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ABSTRACT
A new generation of anticancer therapeutics called target drugs has quickly 

developed in the 21st century. These drugs are tailored to inhibit cancer cell growth, 
proliferation, and viability by specific interactions with one or a few target proteins. 
However, despite formally known molecular targets for every “target” drug, patient 
response to treatment remains largely individual and unpredictable. Choosing the 
most effective personalized treatment remains a major challenge in oncology and is 
still largely trial and error. Here we present a novel approach for predicting target drug 
efficacy based on the gene expression signature of the individual tumor sample(s). 
The enclosed bioinformatic algorithm detects activation of intracellular regulatory 
pathways in the tumor in comparison to the corresponding normal tissues. According 
to the nature of the molecular targets of a drug, it predicts whether the drug can 
prevent cancer growth and survival in each individual case by blocking the abnormally 
activated tumor-promoting pathways or by reinforcing internal tumor suppressor 
cascades. To validate the method, we compared the distribution of predicted drug 
efficacy scores for five drugs (Sorafenib, Bevacizumab, Cetuximab, Sorafenib, 
Imatinib, Sunitinib) and seven cancer types (Clear Cell Renal Cell Carcinoma, Colon 
cancer, Lung adenocarcinoma, non-Hodgkin Lymphoma, Thyroid cancer and Sarcoma) 
with the available clinical trials data for the respective cancer types and drugs. 
The percent of responders to a drug treatment correlated significantly (Pearson’s 
correlation 0.77 p = 0.023) with the percent of tumors showing high drug scores 
calculated with the current algorithm.

INTRODUCTION

For over six decades, chemotherapy has been a key 

treatment for many types of cancer, often with high rates 
of success. For example, the use of cisplatin-containing 
regiments in the treatment of testicular cancer turned 
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~100% mortality to ~90-95% disease-specific survival 
observed nowadays [1, 2]. However, many individual 
cases and types of cancer remain incurable or even 
unresponsive using standard chemotherapy approaches. 
Moreover, chemotherapy generally causes severe side 
effects, which significantly decrease the quality of life 
of a patient [3, 4]. The chemical compounds included 
in standard chemotherapy cocktails have numerous 
molecular targets in cancerous and normal cells, which 
makes it difficult to simulate and predict the activity of 
drug to an individual patient based on the molecular data, 
and in standard practice clinicians routinely use clinical 
or morphological predictive factors like stage, grade, 
proliferative activity, etc [5, 6]. These predictive factors 
are typically very inaccurate and not applicable for tracing 
the individual patient response to chemotherapy drugs and 
regimens. 

To address specific activities of certain functionally 
relevant proteins and their aggregates frequently observed 
in cancer, a new generation of anticancer drugs was 
generated that target one or a few specific molecules in 
a cell [7]. This class of drugs consists mostly of specific 
monoclonal antibodies (Mabs) and low molecular weight 
kinase-inhibitor molecules (Nibs; [8]). At least fifty 
different anticancer target drugs have been approved by 
national food and drug administration (FDA) systems and 
present on the global pharmacological market today (e.g., 
accessible through Metadrug database, www.drugbank.
ca). 

The emergence of target drugs was beneficial 
for the treatment of several cancer types. For example, 
trastuzumab (anti-HER2 monoclonal antibody) and several 
other new anti-HER2 medications at least doubled median 
survival time in patients with metastatic HER2-positive 
breast cancer and improved 5-year survival in early stage 
disease to ~90-95% [9, 10]. Interestingly, before the 
introduction of trastuzumab, HER2-positive cancers had 
the worst prognoses across all breast cancer subtypes, 
whereas now the situation is reverted [11]. Patients with 
melanoma (deadly skin cancer type) for decades had no 
treatment opportunities except dacarbazine chemotherapy, 
which resulted in <10% chance of very short-lasting 
(~5-6 month) response and median survival less than a 
year. Now, in the case of BRAF-mutated tumor, they can 
receive vemurafenib (anti-BRAF target drug) and have 
~50% chance of response [12], or, irrespectively of BRAF 
mutation, ipilimumab (immune checkpoint inhibitor) with 
~20% chance of long-term (>5 years) disease control [13].

Importantly, the results of clinical trials clearly 
suggest that for many drugs considered inefficient 
for treatment of a given cancer type, a tiny fraction 
of the patients exists to whom these drugs can be of a 
significant benefit. For example, no benefit was seen in 
large randomized studies in cohort of unselected patients 
with non-small cell lung cancer after introduction of anti-
EGFR drugs (gefitinib and erlotinib). But it was observed 

that ~10-15% of the patients who participated in these 
studies survived unpredictably long. Further investigation 
revealed that all these patients had activating mutation 
of EGFR and that this mutation may predict response to 
the EGFR-targeting drugs. Indeed, contemporary studies 
showed tha t patients with EGFR-mutated tumors have 
the strongest advantage with these types of target therapy 
[14]. In the case of colorectal cancer, discovery of the 
role of KRAS mutation in the resistance to the EGFR-
targeting antibody (cetuximab or panitumumab) helped to 
identify a group of patients that can benefit from this kind 
of treatment (patients with wild-type KRAS). Moreover, 
further studies demonstrated that for KRAS-mutated 
tumors (~40% of colorectal cancer), anti-EGFR antibodies 
cause harm and decrease survival [15]. 

It is of great importance, therefore, to identify 
accurate predictive markers of target drug efficacy. 
Several clinical tests have been used to identify optimal 
personalized cancer treatments [16, 17]. These tests 
mostly utilize data on the expression of certain individual 
genes and on somatic mutations within these genes, as 
mentioned above. Alternatively, drugs can target abnormal 
fusion proteins frequently formed in cancer cells, such as 
chimeric fusion BCR-ABL and the respective drug imatinib 
[18, 19]. However, most of these predictor features profile 
only several biomarkers, cover only a minor fraction of 
target drugs, and are limited to a particular type of cancer. 
Somewhat more universal methods are required to rank 
the maximum number of existing drugs.

We propose that a shift in focus to the activation of 
intracellular signaling pathways in cancer may advance 
the development of such approach. We report here a 
method for predicting target drug efficacy based on a 
patient’s cancer-specific patterns of signaling pathway 
activation (SPA), particularly for pathways including 
molecular targets of respective drugs. The enclosed 
algorithm operates with the so-called Pathway Activation 
Strength (PAS) value, which is a qualitative characteristic 
of pathway activity in a cancer sample. Several approaches 
were published previously by us and others to measure 
PAS based on large scale gene expression data; these 
may be used with either transcriptomes or proteomes. 
Khatri et al [20] classified those methods into three major 
groups: Over-Representation Analysis (ORA), Functional 
Class Scoring (FCS) and Pathway Topology (PT)-based 
approaches. ORA-based methods calculate if the pathway 
is significantly enriched with differentially expressed 
genes [21-23]. These methods have many limitations, as 
they ignore all non-differentially expressed genes and do 
not take into account many gene-specific characteristics. 
FCS-based approaches partially tackle aforementioned 
limitations by calculating fold change-based scores for 
each gene and then combining them into a single pathway 
enrichment score [24-26]. PT-based analysis also takes 
into account topological characteristics of each given 
pathway, assigning additional weights to the genes (for a 
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review, see [27]). Recently, to account for gene expression 
variability within a pathway, another set of differential 
variability methods has been developed [28]. Differential 
variability analysis determines a group of genes with a 
significant change in variance of gene expression between 
case and control groups [29]. This approach was further 
extended and applied on the pathway level [28, 30, 31]. 

Recently, we developed OncoFinder, a new 
biomathematical method for pathway analysis [32] 
[33]. This method performs quantitative and qualitative 
analysis of signaling pathway activation. For each 
investigated sample, it performs a case-control pairwise 
comparison and calculates PAS, a value which serves 
as a qualitative measure of pathway activation. Unlike 
most other methods, this approach takes into account 
functional roles of all molecular participants of a 
pathway, and determines if the signaling pathway is 
significantly up- or down-regulated compared to the 
reference. Negative and positive overall PAS values 
correspond, respectively, to the inhibited or activated state 
of a pathway. OncoFinder is also, to our knowledge, a 
unique PAS calculating method, which provides output 
data with significantly reduced noise introduced by the 
experimental transcriptome profiling systems [33]. This 
feature enables characterization of the functional states 
of the transcriptomes and interactomes more accurately 
than prior methods. It was also shown to be efficient in 
finding new cancer biomarkers more stable than individual 
gene expression patterns [34]. To date, OncoFinder has 
demonstrated usefulness in several applications including 
leukemia and solid cancers [34-37], Hutchinson Gilford 
Disease [38] and Age-Related Macular Degeneration 
Disease [39].

Here, we present a novel approach for choosing an 
optimal personalized treatment for cancer patients based 
on high-throughput gene expression profiling of tumor 
samples. We introduce a Drug Score (DS) as a measure of 
effectiveness of a drug in a patient based on the rationale 
that a drug needs to compensate the changes in pathway 
activation/deactivation associated with cancer progression. 
We use clinical trials data to validate this scoring system. 

We compared the distribution of the predicted drug 
efficacy scores for five drugs (Sorafenib, Bevacizumab, 
Cetuximab, Sorafenib, Imatinib, Sunitinib) and seven 
cancer types (Clear Cell Renal Cell Carcinoma, Colon 
cancer, Lung adenocarcinoma, non-Hodgkin Lymphoma, 
Lung Adenocarcinoma, Thyroid cancer and Sarcoma) with 
the available clinical trials data for the respective drugs 
and cancer types. The proportion of tumors for which high 
drug scores were calculated with the proposed algorithm 
correlated significantly with the percent of responders to 
a drug treatment (Pearson’s correlation 0.77, p = 0.023).

RESULTS

Drug scoring algorithm

OncoFinder algorithm is based on the processing 
of Pathway Activation Strength (PAS) signatures of 
the cancer tissues under investigation. According to 
OncoFinder method, PAS is calculated using expression 
values of individual genes to investigate activation/
deactivation of intracellular signaling pathways [33]. 
PAS is defined as a weighted sum of logarithmic case-
to-normal ratios (CNR), i.e. fold-change of expression 
values of a gene in a biosample under study compared to 
average expression value in control samples. Two types of 
weighting coefficients are defined as indicators showing 
(i) if a protein CNR value exceeds the confidence interval 
(BTIFn, beyond tolerance interval flag); (ii) if a protein n 
represses (-1 value) or promotes (+1 value) signaling in 
the pathway p (ARRnp, activator/repressor role); (iii) if a 
protein n is involved in pathway p (NIInp, node involvement 
index). 

Overall, PAS, or Pathway Activation Strength is 
calculated according to the following formula [33], where 
p represents the index of a pathway and n stays for the 
index of a protein:

To construct a scoring function for a drug in a 
patient, or DS, we define the following indicators:

AMCF flag (activation-to-mitosis conversion factor) 
shows if the pathway activation promotes or inhibits 
mitosis and cell survival:

 
DTI (drug-target index):

NII (node involvement index):

DS, which estimates the ability of a drug d to turn 
cancer-related pathological changes in the transcriptome 
of a tumor back to normal state is defined as follows:

In other words, 

Briefly, DS can be understood as a sum of Pathway 
Activation Scores (PAS) for the pathways in which 
the targets of a drug are involved. The same PAS can 
be summed up several times if a drug targets multiple 
proteins involved in the pathway.

The given formula for DS is in principle applicable 
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for all target drugs, including small molecule inhibitors 
(Nibs) and monoclonal antibodies (Mabs). With a 
little modification, it might be also applied for scoring 
monoclonal antibodies attached to cytotoxic agents, so-
called Killer Mabs. In that case, a different definition of 
Pathway Activation Strength can be used:

PAS for killer Mabs is a reduced case of PAS where 
AMCF and ARR indicators are set to 1. This reflects the 
fact that despite the real biological role of a protein n in 
signaling, its overexpression will attract cytotoxic agents 
to tumor cells.

Validation of the Drug Scoring algorithm based 
on tumor expression profiling and clinical trials 
data

We calculated DS for 113 anticancer target drugs 
extracted from the DrugBank database (http://www.
drugbank.ca/) for different cohorts of patients with 
different cancer types. We investigated gene expression 
in a total of 371 samples of tumors and control sets 

of corresponding normal tissues for 7 cancer types: 
Clear Cell Renal Cell Carcinoma, Colon cancer, Lung 
adenocarcinoma, non-Hodgkin Lymphoma, Thyroid 
cancer and Sarcoma (Table 1). Table S1 summarizes the 
best scoring targeted drugs for every cancer type under 
study. Distributions of the DS are shown in Supplementary 
Figure 1. In general, we observed that cancer types for 
which target drug therapy is known to be efficient show 
significantly higher drug scores: Clear Cell Renal Cell 
Carcinomas and Thyroid tumors demonstrated high 
scores for top-scoring drugs, whereas non-Hodgkin 
lymphomas and lung adenocarcinomas showed lower 
scores (Supplementary Table 1, Supplementary Figure 1). 

To investigate whether the DS successfully 
predicts treatment efficacy, we analyzed publically 
available clinical trials data from the ClinicalTrials 
database (clinicaltrials.gov) and different human cancer 
transcriptomes extracted from the Gene Expression 
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/). We checked if the number of patients responding 
and not responding to a treatment with a particular drug 
in a particular cancer type (Table 2) could be explained 
by the distribution of DS for that drug in patients with the 
particular cancer type. We assumed that the higher number 

Table 1: GEO gene expression datasets used in the study. If normal samples were taken from different GEO dataset, its 
accession is shown in “Normal” column.

Name GEO AC 
(tumor)

GEO AC 
(normal) Subtype

Number 
of 
patients: 
all 
(tumor)

Tissue type 
(normal) Platform

(A). Comparison of drugs scores with clinical trials results

Thyroid cancer GSE33630 papillary thyroid 
carcinoma 94 (49) thyroid GPL570

non-Hodgkin 
lymphoma (NHL) GSE12453 Diffuse large B-cell 

lymphoma 50 (25)
non-
neoplastic B 
lymphocytes

GPL570

Renal cancer GSE36895 Clear cell renal cell 
carcinoma 52 (29) normal kidney 

cortices GPL570

Lung cancer GSE43580 GSE37768 adenocarcinoma (AC) 97 (77)
Peripheral 
lung tissue 
(non-smokers)

GPL570

Colon cancer GSE23878 - 59 (35)
non-cancerous 
colorectal 
tissue

GPL570

Sarcoma GSE31715 GSE28511 - 19 (16)
normal 
skeletal 
muscle tissue

GPL6947

(B). Candidate drugs for Multiple Sclerosis

Multiple sclerosis GSE21942 27 (12)
peripheral 
blood 
mononuclear 
cells

GPL570

(C). Melanoma dataset with wt / V600E BRAF

Melanoma GSE15605
74 (58):
31 wt +  
20 V600E

Primary 
melanoma vs 
normal skin

GPL570
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of drug responders among the clinically investigated 
group of particular cancer patients should correspond 
to higher Drug Scores for the patients with same cancer 
type. Moreover, we assumed that a cut-off value could be 
chosen to distinguish the patients as responders or non-
responders to a particular treatment according to their gene 
expression profile. We chose four cut-off values for DS 
between 100 and 500 to assess the correlation between 

the number of responders in a clinical trial and a predicted 
number of responders in a GEO dataset. To avoid multiple 
testing, only four cut-off values were tested (200, 250, 
300, 350) and 250 was chosen as an optimal DS cut-off 
value providing the best correlation between fraction of 
responders in a clinical trial and fraction of patients with 
DS higher than the chosen cut-off. For the cut-off value 
of 250, we next calculated the percent of patients from a 

 Table 2: List of clinical trials analyzed in this study. Patients showing complete or partial response were considered 
responders. ccRCC stands for Clear Cell Renal Cell Carcinoma, nHLymphoma for non-Hodgkin Lymphoma, lung AC for 
lung adenocarcinoma.

Cancer type Drug % of responders Clinical Study ID Number of 
patients

ccRCC Sorafenib 12.8 NCT00586105 39
ccRCC Bevacizumab 26.9 NCT00719264 182
Colon Cetuximab 8.2 NCT00083720 85
lung_AC Sorafenib 0 NCT00064350 50
Thyroid Imatinib 25 NCT00115739 8
Thyroid Sorafenib 11.1 NCT00126568 18
nHLymphoma Sunitinib 0 NCT00392496 15
sarcoma Imatinib 33 NCT00090987 30

Figure 1: Scatter plot showing the percent of patients with a particular cancer type responding to a particular treatment 
(x-axis) in a clinical trial versus the percent of patients with a particular cancer type having the Drug Score for the 
particular drug above an arbitrary chosen cut-off value (250) (y-axis). ccRCC stands for Clear Cell Renal Cell Carcinoma, 
nHLymphoma for non-Hodgkin Lymphoma, lung AC for lung adenocarcinoma.
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transcription profiling study showing higher DS than the 
cut-off rate. We observed that the fraction of patients with 
high DS correlated significantly with response rates in the 
respective clinical trials (Pearson’s correlation 0.77, p = 
0.023) (Figure 1). 

Application of the drug scoring algorithm to 
multiple sclerosis datasets

To investigate whether the PAS-based DS can 
be efficiently used to rank drugs for diseases other than 
cancer, we tested this approach for Multiple Sclerosis 
(MS) patients. MS was chosen because anticancer target 
drugs, such as mitoxantrone, natalizumab or interferons, 

Table 3: Drugs with the highest drug scores for MS patients

Drug Mean Drug Score Mentions of drug application for 
MS

Thalidomide 220.4 [43, 44]
Dasatinib 141.2 [45, 46]
Nilotinib 122.4
Regorafenib 110.7
Paclitaxel 103.7 [47]

Figure 2: Cohort of tumors with BRAF V600E mutation (left bar) had significantly higher proportion of patients for 
whom Vemurafenib was predicted to be beneficial compared to a cohort with wild-type BRAF (right bar). Red bars show 
predicted non-responders and green bars show predicted responders (having non-zero DS for Vemurafenib)
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frequently show efficacy in treatment of this disease [40, 
41]. MS is considered a systemic autoimmune disease, 
in which lymphocytes are immunoreactive against the 
patient’s normal tissues [42]. We took the data on gene 
expression in peripheral blood mononuclear cells of MS 
patients and control patients (Table 1 section B). We 
hypothesized that the drugs which could compensate 
MS-specific changes in gene expression in peripheral 
blood mononuclear cells could be beneficial for patients 
suffering from MS. We prioritized the anticancer target 
drugs according to the mean DS they had in MS patients. 
The top five drugs identified in this assay are shown on 
Table 3. Even though the database contained only anti-
cancer drugs, the three of five top drugs identified were 
previously studied as potential treatments of Multiple 
Sclerosis and showed considerable beneficial effects 
(Table 3).

Drug score approach distinguishes between BRAF 
wild type and V600E mutants in melanomas

Unlike other approaches to ranking drugs for 
personalized cancer treatment, the algorithm suggested 
here does not require preliminary data on somatic 
mutations in tumors, thus substantially reduces the costs 
of analysis. While identifying the presence of mutations 
causing loss and gain of function of regulatory proteins is 
frequently an important step in predicting clinical outcome 
and treatment efficiency (e.g. BRAF V600E mutation) 
[12], we show here that a transcriptome-only approach 
also has the power to detect these changes at the gene 
expression level for downstream targets of the mutated 
regulator. Theoretically, the expression data may provide 
even more biologically meaningful results, as reliable 
methods for prediction of particular somatic mutations 
(e.g., gain-of-function) do not exist to date, and many 
mutations have limited or no phenotypic manifestations, 
depending heavily on the enclosing genomic context [48].

To investigate the ability of our transcriptome-
based drug scoring approach to distinguish between 
tumors harboring different driver mutations, we explored 
gene expression in melanoma patients. Vemurafenib is a 
target drug that is effective for melanoma tumors with 
V600E gain-of-function mutation in BRAF gene [12]. 
We compared DS for patients with wild type and V600E 
BRAF melanomas (Table 1 section C). We demonstrated 
that the percent of patients for whom Vemurafenib was 
expected to be beneficial (those having a positive DS for 
this drug) was significantly higher for the cohort of BRAF 
V600E-mutated tumors (p(Fisher) = 0.042, Figure 2).

The reason why an expression-based approach 
works well in this case is likely due to the ability to 
detect expression changes introduced by transcriptional 
reprogramming driven by the molecular consequences 
of V600E BRAF mutation. Of note, activation profiles of 

several molecular pathways correlated strongly with the 
mutation carrier status for the patients under investigation 
(Supplementary Table 2)

DISCUSSION

Here we present a novel biomathematical 
method, which has a potential to be universal tool for 
predicting drug efficacy in the treatment of cancer via 
characterization of tumor-related patterns in intracellular 
signaling. It may have wide applicability, not only across 
the range of cancer types, but also to individual samples 
toward the goal of personalized cancer treatment. Unlike 
most part of other approaches to drug scoring in cancer, 
the current method does not require data on somatic 
mutations in tumors, thus substantially reducing the costs 
of an assay. Rather, it relies on advanced gene expression 
analysis. Although the presence of mutations causing 
loss and gain of function of certain regulator proteins is 
an important factor in the prediction of clinical outcome 
and treatment efficacy, a transcriptome-only approach 
will still potentially detect these changes as expression 
changes in downstream targets of the mutated regulator. 
Moreover, because reliable methods for predicting the 
effects of many specific somatic mutations (e.g. gain of 
function) do not yet exist, results based on expression 
data may be more biologically meaningful. As a proof 
of concept, we have demonstrated that our approach 
predicts the efficacy of Vemurafenib in melanoma samples 
without knowing the mutation status of BRAF; indeed, 
the prediction corresponded to presence of V600E gain-
of-function mutation. For several other cancer types, 
we demonstrated the statistically significant advantage 
of this approach in identification of the top target drugs 
efficient for the respective cancer patients. On the model 
of multiple sclerosis, we showed that the current method 
of drug scoring is applicable also to non-tumor diseases. 
The approach we report here is platform-independent, i.e. 
any kind of high-throughput proteomic and transcriptomic 
data may be used to estimate gene expression. 

MATERIALS AND METHODS

GEO expression profiles of tumors

The following datasets were analyzed in the 
study: GSE26886, GSE33630, GSE12453, GSE12460, 
GSE46170, GSE50161, GSM904985, GSE43580, 
GSE43580, GSE23878, GSE16515, GSE31189 
(Supplementary Table 1). All the data were obtained with 
Affymetrix Human Genome U133 Plus 2.0 Array (GEO 
platform GPL570). The datasets contained tumor samples 
and normal samples of corresponding tissues from the 
same or different individuals.
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Preprocessing of microarray data

Raw microarray data (CEL files) were preprocessed 
with in R (version 3.1.0) using GCRMA method from affy 
package [49].

Clinical trials data

A complete list of clinical trials analyzed in this 
study can be found in Table 1.

Databases of known targeted drugs and pathways

Source datasets. The signalling pathways 
knowledge base developed by SABiosciences (http://
www.sabiosciences.com/pathwaycentral.php) was used to 
determine structures of intracellular pathways, which were 
used for OncoFinder as described previously [33].

Calculation of PAS and DS

Drug Score and Pathway Activation Strength values 
were calculated as described in the Results section with 
the following parameters: for each sample, only gene 
expression values which (1) were significantly (p>0.05) 
different from the distribution of expression in the set 
of control samples and (2) had CNR cancer-to-normal 
ratio outside of the interval between 0.66 and 1,5, thus 
leaving only the genes significantly different in terms of 
expression from control samples both in terms of statistical 
significance and magnitude
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