team is developing

new tools to improve the current mapping efforts to OMOP, enabling institutions to map data-

sets to OMOP at a lower cost and complexity, helping to build capacity for health services to

partner in advancing data science. The design of the ETL framework is also driven by the goals

of the OHDSI community, to increase transparency and reproducibility of research, and the

sharing of tools that will facilitate cross-institutional research. Our ETL framework achieves

this through a DML that is readable and easy to share, and a web application enabling research

teams to use our DML for mapping their data to OMOP.

Supporting information

S1 File. SQL script generated by the framework. The YAML used to create this SQL script is

illustrated Fig 2 of the manuscript. This script maps data to the year_of_birth and death_date-

time of the OMOP Person table. The mapping table maps the rows in the target table (OMOP

Person) to the source tables, in this case being the CERNER Person table.

(PDF)

S2 File. Code listing 1. SQL script used to map data from the MIMIC-III database to the

OMOP PERSON table.

(PDF)

S3 File. Code listing 2. YAML script used to map data from the MIMIC-III database to the

OMOP PERSON table. Equivalent to the SQL script from Code Listing 1.

(PDF)

S1 Fig. ETL framework web application. The web application allows users to enter their

YAML mapping logic, which gets converted to an ETL SQL script that can be executed in a

deployed environment. This is accessible at https://www.omop.link.

(PNG)

S2 Fig. Mapping of simulated CERNER data to OMOP. This mapping captures the data con-

version to test features of the ETL framework.

(PNG)

S1 Table. Validation test cases. Test cases to validate the ETL framework, with the collective

set of test cases evaluating all features of the ETL framework.

(PDF)

Acknowledgments

Dr. Malcolm Gillies and Dr. Oscar Perez-Concha for feedback on ETL processes. Dr. Malcolm

Gillies for feedback on results section.

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 11 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266911.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266911.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266911.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266911.s004
https://www.omop.link
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266911.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0266911.s006
https://doi.org/10.1371/journal.pone.0266911


Author Contributions

Conceptualization: Juan C. Quiroz, Tim Chard, Zhisheng Sa, Angus Ritchie, Blanca Gallego.

Funding acquisition: Blanca Gallego.

Methodology: Juan C. Quiroz, Tim Chard, Zhisheng Sa.

Project administration: Blanca Gallego.

Software: Tim Chard.

Supervision: Blanca Gallego.

Validation: Blanca Gallego.

Writing – original draft: Juan C. Quiroz.

Writing – review & editing: Juan C. Quiroz, Tim Chard, Zhisheng Sa, Angus Ritchie, Louisa

Jorm, Blanca Gallego.

References
1. Harron K, Dibben C, Boyd J, Hjern A, Azimaee M, Barreto ML, et al. Challenges in administrative data

linkage for research. Big Data Soc. 2017; 4: 2053951717745678. https://doi.org/10.1177/

2053951717745678 PMID: 30381794

2. Casey JA, Schwartz BS, Stewart WF, Adler NE. Using Electronic Health Records for Population Health

Research: A Review of Methods and Applications. Annu Rev Public Health. 2016; 37: 61–81. https://

doi.org/10.1146/annurev-publhealth-032315-021353 PMID: 26667605

3. Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not

Available. Am J Epidemiol. 2016; 183: 758–764. https://doi.org/10.1093/aje/kwv254 PMID: 26994063

4. Abul-Husn NS, Kenny EE. Personalized Medicine and the Power of Electronic Health Records. Cell.

2019; 177: 58–69. https://doi.org/10.1016/j.cell.2019.02.039 PMID: 30901549

5. FitzHenry F, Resnic FS, Robbins SL, Denton J, Nookala L, Meeker D, et al. Creating a Common Data

Model for Comparative Effectiveness with the Observational Medical Outcomes Partnership. Appl Clin

Inform. 2015; 06: 536–547. https://doi.org/10.4338/ACI-2014-12-CR-0121 PMID: 26448797

6. Zhou X, Murugesan S, Bhullar H, Liu Q, Cai B, Wentworth C, et al. An Evaluation of the THIN Database

in the OMOP Common Data Model for Active Drug Safety Surveillance. Drug Saf. 2013; 36: 119–134.

https://doi.org/10.1007/s40264-012-0009-3 PMID: 23329543

7. Lamer A, Depas N, Doutreligne M, Parrot A, Verloop D, Defebvre M-M, et al. Transforming French Elec-

tronic Health Records into the Observational Medical Outcome Partnership’s Common Data Model: A

Feasibility Study. Appl Clin Inform. 2020; 11: 13–22. https://doi.org/10.1055/s-0039-3402754 PMID:

31914471

8. Matcho A, Ryan P, Fife D, Reich C. Fidelity Assessment of a Clinical Practice Research Datalink Con-

version to the OMOP Common Data Model. Drug Saf. 2014; 37: 945–959. https://doi.org/10.1007/

s40264-014-0214-3 PMID: 25187016

9. Lai EC-C, Ryan P, Zhang Y, Schuemie M, Hardy NC, Kamijima Y, et al. Applying a common data model

to Asian databases for multinational pharmacoepidemiologic studies: opportunities and challenges. Clin

Epidemiol. 2018; 10: 875–885. https://doi.org/10.2147/CLEP.S149961 PMID: 30100761

10. Ke L, Sa D, Sl D, B V, A C, D P, et al. Incrementally Transforming Electronic Medical Records into the

Observational Medical Outcomes Partnership Common Data Model: A Multidimensional Quality Assur-

ance Approach. Appl Clin Inform. 2019; 10: 794–803. https://doi.org/10.1055/s-0039-1697598 PMID:

31645076

11. Haberson A, Rinner C, Schöberl A, Gall W. Feasibility of Mapping Austrian Health Claims Data to the

OMOP Common Data Model. J Med Syst. 2019; 43: 314. https://doi.org/10.1007/s10916-019-1436-9

PMID: 31494719

12. Overhage JM, Ryan PB, Reich CG, Hartzema AG, Stang PE. Validation of a common data model for

active safety surveillance research. J Am Med Inform Assoc. 2012; 19: 54–60. https://doi.org/10.1136/

amiajnl-2011-000376 PMID: 22037893

13. Michael CL, Sholle ET, Wulff RT, Roboz GJ, Campion TR. Mapping Local Biospecimen Records to the

OMOP Common Data Model. AMIA Summits Transl Sci Proc. 2020; 2020: 422–429. PMID: 32477663

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 12 / 13

https://doi.org/10.1177/2053951717745678
https://doi.org/10.1177/2053951717745678
http://www.ncbi.nlm.nih.gov/pubmed/30381794
https://doi.org/10.1146/annurev-publhealth-032315-021353
https://doi.org/10.1146/annurev-publhealth-032315-021353
http://www.ncbi.nlm.nih.gov/pubmed/26667605
https://doi.org/10.1093/aje/kwv254
http://www.ncbi.nlm.nih.gov/pubmed/26994063
https://doi.org/10.1016/j.cell.2019.02.039
http://www.ncbi.nlm.nih.gov/pubmed/30901549
https://doi.org/10.4338/ACI-2014-12-CR-0121
http://www.ncbi.nlm.nih.gov/pubmed/26448797
https://doi.org/10.1007/s40264-012-0009-3
http://www.ncbi.nlm.nih.gov/pubmed/23329543
https://doi.org/10.1055/s-0039-3402754
http://www.ncbi.nlm.nih.gov/pubmed/31914471
https://doi.org/10.1007/s40264-014-0214-3
https://doi.org/10.1007/s40264-014-0214-3
http://www.ncbi.nlm.nih.gov/pubmed/25187016
https://doi.org/10.2147/CLEP.S149961
http://www.ncbi.nlm.nih.gov/pubmed/30100761
https://doi.org/10.1055/s-0039-1697598
http://www.ncbi.nlm.nih.gov/pubmed/31645076
https://doi.org/10.1007/s10916-019-1436-9
http://www.ncbi.nlm.nih.gov/pubmed/31494719
https://doi.org/10.1136/amiajnl-2011-000376
https://doi.org/10.1136/amiajnl-2011-000376
http://www.ncbi.nlm.nih.gov/pubmed/22037893
http://www.ncbi.nlm.nih.gov/pubmed/32477663
https://doi.org/10.1371/journal.pone.0266911


14. Garza M, Del Fiol G, Tenenbaum J, Walden A, Zozus MN. Evaluating common data models for use

with a longitudinal community registry. J Biomed Inform. 2016; 64: 333–341. https://doi.org/10.1016/j.

jbi.2016.10.016 PMID: 27989817

15. Rijnbeek PR. Converting to a Common Data Model: What is Lost in Translation? Drug Saf. 2014; 37:

893–896. https://doi.org/10.1007/s40264-014-0221-4 PMID: 25187018

16. Wasserman RC. Electronic Medical Records (EMRs), Epidemiology, and Epistemology: Reflections on

EMRs and Future Pediatric Clinical Research. Acad Pediatr. 2011; 11: 280–287. https://doi.org/10.

1016/j.acap.2011.02.007 PMID: 21622040

17. Suchard MA, Schuemie MJ, Krumholz HM, You SC, Chen R, Pratt N, et al. Comprehensive compara-

tive effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational,

large-scale analysis. The Lancet. 2019; 394: 1816–1826. https://doi.org/10.1016/S0140-6736(19)

32317-7 PMID: 31668726

18. Wang Q, Reps JM, Kostka KF, Ryan PB, Zou Y, Voss EA, et al. Development and validation of a prog-

nostic model predicting symptomatic hemorrhagic transformation in acute ischemic stroke at scale in

the OHDSI network. PLOS ONE. 2020; 15: e0226718. https://doi.org/10.1371/journal.pone.0226718

PMID: 31910437

19. OHDSI/WhiteRabbit. 3 Feb 2021 [cited 18 Feb 2021]. Available: https://github.com/OHDSI/

WhiteRabbit

20. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessi-

ble critical care database. Sci Data. 2016; 3: 160035. https://doi.org/10.1038/sdata.2016.35 PMID:

27219127

21. MIMIC-OMOP. MIT Laboratory for Computational Physiology; 2022. Available: https://github.com/MIT-

LCP/mimic-omop

22. Karwin B. SQL Antipatterns: Avoiding the Pitfalls of Database Programming. 1st edition. Pragmatic

Bookshelf; 2010.

23. Weber JH, Cleve A, Meurice L, Ruiz FJB. Managing Technical Debt in Database Schemas of Critical

Software. 2014 Sixth International Workshop on Managing Technical Debt. 2014. pp. 43–46. https://

doi.org/10.1109/MTD.2014.17

24. Filho FG de A, Martins ADF, Vinuto T da S, Monteiro JM, Sousa ÍP de, Machado J de C, et al. Preva-

lence of Bad Smells in PL/SQL Projects. 2019 IEEE/ACM 27th International Conference on Program

Comprehension (ICPC). 2019. pp. 116–121. https://doi.org/10.1109/ICPC.2019.00025

25. Davidson L, Boland MR. Comparative Analysis and Evaluation of State-of-the-Art Medication Mapping

Tools to Transform a Local Medication Terminology to RxNorm. AMIA Summits Transl Sci Proc. 2020;

2020: 126–135. PMID: 32477631

26. OHDSI/Usagi. 2 Feb 2021 [cited 18 Feb 2021]. Available: https://github.com/OHDSI/Usagi

PLOS ONE ETL framework for the conversion of health databases to OMOP

PLOS ONE | https://doi.org/10.1371/journal.pone.0266911 April 11, 2022 13 / 13

https://doi.org/10.1016/j.jbi.2016.10.016
https://doi.org/10.1016/j.jbi.2016.10.016
http://www.ncbi.nlm.nih.gov/pubmed/27989817
https://doi.org/10.1007/s40264-014-0221-4
http://www.ncbi.nlm.nih.gov/pubmed/25187018
https://doi.org/10.1016/j.acap.2011.02.007
https://doi.org/10.1016/j.acap.2011.02.007
http://www.ncbi.nlm.nih.gov/pubmed/21622040
https://doi.org/10.1016/S0140-6736%2819%2932317-7
https://doi.org/10.1016/S0140-6736%2819%2932317-7
http://www.ncbi.nlm.nih.gov/pubmed/31668726
https://doi.org/10.1371/journal.pone.0226718
http://www.ncbi.nlm.nih.gov/pubmed/31910437
https://github.com/OHDSI/WhiteRabbit
https://github.com/OHDSI/WhiteRabbit
https://doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27219127
https://github.com/MIT-LCP/mimic-omop
https://github.com/MIT-LCP/mimic-omop
https://doi.org/10.1109/MTD.2014.17
https://doi.org/10.1109/MTD.2014.17
https://doi.org/10.1109/ICPC.2019.00025
http://www.ncbi.nlm.nih.gov/pubmed/32477631
https://github.com/OHDSI/Usagi
https://doi.org/10.1371/journal.pone.0266911

