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Introduction

Whole‑slide images are frequently scanned and stored by health 
systems, governed by a variety of regulatory and proprietary 
constraints that constrain the ability to share, aggregate, or 
disseminate WSI files. This is an important challenge, given 
the increasing number of research and surveillance applications 
requiring the analysis of whole‑slide images generated by 
multiple sites. The acquisition and use of whole-slide images 
is rapidly growing in research and pathology practice.[1] 
There are a variety of open source software projects that 
develop and support low level software to view these images.
[2-7] Accordingly, the ability to view whole‑slide images and 
derived data products has become a crucial component of 
the analytic pipeline of comprehensive biomedical studies. 
At the same time, visual inspection is needed to make sure 
that proper QA/QC remains in place, sometimes including 
manual inspection of combined whole‑slide images and 

derived data products. Therefore, we target the problem of 
viewing distributed collections of whole‑slide images in a 
manner that does not require having a tiling server local to 
the images. An illustrative example of this is the NCI SEER 
surveillance program. SEER data are produced locally at 
over 1000 facilities. We collaborate with the SEER program 
that employs neural networks to generate a variety of data 
products including tumor‑infiltrating lymphocyte and nuclear 
segmentation studies. For legal, contractual, and logistical 
reasons, these analyses often must be generated locally, even if 
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the sites where slides are scanned are frequently insufficiently 
resourced computationally. In order to address that problem, 
we are involved in an effort to optimize that computational 
process,[8‑11] both for image classification in specialized 
high‑performance computing settings and in developing 
lightweight methods for viewing locally produced whole‑slide 
images and derived data.

Advanced imaging technologies can capture extremely 
high‑resolution images of tissue specimens, and quantitative 
analyses of cancer morphology using these images have shown 
value in a variety of correlative and prognostic studies. Our 
work on Oak Ridge National Laboratory  (ORNL) Summit 
facility will generate a comprehensive multiscale mapping 
of cancer morphology with a dataset of more than 10,000 
whole‑slide tissue images from over  20 cancer types. The 
work will use a collection of deep‑learning analysis pipelines 
we have developed to study, quantify, and characterize 
tissue structure in diseased and normal tissue specimens. 
These analysis pipelines generate distributions of nuclei and 
cells and patch‑level maps of lymphocyte distributions and 
segmentations of tumor regions. The classification results are 
expected to provide first‑ever representations of lymphocyte 
maps, nuclear characterizations, and characterizations of 
tumor regions on a dataset of this scale. Specifically, the 
unprecedented granularity of the automated classification 
will generate rich datasets with the potential to develop 
novel biomarkers to predict clinical outcome and a better 
epidemiological understanding of cancer subtypes and how 
constituent cells contribute to cancer invasion and expansion.

With the serverless execution methodology proposed, the 
ability to easily view whole‑slide images residing in cloud and 
supercomputer facilities will be greatly facilitated. The critical 
practical advance is the reliance on local infrastructure that no 
longer requires deployment and management of specialized 
tiling image servers: Setting up tiling image servers wherever 
WSI images reside is neither practical nor scalable. Many 
applications are available and used for viewing locally based 
WSI images but, in order to serve image tiles on the web, an 
image tiling server must be employed. Modified versions of 
IIP which use the open‑source library OpenSlide for image tile 
extraction require a certain level of domain expertise to build 
and maintain properly. Other solutions require transcoding of 
images into solution‑specific image formats increasing storage 
costs and consuming valuable time for the needed conversions. 
Not all practices and operations are necessarily equipped to 
handle or afford these said requirements. WSI images also 
incur a large storage size requirement with smaller operations 
using cloud infrastructures to store, share, and access their 
images to reduce costs and the need for localized technical 
domain knowledge. The methodology proposed in this article 
for access to remote tiles via HTTP requests is, therefore, 
fitting for leveraging cloud infrastructures for WSI imaging. 
Furthermore, by removing the need to colocate specialized 
tiling services, a function replaced by the “range” parameter 
supported by standard web servers, the new solution paves the 

way to the adoption of standard consumer‑facing cloud services 
already used for undiscriminated storage, sharing, and backup.

Methods

Processing WSI files in their entirety is difficult given their 
size because a fully decoded image would be larger than 
most workstations typical RAM sizes. Therefore, WSI image 
formats such as Aperio SVS, Olympus VSI, JPEG2000, and 
BigTIFF address this obstacle by tiling, allowing subportions 
of the image to be accessed without requiring the entire image 
to be decoded. The proposed methodology relies on the index 
of the tiled, scaled image pyramid stored within the file.

Moving WSI images to the cloud represents a problem in 
that an image tiling server would have to be installed locally 
to the cloud‑based images. Using HTTP range requests,[12] 
we are able to decouple the location of the WSI and the 
tiling server engine. This method has already been used to 
GeoTIFF images running under the flag of “Cloud‑Optimized 
GeoTIFF  (COG).”[13] Although TIFFs  (BigTIFF) are used 
extensively in cancer WSI, additional formats are required so 
repurposing a COG would be insufficient and limited. WSI 
images show up in many formats such as Aperio SVS and 
Olympus VSI. Due to the amount of data in scanned images, 
scanners will often encode these images using the JPEG 
format which has a lossy compression scheme. Transcoding 
of images from one format to another is time‑consuming in 
our experiences, and this can typically take 30 min to more 
than an hour for each WSI. Even if transcoding is performed, 
packages such as OME Bioformats will decode all images 
and then re‑encode when saving to the new format COG, 
even if the same compression and tile size is selected. If 
JPEG encoding is chosen, the re‑encoding of the tile could 
cause further loss of image quality. If a nonlossy compression 
scheme is chosen such as ZIP or DEFLATE, the image file 
size can grow between 5x and 10x the original image file size. 
In keeping and working with the original file as it is, we save 
both time, image quality, and image storage.

ImageBox2 is built using the following two core software 
libraries: Eclipse Jetty HTTP library for all HTTP client and 
server functions.  The second library is Open Microscopy 
Environment’s Bioformats[15] for decoding pf the needed WSI 
formats.  ImageBox2 implements the IIIF[14] interface HTTP 
specification.

A custom implementation of a low‑level Bioformats class object 
was created to route Bioformats local file data calls over HTTP 
range requests. HTTP range requests are similar to normal 
HTTP requests with the exception of rather than download an 
entire entity, a range of bytes is specified by adding the HTTP 
header “range” with a value of “bytes = start‑end” which would 
then only download bytes from < start > to < end >.

Test environment
A modified IIP server[2,4] able to read WSI images using 
the OpenSlide WSI library[16] was used for performance 
comparisons. IIP is an implementation of the IIIF protocol 
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which defines a URL pattern for accessing a specific image 
tile at a particular resolution using a template in the form:

{scheme}://{server}{/prefix}/{identifier}/{region}/{size}/ 
{rotation}/{quality}.{format}.

Example:

h t t p : / / i m a g e b o x . e b r e m e r. c o m / i i i f / ? i i i f = h t t p s : / / 
s3.amazonaws.com//ebremeribox/image.svs/131000 
,0,60000,100000/1024,/0/default.jpg.

Results

•	 Test Server #1 – Running Apache JMeter[17] version 5.1.1. 
makes all simulated client calls to #2

•	 Test Server #2 – Running ImageBox and IIP/OpenSlide 
both having access to a local image copy

•	 Test Server #3 – Amazon S3 containing the same test WSI 
as in #2.

Ten clients were simulated with Apache JMeter each client 
making 250 random 256 × 256 tile samples. Our test image is 
an Aperio SVS image of size 191,352 × 91,462 pixels in size 
with a file size of 3.8 GB [Figure 1].

For a full interactive example see: http://imagebox.ebremer.
com/osd.html.

Discussion

In Figure 1, we show the time in milliseconds for a tile to be 
returned versus time for our three test cases. The older, but 
highly optimized, IIP performs the best for image files local 
to the server, followed by ImageBox2 for images local to the 
server, and finally ImageBox2 accessing image files remotely 
via http. Whereas the overhead of http does add an additional 
layer, it still provides very usable access times but adds the 
flexibility that images do not have to be local to the tiling engine. 
Response times improve quickly in the HTTP case as the tiling 
engine completes reading the remote image file headers.

In Table 1 ,[18]  we do a cost comparison to show that being 
able to view parts of remote images can significantly reduce 
network transfer costs as opposed to downloading entire 
WSI images. Cloud providers such as Amazon and Azure do 
not charge for transfer data into their cloud infrastructures, 
however, they do impose a cost on data transfer from their 
cloud infrastructures out of the cloud to the clients making the 
requests (egress costs). Since image decoding is moved to the 
client side, a reduction in CPU utilization on the image‑hosting 
server would occur, however, cloud providers such as Amazon 
and Azure do not charge for the utilization levels of the CPUs 
but only for the number of CPUs that were provisioned with 
the original server. Whether they run at 100% or 50% the cost 
would be the same unless CPU loads pushed the need to add 
additional CPUs. We did not measure this reduction, but it is 
a potential saving cost‑point.

Use case‑ORNL Summit‑our group runs a variety of 
deep‑learning semantic segmentation and feature extraction 
pipelines at the Oak Ridge National Laboratory Summit 
supercomputing facility. The ability to remote‑view the 
data product results of our various pipelines will allow us to 
carry out data product quality control during the course of a 
computational run.

Table 1: Our costs[18] for ten full file downloads would 
have been 38.1 GB at $0.05/GB=$1.90, however, with 
ImageBox2, the 130 partial file downloads were 0.21 
GB=$0.01

Service Response Comparison description
ImageBox 
Amazon S3

120 ms/tile ImageBox accessing tiles on an 
Amazon S3 (Server #3) hosted image

ImageBox 
Local

50 ms/tile ImageBox accessing tiles from test 
WSI local to itself on Server #2

IIP/OpenSlide 25 ms/tile IIP/OpenSlide accessing tiles from 
the same local file on Server #2

WSI: Whole-slide images

Figure 1: Response graphs for time for image tile return
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The supercomputer generates results extremely quickly. 
For instance, we are able to generate results for a cohort of 
1000  patients in roughly 2 h rather than the many weeks 
otherwise required on standard GPU cluster facilities. Moving 
large amounts of data between ORNL facilities and remote 
research groups such as Stony Brook University is impractically 
time‑consuming. Because these are computational processes 
with efficiencies that vary between datasets, there is a constant 
need to interactively monitor progress of the computations 
and to assess the quality of the results being produced. This 
infrastructure allows our pathologists and biomedical scientists 
to carry out this near real‑time performance assessment.

In a test, the results of a deep‑learning segmentation pipeline 
were stored in a web‑accessible folder provided by ORNL 
systems.[19] A remote ImageBox server was deployed at 
Stony Brook and a OpenSeadragon‑based viewer to display 
The Cancer Genome Atlas WSI image that was local to 
that ImageBox instance and simultaneously overlay the 
ORNL‑based segmentation results for that image using HTTP 
range requests [Figure 2].

Currently, in all of our work, access has been restricted to 
unprotected, publicly available HTTP access points. However, 
it would be useful and is a planned feature for ImageBox2 to 
add authentication capabilities such as oAuth2, OpenID, and 
token‑based authentications in order to add access capabilities 
to protected image assets.

Conclusions

The new approach to distributed image tile serving is able to 
pull tiles of varying sizes and resolutions directly over the 
web using HTTP range requests. This solution is both scalable 
and safe because it does not require customized software 
installation and does not circumvent the access provisions 
set by the web server for the image file being served. The 
ubiquity of HTTP range operations is a byproduct of the 
development of modern cloud infrastructure configured for 

equally ubiquitous data intensive API ecosystems such as 
those now being advanced by Data Commons, as illustrated 
by the National Cancer Institute  (NIH/NCI) Genomic Data 
Commons, as well as by reference repositories such as The 
Cancer Imaging Archive. The solution proposed here is in line 
with that cloud‑hosted granular API delivery model, devising 
a mechanism where one tiling imaging server can provide 
subtiles from WSI images all over the web. This solution 
is validated by an accompanying application, ImageBox2, 
which advances earlier work on “safe image cloudification” by 
ImageBox.[20] It is also informed by our recent work on granular 
orchestration of  stateless Application Programming Interfaces 
at Data Commons scale.[21] The test results below illustrate a 
use case where, in addition to the advantageous security and 
scalability, the costs associated with the proposed solution are 
up to one hundredth of the conventional approach [Table 1].

From the response time graph, one can see that the HTTP 
range requests incur a time penalty as an HTTP request 
must be generated in order to retrieve data as opposed to a 
local file call for the same data. The ability to then access 
tiles from cloud‑hosted images makes up for that lag with 
twofold increases in efficiency measured by the ability to 
stream only the tiles needed, reducing cloud network transfer 
costs and avoiding file duplication steps altogether. Although 
response time is slightly more than twice that of a local copy, 
it is more than ample for human‑interactive displays such as 
OpenSeadragon.[22] HTTP range requests are supported by 
most cloud providers, including Amazon, Box, Dropbox, and 
most HTTP server implementations such as Apache HTTP 
server and NGINX.

With the advent of WebAssembly  (Wasm), it is possible 
to compile languages such as C, C++, and Java to a binary 
instruction set that runs in browsers. In Wasm 1.0, garbage 
collection is not currently supported, so Java compilation to 
Wasm is problematic. Garbage collection is slated to be added 
to the next Wasm specification. ImageBox2 is written in Java, 
and we are working to move it into a client‑only configuration 
using Wasm technology.
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